Properties

Label 403.2.s.a.160.16
Level $403$
Weight $2$
Character 403.160
Analytic conductor $3.218$
Analytic rank $0$
Dimension $70$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(70\)
Relative dimension: \(35\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 160.16
Character \(\chi\) \(=\) 403.160
Dual form 403.2.s.a.335.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.605874 - 0.349801i) q^{2} +(1.45071 + 2.51270i) q^{3} +(-0.755278 - 1.30818i) q^{4} +(-1.79550 + 1.03663i) q^{5} -2.02984i q^{6} +0.152727i q^{7} +2.45599i q^{8} +(-2.70911 + 4.69232i) q^{9} +O(q^{10})\) \(q+(-0.605874 - 0.349801i) q^{2} +(1.45071 + 2.51270i) q^{3} +(-0.755278 - 1.30818i) q^{4} +(-1.79550 + 1.03663i) q^{5} -2.02984i q^{6} +0.152727i q^{7} +2.45599i q^{8} +(-2.70911 + 4.69232i) q^{9} +1.45046 q^{10} -1.26156i q^{11} +(2.19138 - 3.79558i) q^{12} +(-3.25633 + 1.54801i) q^{13} +(0.0534243 - 0.0925336i) q^{14} +(-5.20950 - 3.00771i) q^{15} +(-0.651446 + 1.12834i) q^{16} -3.89596 q^{17} +(3.28276 - 1.89530i) q^{18} +7.92815i q^{19} +(2.71221 + 1.56589i) q^{20} +(-0.383759 + 0.221563i) q^{21} +(-0.441294 + 0.764344i) q^{22} +(4.11312 - 7.12413i) q^{23} +(-6.17118 + 3.56293i) q^{24} +(-0.350778 + 0.607566i) q^{25} +(2.51442 + 0.201171i) q^{26} -7.01627 q^{27} +(0.199795 - 0.115352i) q^{28} +(-0.981201 + 1.69949i) q^{29} +(2.10420 + 3.64458i) q^{30} +(-5.51441 - 0.768913i) q^{31} +(5.04330 - 2.91175i) q^{32} +(3.16992 - 1.83015i) q^{33} +(2.36046 + 1.36281i) q^{34} +(-0.158323 - 0.274223i) q^{35} +8.18453 q^{36} +(-8.26694 + 4.77292i) q^{37} +(2.77328 - 4.80346i) q^{38} +(-8.61366 - 5.93647i) q^{39} +(-2.54597 - 4.40975i) q^{40} -2.23620i q^{41} +0.310012 q^{42} +9.26643 q^{43} +(-1.65034 + 0.952826i) q^{44} -11.2334i q^{45} +(-4.98406 + 2.87755i) q^{46} -4.61814i q^{47} -3.78023 q^{48} +6.97667 q^{49} +(0.425055 - 0.245405i) q^{50} +(-5.65190 - 9.78939i) q^{51} +(4.48450 + 3.09069i) q^{52} +(3.09718 + 5.36448i) q^{53} +(4.25098 + 2.45430i) q^{54} +(1.30777 + 2.26513i) q^{55} -0.375098 q^{56} +(-19.9211 + 11.5014i) q^{57} +(1.18897 - 0.686451i) q^{58} +2.56052i q^{59} +9.08663i q^{60} +(3.54854 + 6.14625i) q^{61} +(3.07207 + 2.39481i) q^{62} +(-0.716646 - 0.413756i) q^{63} -1.46835 q^{64} +(4.24203 - 6.15507i) q^{65} -2.56076 q^{66} +10.1431i q^{67} +(2.94253 + 5.09662i) q^{68} +23.8677 q^{69} +0.221526i q^{70} +(12.4467 + 7.18610i) q^{71} +(-11.5243 - 6.65356i) q^{72} +(-3.69348 + 2.13243i) q^{73} +6.67830 q^{74} -2.03551 q^{75} +(10.3714 - 5.98795i) q^{76} +0.192674 q^{77} +(3.14221 + 6.60982i) q^{78} +(6.25030 - 10.8258i) q^{79} -2.70124i q^{80} +(-2.05123 - 3.55284i) q^{81} +(-0.782224 + 1.35485i) q^{82} +(-3.84880 + 2.22211i) q^{83} +(0.579689 + 0.334683i) q^{84} +(6.99521 - 4.03869i) q^{85} +(-5.61428 - 3.24141i) q^{86} -5.69375 q^{87} +3.09838 q^{88} +(0.542650 + 0.313299i) q^{89} +(-3.92947 + 6.80604i) q^{90} +(-0.236423 - 0.497331i) q^{91} -12.4262 q^{92} +(-6.06776 - 14.9715i) q^{93} +(-1.61543 + 2.79801i) q^{94} +(-8.21859 - 14.2350i) q^{95} +(14.6327 + 8.44820i) q^{96} +(3.09021 - 1.78413i) q^{97} +(-4.22698 - 2.44045i) q^{98} +(5.91963 + 3.41770i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 70q - 6q^{2} - 2q^{3} + 30q^{4} - 29q^{9} + O(q^{10}) \) \( 70q - 6q^{2} - 2q^{3} + 30q^{4} - 29q^{9} + 2q^{10} + 13q^{12} + q^{13} - 14q^{14} - 15q^{15} - 28q^{16} - 12q^{17} - 3q^{20} - 9q^{21} + 4q^{22} + 10q^{23} + 18q^{24} + 19q^{25} + 6q^{26} + 34q^{27} - 33q^{28} - 18q^{29} - 31q^{30} - 2q^{31} + 36q^{32} - 12q^{33} + 9q^{34} - 12q^{35} - 16q^{36} - 18q^{37} - 21q^{38} - 30q^{39} + 5q^{40} + 98q^{42} - 38q^{43} + 42q^{44} - 6q^{46} + 54q^{48} - 18q^{49} - 51q^{50} - 7q^{51} + 41q^{52} - 22q^{53} + 18q^{54} - 15q^{55} - 50q^{56} + 15q^{57} - 12q^{58} - 13q^{61} - 23q^{62} - 6q^{63} - 38q^{64} - 12q^{65} - 52q^{66} - 44q^{68} + 32q^{69} + 27q^{71} - 15q^{72} - 9q^{73} + 38q^{74} - 50q^{75} + 126q^{76} + 34q^{77} + 14q^{78} + 6q^{79} - 11q^{81} + 39q^{82} - 54q^{83} + 15q^{84} - 33q^{85} - 24q^{86} + 28q^{87} - 32q^{88} - 6q^{89} - 11q^{90} - 70q^{91} - 6q^{92} + 14q^{93} - 43q^{94} + 25q^{95} + 36q^{96} - 75q^{97} + 93q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.605874 0.349801i −0.428417 0.247347i 0.270255 0.962789i \(-0.412892\pi\)
−0.698672 + 0.715442i \(0.746225\pi\)
\(3\) 1.45071 + 2.51270i 0.837567 + 1.45071i 0.891923 + 0.452187i \(0.149356\pi\)
−0.0543561 + 0.998522i \(0.517311\pi\)
\(4\) −0.755278 1.30818i −0.377639 0.654090i
\(5\) −1.79550 + 1.03663i −0.802974 + 0.463597i −0.844510 0.535540i \(-0.820108\pi\)
0.0415363 + 0.999137i \(0.486775\pi\)
\(6\) 2.02984i 0.828679i
\(7\) 0.152727i 0.0577256i 0.999583 + 0.0288628i \(0.00918859\pi\)
−0.999583 + 0.0288628i \(0.990811\pi\)
\(8\) 2.45599i 0.868325i
\(9\) −2.70911 + 4.69232i −0.903037 + 1.56411i
\(10\) 1.45046 0.458677
\(11\) 1.26156i 0.380374i −0.981748 0.190187i \(-0.939091\pi\)
0.981748 0.190187i \(-0.0609094\pi\)
\(12\) 2.19138 3.79558i 0.632596 1.09569i
\(13\) −3.25633 + 1.54801i −0.903143 + 0.429340i
\(14\) 0.0534243 0.0925336i 0.0142782 0.0247306i
\(15\) −5.20950 3.00771i −1.34509 0.776587i
\(16\) −0.651446 + 1.12834i −0.162861 + 0.282084i
\(17\) −3.89596 −0.944909 −0.472455 0.881355i \(-0.656632\pi\)
−0.472455 + 0.881355i \(0.656632\pi\)
\(18\) 3.28276 1.89530i 0.773754 0.446727i
\(19\) 7.92815i 1.81884i 0.415877 + 0.909421i \(0.363475\pi\)
−0.415877 + 0.909421i \(0.636525\pi\)
\(20\) 2.71221 + 1.56589i 0.606468 + 0.350145i
\(21\) −0.383759 + 0.221563i −0.0837430 + 0.0483490i
\(22\) −0.441294 + 0.764344i −0.0940843 + 0.162959i
\(23\) 4.11312 7.12413i 0.857644 1.48548i −0.0165260 0.999863i \(-0.505261\pi\)
0.874170 0.485620i \(-0.161406\pi\)
\(24\) −6.17118 + 3.56293i −1.25969 + 0.727281i
\(25\) −0.350778 + 0.607566i −0.0701556 + 0.121513i
\(26\) 2.51442 + 0.201171i 0.493118 + 0.0394530i
\(27\) −7.01627 −1.35028
\(28\) 0.199795 0.115352i 0.0377577 0.0217994i
\(29\) −0.981201 + 1.69949i −0.182204 + 0.315587i −0.942631 0.333837i \(-0.891657\pi\)
0.760426 + 0.649424i \(0.224990\pi\)
\(30\) 2.10420 + 3.64458i 0.384173 + 0.665407i
\(31\) −5.51441 0.768913i −0.990418 0.138101i
\(32\) 5.04330 2.91175i 0.891537 0.514729i
\(33\) 3.16992 1.83015i 0.551811 0.318589i
\(34\) 2.36046 + 1.36281i 0.404816 + 0.233720i
\(35\) −0.158323 0.274223i −0.0267614 0.0463521i
\(36\) 8.18453 1.36409
\(37\) −8.26694 + 4.77292i −1.35908 + 0.784663i −0.989499 0.144537i \(-0.953831\pi\)
−0.369577 + 0.929200i \(0.620497\pi\)
\(38\) 2.77328 4.80346i 0.449885 0.779223i
\(39\) −8.61366 5.93647i −1.37929 0.950596i
\(40\) −2.54597 4.40975i −0.402553 0.697242i
\(41\) 2.23620i 0.349235i −0.984636 0.174618i \(-0.944131\pi\)
0.984636 0.174618i \(-0.0558689\pi\)
\(42\) 0.310012 0.0478359
\(43\) 9.26643 1.41312 0.706558 0.707655i \(-0.250247\pi\)
0.706558 + 0.707655i \(0.250247\pi\)
\(44\) −1.65034 + 0.952826i −0.248799 + 0.143644i
\(45\) 11.2334i 1.67458i
\(46\) −4.98406 + 2.87755i −0.734859 + 0.424271i
\(47\) 4.61814i 0.673625i −0.941572 0.336812i \(-0.890651\pi\)
0.941572 0.336812i \(-0.109349\pi\)
\(48\) −3.78023 −0.545629
\(49\) 6.97667 0.996668
\(50\) 0.425055 0.245405i 0.0601118 0.0347056i
\(51\) −5.65190 9.78939i −0.791425 1.37079i
\(52\) 4.48450 + 3.09069i 0.621889 + 0.428601i
\(53\) 3.09718 + 5.36448i 0.425431 + 0.736867i 0.996461 0.0840618i \(-0.0267893\pi\)
−0.571030 + 0.820929i \(0.693456\pi\)
\(54\) 4.25098 + 2.45430i 0.578484 + 0.333988i
\(55\) 1.30777 + 2.26513i 0.176340 + 0.305430i
\(56\) −0.375098 −0.0501246
\(57\) −19.9211 + 11.5014i −2.63861 + 1.52340i
\(58\) 1.18897 0.686451i 0.156119 0.0901354i
\(59\) 2.56052i 0.333351i 0.986012 + 0.166675i \(0.0533032\pi\)
−0.986012 + 0.166675i \(0.946697\pi\)
\(60\) 9.08663i 1.17308i
\(61\) 3.54854 + 6.14625i 0.454344 + 0.786946i 0.998650 0.0519400i \(-0.0165405\pi\)
−0.544306 + 0.838886i \(0.683207\pi\)
\(62\) 3.07207 + 2.39481i 0.390154 + 0.304142i
\(63\) −0.716646 0.413756i −0.0902889 0.0521283i
\(64\) −1.46835 −0.183544
\(65\) 4.24203 6.15507i 0.526159 0.763443i
\(66\) −2.56076 −0.315208
\(67\) 10.1431i 1.23918i 0.784926 + 0.619590i \(0.212701\pi\)
−0.784926 + 0.619590i \(0.787299\pi\)
\(68\) 2.94253 + 5.09662i 0.356835 + 0.618056i
\(69\) 23.8677 2.87334
\(70\) 0.221526i 0.0264774i
\(71\) 12.4467 + 7.18610i 1.47715 + 0.852833i 0.999667 0.0258085i \(-0.00821600\pi\)
0.477483 + 0.878641i \(0.341549\pi\)
\(72\) −11.5243 6.65356i −1.35815 0.784130i
\(73\) −3.69348 + 2.13243i −0.432290 + 0.249583i −0.700322 0.713827i \(-0.746960\pi\)
0.268032 + 0.963410i \(0.413627\pi\)
\(74\) 6.67830 0.776336
\(75\) −2.03551 −0.235040
\(76\) 10.3714 5.98795i 1.18969 0.686865i
\(77\) 0.192674 0.0219573
\(78\) 3.14221 + 6.60982i 0.355785 + 0.748415i
\(79\) 6.25030 10.8258i 0.703213 1.21800i −0.264119 0.964490i \(-0.585081\pi\)
0.967332 0.253511i \(-0.0815855\pi\)
\(80\) 2.70124i 0.302008i
\(81\) −2.05123 3.55284i −0.227915 0.394760i
\(82\) −0.782224 + 1.35485i −0.0863822 + 0.149618i
\(83\) −3.84880 + 2.22211i −0.422461 + 0.243908i −0.696130 0.717916i \(-0.745096\pi\)
0.273669 + 0.961824i \(0.411763\pi\)
\(84\) 0.579689 + 0.334683i 0.0632492 + 0.0365170i
\(85\) 6.99521 4.03869i 0.758737 0.438057i
\(86\) −5.61428 3.24141i −0.605404 0.349530i
\(87\) −5.69375 −0.610434
\(88\) 3.09838 0.330288
\(89\) 0.542650 + 0.313299i 0.0575208 + 0.0332096i 0.528485 0.848943i \(-0.322760\pi\)
−0.470964 + 0.882153i \(0.656094\pi\)
\(90\) −3.92947 + 6.80604i −0.414202 + 0.717420i
\(91\) −0.236423 0.497331i −0.0247839 0.0521344i
\(92\) −12.4262 −1.29552
\(93\) −6.06776 14.9715i −0.629197 1.55248i
\(94\) −1.61543 + 2.79801i −0.166619 + 0.288592i
\(95\) −8.21859 14.2350i −0.843209 1.46048i
\(96\) 14.6327 + 8.44820i 1.49344 + 0.862240i
\(97\) 3.09021 1.78413i 0.313763 0.181151i −0.334846 0.942273i \(-0.608684\pi\)
0.648609 + 0.761122i \(0.275351\pi\)
\(98\) −4.22698 2.44045i −0.426990 0.246523i
\(99\) 5.91963 + 3.41770i 0.594945 + 0.343492i
\(100\) 1.05974 0.105974
\(101\) 2.66570 4.61713i 0.265247 0.459422i −0.702381 0.711801i \(-0.747880\pi\)
0.967628 + 0.252379i \(0.0812130\pi\)
\(102\) 7.90818i 0.783026i
\(103\) 2.81059 + 4.86808i 0.276935 + 0.479666i 0.970622 0.240611i \(-0.0773479\pi\)
−0.693686 + 0.720277i \(0.744015\pi\)
\(104\) −3.80190 7.99753i −0.372807 0.784222i
\(105\) 0.459360 0.795635i 0.0448289 0.0776460i
\(106\) 4.33359i 0.420916i
\(107\) −4.15169 7.19095i −0.401359 0.695175i 0.592531 0.805548i \(-0.298129\pi\)
−0.993890 + 0.110373i \(0.964796\pi\)
\(108\) 5.29924 + 9.17855i 0.509919 + 0.883206i
\(109\) 6.46965i 0.619680i −0.950789 0.309840i \(-0.899725\pi\)
0.950789 0.309840i \(-0.100275\pi\)
\(110\) 1.82984i 0.174469i
\(111\) −23.9858 13.8482i −2.27664 1.31442i
\(112\) −0.172328 0.0994937i −0.0162835 0.00940127i
\(113\) 2.58544 4.47811i 0.243218 0.421265i −0.718411 0.695619i \(-0.755130\pi\)
0.961629 + 0.274353i \(0.0884637\pi\)
\(114\) 16.0929 1.50723
\(115\) 17.0552i 1.59041i
\(116\) 2.96432 0.275230
\(117\) 1.55801 19.4735i 0.144039 1.80032i
\(118\) 0.895672 1.55135i 0.0824533 0.142813i
\(119\) 0.595020i 0.0545454i
\(120\) 7.38692 12.7945i 0.674330 1.16797i
\(121\) 9.40847 0.855316
\(122\) 4.96513i 0.449522i
\(123\) 5.61889 3.24407i 0.506638 0.292508i
\(124\) 3.15904 + 7.79459i 0.283690 + 0.699975i
\(125\) 11.8209i 1.05729i
\(126\) 0.289465 + 0.501368i 0.0257876 + 0.0446654i
\(127\) −2.12989 3.68908i −0.188997 0.327353i 0.755919 0.654665i \(-0.227190\pi\)
−0.944916 + 0.327312i \(0.893857\pi\)
\(128\) −9.19696 5.30986i −0.812904 0.469330i
\(129\) 13.4429 + 23.2838i 1.18358 + 2.05002i
\(130\) −4.72319 + 2.24533i −0.414251 + 0.196928i
\(131\) −5.07010 + 8.78167i −0.442976 + 0.767258i −0.997909 0.0646378i \(-0.979411\pi\)
0.554932 + 0.831895i \(0.312744\pi\)
\(132\) −4.78834 2.76455i −0.416771 0.240623i
\(133\) −1.21085 −0.104994
\(134\) 3.54808 6.14545i 0.306507 0.530886i
\(135\) 12.5977 7.27331i 1.08424 0.625987i
\(136\) 9.56846i 0.820489i
\(137\) 7.38465 + 4.26353i 0.630913 + 0.364258i 0.781106 0.624399i \(-0.214656\pi\)
−0.150192 + 0.988657i \(0.547989\pi\)
\(138\) −14.4608 8.34897i −1.23099 0.710711i
\(139\) 3.90876 + 6.77016i 0.331536 + 0.574238i 0.982813 0.184602i \(-0.0590997\pi\)
−0.651277 + 0.758840i \(0.725766\pi\)
\(140\) −0.239155 + 0.414229i −0.0202123 + 0.0350087i
\(141\) 11.6040 6.69957i 0.977233 0.564206i
\(142\) −5.02741 8.70773i −0.421891 0.730737i
\(143\) 1.95290 + 4.10804i 0.163310 + 0.343532i
\(144\) −3.52968 6.11358i −0.294140 0.509465i
\(145\) 4.06859i 0.337878i
\(146\) 2.98371 0.246934
\(147\) 10.1211 + 17.5303i 0.834776 + 1.44587i
\(148\) 12.4877 + 7.20976i 1.02648 + 0.592639i
\(149\) 16.9738i 1.39055i 0.718745 + 0.695274i \(0.244717\pi\)
−0.718745 + 0.695274i \(0.755283\pi\)
\(150\) 1.23326 + 0.712023i 0.100695 + 0.0581365i
\(151\) 2.75994i 0.224601i −0.993674 0.112300i \(-0.964178\pi\)
0.993674 0.112300i \(-0.0358219\pi\)
\(152\) −19.4715 −1.57935
\(153\) 10.5546 18.2811i 0.853288 1.47794i
\(154\) −0.116736 0.0673978i −0.00940689 0.00543107i
\(155\) 10.6982 4.33585i 0.859303 0.348264i
\(156\) −1.26026 + 15.7519i −0.100902 + 1.26116i
\(157\) −3.54858 −0.283208 −0.141604 0.989923i \(-0.545226\pi\)
−0.141604 + 0.989923i \(0.545226\pi\)
\(158\) −7.57378 + 4.37272i −0.602538 + 0.347875i
\(159\) −8.98622 + 15.5646i −0.712653 + 1.23435i
\(160\) −6.03684 + 10.4561i −0.477254 + 0.826628i
\(161\) 1.08805 + 0.628186i 0.0857504 + 0.0495080i
\(162\) 2.87010i 0.225496i
\(163\) −19.3830 + 11.1908i −1.51820 + 0.876532i −0.518427 + 0.855122i \(0.673482\pi\)
−0.999771 + 0.0214098i \(0.993185\pi\)
\(164\) −2.92535 + 1.68895i −0.228431 + 0.131885i
\(165\) −3.79440 + 6.57209i −0.295393 + 0.511636i
\(166\) 3.10919 0.241320
\(167\) 1.55053 0.895201i 0.119984 0.0692727i −0.438807 0.898581i \(-0.644599\pi\)
0.558791 + 0.829309i \(0.311265\pi\)
\(168\) −0.544158 0.942509i −0.0419827 0.0727161i
\(169\) 8.20735 10.0816i 0.631335 0.775511i
\(170\) −5.65095 −0.433408
\(171\) −37.2014 21.4782i −2.84486 1.64248i
\(172\) −6.99873 12.1222i −0.533648 0.924305i
\(173\) −12.5597 + 21.7541i −0.954900 + 1.65393i −0.220302 + 0.975432i \(0.570704\pi\)
−0.734598 + 0.678503i \(0.762629\pi\)
\(174\) 3.44969 + 1.99168i 0.261520 + 0.150989i
\(175\) −0.0927920 0.0535735i −0.00701441 0.00404977i
\(176\) 1.42346 + 0.821836i 0.107297 + 0.0619482i
\(177\) −6.43381 + 3.71456i −0.483595 + 0.279204i
\(178\) −0.219185 0.379639i −0.0164286 0.0284552i
\(179\) −6.99841 12.1216i −0.523086 0.906011i −0.999639 0.0268657i \(-0.991447\pi\)
0.476553 0.879146i \(-0.341886\pi\)
\(180\) −14.6953 + 8.48436i −1.09533 + 0.632387i
\(181\) −11.1164 19.2542i −0.826278 1.43116i −0.900939 0.433947i \(-0.857121\pi\)
0.0746603 0.997209i \(-0.476213\pi\)
\(182\) −0.0307244 + 0.384021i −0.00227744 + 0.0284655i
\(183\) −10.2958 + 17.8328i −0.761087 + 1.31824i
\(184\) 17.4968 + 10.1018i 1.28988 + 0.744714i
\(185\) 9.89555 17.1396i 0.727535 1.26013i
\(186\) −1.56077 + 11.1934i −0.114441 + 0.820738i
\(187\) 4.91498i 0.359419i
\(188\) −6.04135 + 3.48798i −0.440611 + 0.254387i
\(189\) 1.07158i 0.0779458i
\(190\) 11.4995i 0.834261i
\(191\) 10.2500 17.7536i 0.741667 1.28460i −0.210069 0.977687i \(-0.567369\pi\)
0.951736 0.306918i \(-0.0992978\pi\)
\(192\) −2.13015 3.68953i −0.153730 0.266269i
\(193\) −1.00154 + 0.578241i −0.0720927 + 0.0416227i −0.535613 0.844464i \(-0.679919\pi\)
0.463520 + 0.886086i \(0.346586\pi\)
\(194\) −2.49637 −0.179229
\(195\) 21.6198 + 1.72974i 1.54823 + 0.123869i
\(196\) −5.26933 9.12674i −0.376381 0.651910i
\(197\) 3.13328i 0.223237i −0.993751 0.111618i \(-0.964397\pi\)
0.993751 0.111618i \(-0.0356034\pi\)
\(198\) −2.39103 4.14139i −0.169923 0.294316i
\(199\) −11.3354 + 19.6335i −0.803545 + 1.39178i 0.113724 + 0.993512i \(0.463722\pi\)
−0.917269 + 0.398268i \(0.869611\pi\)
\(200\) −1.49218 0.861509i −0.105513 0.0609179i
\(201\) −25.4866 + 14.7147i −1.79769 + 1.03790i
\(202\) −3.23016 + 1.86493i −0.227273 + 0.131216i
\(203\) −0.259559 0.149856i −0.0182175 0.0105179i
\(204\) −8.53752 + 14.7874i −0.597746 + 1.03533i
\(205\) 2.31812 + 4.01510i 0.161904 + 0.280427i
\(206\) 3.93259i 0.273996i
\(207\) 22.2858 + 38.6001i 1.54897 + 2.68289i
\(208\) 0.374648 4.68268i 0.0259771 0.324685i
\(209\) 10.0018 0.691839
\(210\) −0.556628 + 0.321369i −0.0384110 + 0.0221766i
\(211\) 6.48510 + 11.2325i 0.446453 + 0.773279i 0.998152 0.0607640i \(-0.0193537\pi\)
−0.551699 + 0.834043i \(0.686020\pi\)
\(212\) 4.67847 8.10334i 0.321318 0.556540i
\(213\) 41.6997i 2.85722i
\(214\) 5.80907i 0.397100i
\(215\) −16.6379 + 9.60590i −1.13470 + 0.655117i
\(216\) 17.2319i 1.17248i
\(217\) 0.117434 0.842203i 0.00797195 0.0571725i
\(218\) −2.26309 + 3.91979i −0.153276 + 0.265482i
\(219\) −10.7163 6.18708i −0.724143 0.418084i
\(220\) 1.97546 3.42161i 0.133186 0.230685i
\(221\) 12.6865 6.03097i 0.853388 0.405687i
\(222\) 9.68826 + 16.7806i 0.650234 + 1.12624i
\(223\) −1.33406 + 0.770221i −0.0893354 + 0.0515778i −0.544002 0.839084i \(-0.683092\pi\)
0.454667 + 0.890662i \(0.349758\pi\)
\(224\) 0.444704 + 0.770250i 0.0297130 + 0.0514645i
\(225\) −1.90059 3.29193i −0.126706 0.219462i
\(226\) −3.13290 + 1.80878i −0.208397 + 0.120318i
\(227\) −6.45255 3.72538i −0.428271 0.247262i 0.270339 0.962765i \(-0.412864\pi\)
−0.698610 + 0.715503i \(0.746198\pi\)
\(228\) 30.0919 + 17.3736i 1.99288 + 1.15059i
\(229\) −6.82561 3.94077i −0.451049 0.260413i 0.257224 0.966352i \(-0.417192\pi\)
−0.708273 + 0.705938i \(0.750526\pi\)
\(230\) 5.96593 10.3333i 0.393382 0.681357i
\(231\) 0.279514 + 0.484133i 0.0183907 + 0.0318536i
\(232\) −4.17394 2.40982i −0.274032 0.158213i
\(233\) 3.36740 0.220606 0.110303 0.993898i \(-0.464818\pi\)
0.110303 + 0.993898i \(0.464818\pi\)
\(234\) −7.75580 + 11.2535i −0.507013 + 0.735662i
\(235\) 4.78732 + 8.29188i 0.312290 + 0.540903i
\(236\) 3.34962 1.93390i 0.218041 0.125886i
\(237\) 36.2694 2.35595
\(238\) −0.208139 + 0.360507i −0.0134916 + 0.0233682i
\(239\) 2.25561 1.30228i 0.145903 0.0842372i −0.425271 0.905066i \(-0.639821\pi\)
0.571174 + 0.820829i \(0.306488\pi\)
\(240\) 6.78742 3.91872i 0.438126 0.252952i
\(241\) 9.67893i 0.623475i 0.950168 + 0.311737i \(0.100911\pi\)
−0.950168 + 0.311737i \(0.899089\pi\)
\(242\) −5.70035 3.29110i −0.366432 0.211560i
\(243\) −4.57293 + 7.92054i −0.293353 + 0.508103i
\(244\) 5.36027 9.28425i 0.343156 0.594363i
\(245\) −12.5266 + 7.23226i −0.800298 + 0.462052i
\(246\) −4.53912 −0.289404
\(247\) −12.2728 25.8166i −0.780901 1.64267i
\(248\) 1.88845 13.5434i 0.119916 0.860005i
\(249\) −11.1670 6.44726i −0.707679 0.408579i
\(250\) −4.13495 + 7.16195i −0.261517 + 0.452961i
\(251\) −3.61983 −0.228482 −0.114241 0.993453i \(-0.536444\pi\)
−0.114241 + 0.993453i \(0.536444\pi\)
\(252\) 1.25000i 0.0787428i
\(253\) −8.98749 5.18893i −0.565039 0.326225i
\(254\) 2.98016i 0.186992i
\(255\) 20.2960 + 11.7179i 1.27099 + 0.733804i
\(256\) 5.18315 + 8.97747i 0.323947 + 0.561092i
\(257\) −15.1364 −0.944183 −0.472091 0.881550i \(-0.656501\pi\)
−0.472091 + 0.881550i \(0.656501\pi\)
\(258\) 18.8094i 1.17102i
\(259\) −0.728956 1.26259i −0.0452951 0.0784535i
\(260\) −11.2559 0.900549i −0.698059 0.0558497i
\(261\) −5.31636 9.20821i −0.329075 0.569974i
\(262\) 6.14368 3.54705i 0.379558 0.219138i
\(263\) −10.8288 + 18.7560i −0.667730 + 1.15654i 0.310807 + 0.950473i \(0.399401\pi\)
−0.978537 + 0.206070i \(0.933933\pi\)
\(264\) 4.49484 + 7.78530i 0.276638 + 0.479152i
\(265\) −11.1220 6.42129i −0.683219 0.394457i
\(266\) 0.733620 + 0.423556i 0.0449811 + 0.0259699i
\(267\) 1.81802i 0.111261i
\(268\) 13.2690 7.66088i 0.810535 0.467963i
\(269\) 6.79821 11.7749i 0.414494 0.717925i −0.580881 0.813989i \(-0.697292\pi\)
0.995375 + 0.0960632i \(0.0306251\pi\)
\(270\) −10.1769 −0.619344
\(271\) 13.1694 + 7.60334i 0.799982 + 0.461870i 0.843465 0.537184i \(-0.180512\pi\)
−0.0434830 + 0.999054i \(0.513845\pi\)
\(272\) 2.53801 4.39596i 0.153889 0.266544i
\(273\) 0.906663 1.31554i 0.0548737 0.0796203i
\(274\) −2.98278 5.16632i −0.180196 0.312109i
\(275\) 0.766479 + 0.442527i 0.0462204 + 0.0266854i
\(276\) −18.0268 31.2233i −1.08508 1.87942i
\(277\) −11.2621 19.5066i −0.676675 1.17204i −0.975976 0.217877i \(-0.930087\pi\)
0.299301 0.954159i \(-0.403246\pi\)
\(278\) 5.46915i 0.328018i
\(279\) 18.5471 23.7923i 1.11039 1.42441i
\(280\) 0.673490 0.388839i 0.0402487 0.0232376i
\(281\) 7.85815i 0.468778i 0.972143 + 0.234389i \(0.0753090\pi\)
−0.972143 + 0.234389i \(0.924691\pi\)
\(282\) −9.37408 −0.558218
\(283\) −12.1994 + 21.1299i −0.725176 + 1.25604i 0.233725 + 0.972303i \(0.424908\pi\)
−0.958901 + 0.283739i \(0.908425\pi\)
\(284\) 21.7100i 1.28825i
\(285\) 23.8456 41.3017i 1.41249 2.44650i
\(286\) 0.253789 3.17208i 0.0150069 0.187569i
\(287\) 0.341529 0.0201598
\(288\) 31.5530i 1.85928i
\(289\) −1.82149 −0.107146
\(290\) −1.42320 + 2.46505i −0.0835730 + 0.144753i
\(291\) 8.96598 + 5.17651i 0.525595 + 0.303453i
\(292\) 5.57921 + 3.22116i 0.326499 + 0.188504i
\(293\) 14.2580i 0.832963i −0.909144 0.416482i \(-0.863263\pi\)
0.909144 0.416482i \(-0.136737\pi\)
\(294\) 14.1615i 0.825917i
\(295\) −2.65432 4.59742i −0.154540 0.267672i
\(296\) −11.7223 20.3036i −0.681343 1.18012i
\(297\) 8.85143i 0.513612i
\(298\) 5.93746 10.2840i 0.343948 0.595735i
\(299\) −2.36546 + 29.5656i −0.136798 + 1.70982i
\(300\) 1.53737 + 2.66281i 0.0887603 + 0.153737i
\(301\) 1.41524i 0.0815730i
\(302\) −0.965431 + 1.67218i −0.0555543 + 0.0962229i
\(303\) 15.4686 0.888650
\(304\) −8.94562 5.16476i −0.513066 0.296219i
\(305\) −12.7428 7.35707i −0.729652 0.421265i
\(306\) −12.7895 + 7.38402i −0.731127 + 0.422116i
\(307\) 10.4656 + 6.04230i 0.597301 + 0.344852i 0.767979 0.640475i \(-0.221262\pi\)
−0.170678 + 0.985327i \(0.554596\pi\)
\(308\) −0.145523 0.252053i −0.00829193 0.0143620i
\(309\) −8.15469 + 14.1243i −0.463904 + 0.803505i
\(310\) −7.99846 1.11528i −0.454282 0.0633437i
\(311\) 5.21615 0.295780 0.147890 0.989004i \(-0.452752\pi\)
0.147890 + 0.989004i \(0.452752\pi\)
\(312\) 14.5799 21.1551i 0.825427 1.19767i
\(313\) −6.77779 + 11.7395i −0.383103 + 0.663554i −0.991504 0.130076i \(-0.958478\pi\)
0.608401 + 0.793630i \(0.291811\pi\)
\(314\) 2.14999 + 1.24130i 0.121331 + 0.0700505i
\(315\) 1.71565 0.0966661
\(316\) −18.8828 −1.06224
\(317\) −7.83602 4.52413i −0.440115 0.254100i 0.263531 0.964651i \(-0.415113\pi\)
−0.703646 + 0.710550i \(0.748446\pi\)
\(318\) 10.8890 6.28678i 0.610626 0.352545i
\(319\) 2.14400 + 1.23784i 0.120041 + 0.0693058i
\(320\) 2.63643 1.52214i 0.147381 0.0850904i
\(321\) 12.0458 20.8639i 0.672331 1.16451i
\(322\) −0.439481 0.761203i −0.0244913 0.0424202i
\(323\) 30.8877i 1.71864i
\(324\) −3.09850 + 5.36676i −0.172139 + 0.298154i
\(325\) 0.201733 2.52144i 0.0111901 0.139864i
\(326\) 15.6582 0.867230
\(327\) 16.2563 9.38557i 0.898975 0.519023i
\(328\) 5.49208 0.303250
\(329\) 0.705317 0.0388854
\(330\) 4.59785 2.65457i 0.253103 0.146129i
\(331\) −5.62624 3.24831i −0.309246 0.178543i 0.337343 0.941382i \(-0.390472\pi\)
−0.646589 + 0.762838i \(0.723805\pi\)
\(332\) 5.81383 + 3.35662i 0.319076 + 0.184218i
\(333\) 51.7215i 2.83432i
\(334\) −1.25257 −0.0685376
\(335\) −10.5147 18.2120i −0.574480 0.995029i
\(336\) 0.577345i 0.0314968i
\(337\) 0.0183368 0.000998869 0.000499435 1.00000i \(-0.499841\pi\)
0.000499435 1.00000i \(0.499841\pi\)
\(338\) −8.49919 + 3.23726i −0.462295 + 0.176084i
\(339\) 15.0029 0.814844
\(340\) −10.5667 6.10066i −0.573058 0.330855i
\(341\) −0.970028 + 6.95675i −0.0525299 + 0.376729i
\(342\) 15.0262 + 26.0262i 0.812525 + 1.40734i
\(343\) 2.13462i 0.115259i
\(344\) 22.7583i 1.22704i
\(345\) −42.8546 + 24.7421i −2.30721 + 1.33207i
\(346\) 15.2192 8.78683i 0.818191 0.472383i
\(347\) 21.9967 1.18085 0.590423 0.807094i \(-0.298961\pi\)
0.590423 + 0.807094i \(0.298961\pi\)
\(348\) 4.30036 + 7.44845i 0.230524 + 0.399279i
\(349\) 4.81699 + 2.78109i 0.257847 + 0.148868i 0.623352 0.781941i \(-0.285770\pi\)
−0.365505 + 0.930809i \(0.619104\pi\)
\(350\) 0.0374801 + 0.0649175i 0.00200340 + 0.00346999i
\(351\) 22.8473 10.8612i 1.21950 0.579730i
\(352\) −3.67334 6.36240i −0.195789 0.339117i
\(353\) 8.39490 4.84680i 0.446816 0.257969i −0.259669 0.965698i \(-0.583613\pi\)
0.706484 + 0.707729i \(0.250280\pi\)
\(354\) 5.19744 0.276241
\(355\) −29.7974 −1.58148
\(356\) 0.946511i 0.0501650i
\(357\) 1.49511 0.863201i 0.0791295 0.0456855i
\(358\) 9.79222i 0.517535i
\(359\) 10.2196 5.90028i 0.539369 0.311405i −0.205454 0.978667i \(-0.565867\pi\)
0.744823 + 0.667262i \(0.232534\pi\)
\(360\) 27.5892 1.45408
\(361\) −43.8555 −2.30818
\(362\) 15.5542i 0.817509i
\(363\) 13.6490 + 23.6407i 0.716384 + 1.24081i
\(364\) −0.472033 + 0.684907i −0.0247413 + 0.0358989i
\(365\) 4.42111 7.65759i 0.231411 0.400816i
\(366\) 12.4759 7.20296i 0.652126 0.376505i
\(367\) 18.0788 0.943704 0.471852 0.881678i \(-0.343586\pi\)
0.471852 + 0.881678i \(0.343586\pi\)
\(368\) 5.35894 + 9.28196i 0.279354 + 0.483856i
\(369\) 10.4929 + 6.05810i 0.546241 + 0.315372i
\(370\) −11.9909 + 6.92295i −0.623377 + 0.359907i
\(371\) −0.819303 + 0.473025i −0.0425361 + 0.0245582i
\(372\) −15.0026 + 19.2454i −0.777850 + 0.997828i
\(373\) 11.5528 + 20.0100i 0.598180 + 1.03608i 0.993090 + 0.117358i \(0.0374426\pi\)
−0.394910 + 0.918720i \(0.629224\pi\)
\(374\) 1.71927 2.97786i 0.0889011 0.153981i
\(375\) 29.7023 17.1486i 1.53382 0.885551i
\(376\) 11.3421 0.584925
\(377\) 0.564290 7.05300i 0.0290624 0.363248i
\(378\) −0.374839 + 0.649241i −0.0192797 + 0.0333933i
\(379\) 20.7221 11.9639i 1.06442 0.614544i 0.137770 0.990464i \(-0.456007\pi\)
0.926652 + 0.375920i \(0.122673\pi\)
\(380\) −12.4146 + 21.5028i −0.636857 + 1.10307i
\(381\) 6.17970 10.7036i 0.316596 0.548360i
\(382\) −12.4205 + 7.17096i −0.635486 + 0.366898i
\(383\) 16.9386 + 9.77949i 0.865520 + 0.499708i 0.865857 0.500292i \(-0.166774\pi\)
−0.000336679 1.00000i \(0.500107\pi\)
\(384\) 30.8123i 1.57238i
\(385\) −0.345948 + 0.199733i −0.0176311 + 0.0101793i
\(386\) 0.809079 0.0411810
\(387\) −25.1038 + 43.4810i −1.27610 + 2.21026i
\(388\) −4.66793 2.69503i −0.236978 0.136820i
\(389\) 1.16794 2.02293i 0.0592168 0.102566i −0.834897 0.550406i \(-0.814473\pi\)
0.894114 + 0.447839i \(0.147806\pi\)
\(390\) −12.4938 8.61064i −0.632649 0.436017i
\(391\) −16.0245 + 27.7553i −0.810396 + 1.40365i
\(392\) 17.1347i 0.865432i
\(393\) −29.4209 −1.48409
\(394\) −1.09602 + 1.89837i −0.0552169 + 0.0956385i
\(395\) 25.9171i 1.30403i
\(396\) 10.3252i 0.518863i
\(397\) 5.14467i 0.258203i −0.991631 0.129102i \(-0.958791\pi\)
0.991631 0.129102i \(-0.0412094\pi\)
\(398\) 13.7356 7.93027i 0.688505 0.397509i
\(399\) −1.75658 3.04249i −0.0879392 0.152315i
\(400\) −0.457026 0.791592i −0.0228513 0.0395796i
\(401\) −18.6210 10.7508i −0.929887 0.536871i −0.0431113 0.999070i \(-0.513727\pi\)
−0.886776 + 0.462200i \(0.847060\pi\)
\(402\) 20.5889 1.02688
\(403\) 19.1470 6.03252i 0.953781 0.300501i
\(404\) −8.05339 −0.400671
\(405\) 7.36599 + 4.25276i 0.366019 + 0.211321i
\(406\) 0.104840 + 0.181588i 0.00520312 + 0.00901207i
\(407\) 6.02131 + 10.4292i 0.298465 + 0.516957i
\(408\) 24.0427 13.8810i 1.19029 0.687214i
\(409\) 9.13260i 0.451578i 0.974176 + 0.225789i \(0.0724960\pi\)
−0.974176 + 0.225789i \(0.927504\pi\)
\(410\) 3.24352i 0.160186i
\(411\) 24.7406i 1.22036i
\(412\) 4.24555 7.35351i 0.209163 0.362281i
\(413\) −0.391061 −0.0192429
\(414\) 31.1824i 1.53253i
\(415\) 4.60703 7.97961i 0.226150 0.391703i
\(416\) −11.9152 + 17.2887i −0.584192 + 0.847646i
\(417\) −11.3409 + 19.6431i −0.555368 + 0.961925i
\(418\) −6.05983 3.49865i −0.296396 0.171124i
\(419\) 3.37306 5.84231i 0.164785 0.285416i −0.771794 0.635873i \(-0.780640\pi\)
0.936579 + 0.350457i \(0.113974\pi\)
\(420\) −1.38778 −0.0677166
\(421\) 28.9279 16.7015i 1.40986 0.813983i 0.414486 0.910056i \(-0.363961\pi\)
0.995374 + 0.0960723i \(0.0306280\pi\)
\(422\) 9.07399i 0.441715i
\(423\) 21.6698 + 12.5110i 1.05362 + 0.608308i
\(424\) −13.1751 + 7.60666i −0.639841 + 0.369412i
\(425\) 1.36662 2.36705i 0.0662907 0.114819i
\(426\) 14.5866 25.2648i 0.706724 1.22408i
\(427\) −0.938701 + 0.541959i −0.0454269 + 0.0262273i
\(428\) −6.27137 + 10.8623i −0.303138 + 0.525050i
\(429\) −7.48920 + 10.8666i −0.361582 + 0.524646i
\(430\) 13.4406 0.648164
\(431\) −32.1863 + 18.5828i −1.55036 + 0.895101i −0.552248 + 0.833680i \(0.686230\pi\)
−0.998112 + 0.0614214i \(0.980437\pi\)
\(432\) 4.57072 7.91672i 0.219909 0.380893i
\(433\) 12.8946 + 22.3341i 0.619674 + 1.07331i 0.989545 + 0.144223i \(0.0460684\pi\)
−0.369871 + 0.929083i \(0.620598\pi\)
\(434\) −0.365754 + 0.469190i −0.0175568 + 0.0225218i
\(435\) 10.2231 5.90233i 0.490162 0.282995i
\(436\) −8.46346 + 4.88638i −0.405326 + 0.234015i
\(437\) 56.4811 + 32.6094i 2.70186 + 1.55992i
\(438\) 4.32850 + 7.49718i 0.206824 + 0.358229i
\(439\) 6.40580 0.305732 0.152866 0.988247i \(-0.451150\pi\)
0.152866 + 0.988247i \(0.451150\pi\)
\(440\) −5.56315 + 3.21188i −0.265213 + 0.153121i
\(441\) −18.9006 + 32.7368i −0.900028 + 1.55889i
\(442\) −9.79608 0.783756i −0.465952 0.0372795i
\(443\) −14.4902 25.0978i −0.688451 1.19243i −0.972339 0.233575i \(-0.924958\pi\)
0.283887 0.958858i \(-0.408376\pi\)
\(444\) 41.8371i 1.98550i
\(445\) −1.29911 −0.0615835
\(446\) 1.07770 0.0510304
\(447\) −42.6501 + 24.6240i −2.01728 + 1.16468i
\(448\) 0.224258i 0.0105952i
\(449\) 26.4633 15.2786i 1.24888 0.721042i 0.277995 0.960583i \(-0.410330\pi\)
0.970886 + 0.239541i \(0.0769969\pi\)
\(450\) 2.65932i 0.125362i
\(451\) −2.82109 −0.132840
\(452\) −7.81090 −0.367394
\(453\) 6.93491 4.00387i 0.325830 0.188118i
\(454\) 2.60629 + 4.51422i 0.122319 + 0.211863i
\(455\) 0.940049 + 0.647875i 0.0440702 + 0.0303728i
\(456\) −28.2474 48.9260i −1.32281 2.29117i
\(457\) −17.1257 9.88751i −0.801105 0.462518i 0.0427522 0.999086i \(-0.486387\pi\)
−0.843857 + 0.536567i \(0.819721\pi\)
\(458\) 2.75697 + 4.77522i 0.128825 + 0.223131i
\(459\) 27.3351 1.27589
\(460\) 22.3113 12.8814i 1.04027 0.600599i
\(461\) 24.4136 14.0952i 1.13706 0.656480i 0.191356 0.981521i \(-0.438712\pi\)
0.945700 + 0.325041i \(0.105378\pi\)
\(462\) 0.391098i 0.0181955i
\(463\) 42.5850i 1.97909i −0.144214 0.989547i \(-0.546065\pi\)
0.144214 0.989547i \(-0.453935\pi\)
\(464\) −1.27840 2.21425i −0.0593482 0.102794i
\(465\) 26.4147 + 20.5914i 1.22495 + 0.954904i
\(466\) −2.04022 1.17792i −0.0945113 0.0545661i
\(467\) 39.1853 1.81328 0.906640 0.421905i \(-0.138639\pi\)
0.906640 + 0.421905i \(0.138639\pi\)
\(468\) −26.6515 + 12.6697i −1.23197 + 0.585657i
\(469\) −1.54913 −0.0715324
\(470\) 6.69844i 0.308976i
\(471\) −5.14796 8.91652i −0.237205 0.410852i
\(472\) −6.28861 −0.289457
\(473\) 11.6901i 0.537513i
\(474\) −21.9747 12.6871i −1.00933 0.582738i
\(475\) −4.81687 2.78102i −0.221013 0.127602i
\(476\) −0.778394 + 0.449406i −0.0356776 + 0.0205985i
\(477\) −33.5624 −1.53672
\(478\) −1.82215 −0.0833433
\(479\) 21.4271 12.3709i 0.979028 0.565242i 0.0770512 0.997027i \(-0.475449\pi\)
0.901976 + 0.431785i \(0.142116\pi\)
\(480\) −35.0308 −1.59893
\(481\) 19.5314 28.3395i 0.890553 1.29217i
\(482\) 3.38570 5.86421i 0.154215 0.267108i
\(483\) 3.64526i 0.165865i
\(484\) −7.10601 12.3080i −0.323001 0.559453i
\(485\) −3.69899 + 6.40683i −0.167962 + 0.290919i
\(486\) 5.54123 3.19923i 0.251355 0.145120i
\(487\) −18.2041 10.5101i −0.824906 0.476260i 0.0271991 0.999630i \(-0.491341\pi\)
−0.852105 + 0.523370i \(0.824675\pi\)
\(488\) −15.0952 + 8.71519i −0.683325 + 0.394518i
\(489\) −56.2383 32.4692i −2.54318 1.46831i
\(490\) 10.1194 0.457149
\(491\) −6.59320 −0.297547 −0.148774 0.988871i \(-0.547533\pi\)
−0.148774 + 0.988871i \(0.547533\pi\)
\(492\) −8.48765 4.90035i −0.382653 0.220925i
\(493\) 3.82272 6.62115i 0.172167 0.298201i
\(494\) −1.59492 + 19.9347i −0.0717587 + 0.896904i
\(495\) −14.1716 −0.636967
\(496\) 4.45993 5.72121i 0.200257 0.256890i
\(497\) −1.09751 + 1.90095i −0.0492303 + 0.0852693i
\(498\) 4.51052 + 7.81245i 0.202121 + 0.350084i
\(499\) 15.0296 + 8.67735i 0.672817 + 0.388451i 0.797143 0.603790i \(-0.206343\pi\)
−0.124326 + 0.992241i \(0.539677\pi\)
\(500\) −15.4638 + 8.92803i −0.691563 + 0.399274i
\(501\) 4.49875 + 2.59735i 0.200989 + 0.116041i
\(502\) 2.19316 + 1.26622i 0.0978855 + 0.0565142i
\(503\) −38.1274 −1.70002 −0.850009 0.526769i \(-0.823403\pi\)
−0.850009 + 0.526769i \(0.823403\pi\)
\(504\) 1.01618 1.76008i 0.0452643 0.0784001i
\(505\) 11.0534i 0.491872i
\(506\) 3.63019 + 6.28767i 0.161382 + 0.279521i
\(507\) 37.2386 + 5.99710i 1.65382 + 0.266340i
\(508\) −3.21732 + 5.57256i −0.142745 + 0.247242i
\(509\) 23.5384i 1.04332i 0.853153 + 0.521660i \(0.174687\pi\)
−0.853153 + 0.521660i \(0.825313\pi\)
\(510\) −8.19789 14.1992i −0.363009 0.628749i
\(511\) −0.325681 0.564097i −0.0144073 0.0249542i
\(512\) 13.9872i 0.618151i
\(513\) 55.6260i 2.45595i
\(514\) 9.17075 + 5.29473i 0.404504 + 0.233541i
\(515\) −10.0928 5.82710i −0.444744 0.256773i
\(516\) 20.3062 35.1714i 0.893932 1.54834i
\(517\) −5.82604 −0.256229
\(518\) 1.01996i 0.0448144i
\(519\) −72.8821 −3.19917
\(520\) 15.1168 + 10.4184i 0.662917 + 0.456877i
\(521\) −5.14610 + 8.91331i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239054\pi\)
\(522\) 7.43869i 0.325582i
\(523\) 11.5714 20.0422i 0.505981 0.876385i −0.493995 0.869465i \(-0.664464\pi\)
0.999976 0.00692052i \(-0.00220289\pi\)
\(524\) 15.3173 0.669141
\(525\) 0.310878i 0.0135678i
\(526\) 13.1217 7.57584i 0.572135 0.330322i
\(527\) 21.4839 + 2.99566i 0.935855 + 0.130493i
\(528\) 4.76898i 0.207543i
\(529\) −22.3355 38.6862i −0.971107 1.68201i
\(530\) 4.49235 + 7.78098i 0.195135 + 0.337984i
\(531\) −12.0148 6.93672i −0.521396 0.301028i
\(532\) 0.914525 + 1.58400i 0.0396497 + 0.0686753i
\(533\) 3.46165 + 7.28179i 0.149941 + 0.315409i
\(534\) 0.635947 1.10149i 0.0275201 0.0476662i
\(535\) 14.9088 + 8.60758i 0.644562 + 0.372138i
\(536\) −24.9115 −1.07601
\(537\) 20.3053 35.1698i 0.876239 1.51769i
\(538\) −8.23772 + 4.75605i −0.355153 + 0.205048i
\(539\) 8.80147i 0.379106i
\(540\) −19.0296 10.9867i −0.818903 0.472794i
\(541\) 7.33863 + 4.23696i 0.315512 + 0.182161i 0.649390 0.760455i \(-0.275024\pi\)
−0.333878 + 0.942616i \(0.608357\pi\)
\(542\) −5.31931 9.21332i −0.228484 0.395746i
\(543\) 32.2534 55.8646i 1.38413 2.39738i
\(544\) −19.6485 + 11.3441i −0.842422 + 0.486372i
\(545\) 6.70666 + 11.6163i 0.287282 + 0.497586i
\(546\) −1.00950 + 0.479901i −0.0432027 + 0.0205379i
\(547\) 16.6293 + 28.8028i 0.711017 + 1.23152i 0.964476 + 0.264171i \(0.0850984\pi\)
−0.253459 + 0.967346i \(0.581568\pi\)
\(548\) 12.8806i 0.550232i
\(549\) −38.4535 −1.64116
\(550\) −0.309593 0.536231i −0.0132011 0.0228649i
\(551\) −13.4738 7.77910i −0.574003 0.331401i
\(552\) 58.6190i 2.49499i
\(553\) 1.65340 + 0.954592i 0.0703098 + 0.0405934i
\(554\) 15.7580i 0.669494i
\(555\) 57.4222 2.43744
\(556\) 5.90439 10.2267i 0.250402 0.433709i
\(557\) 16.7455 + 9.66799i 0.709528 + 0.409646i 0.810886 0.585204i \(-0.198986\pi\)
−0.101359 + 0.994850i \(0.532319\pi\)
\(558\) −19.5598 + 7.92732i −0.828033 + 0.335590i
\(559\) −30.1745 + 14.3445i −1.27625 + 0.606707i
\(560\) 0.412554 0.0174336
\(561\) −12.3499 + 7.13020i −0.521412 + 0.301037i
\(562\) 2.74879 4.76105i 0.115951 0.200833i
\(563\) −16.1105 + 27.9042i −0.678977 + 1.17602i 0.296312 + 0.955091i \(0.404243\pi\)
−0.975289 + 0.220932i \(0.929090\pi\)
\(564\) −17.5285 10.1201i −0.738083 0.426132i
\(565\) 10.7206i 0.451020i
\(566\) 14.7825 8.53470i 0.621356 0.358740i
\(567\) 0.542616 0.313280i 0.0227877 0.0131565i
\(568\) −17.6490 + 30.5690i −0.740536 + 1.28265i
\(569\) −5.39228 −0.226056 −0.113028 0.993592i \(-0.536055\pi\)
−0.113028 + 0.993592i \(0.536055\pi\)
\(570\) −28.8948 + 16.6824i −1.21027 + 0.698749i
\(571\) 2.56966 + 4.45079i 0.107537 + 0.186260i 0.914772 0.403971i \(-0.132370\pi\)
−0.807235 + 0.590230i \(0.799037\pi\)
\(572\) 3.89908 5.65746i 0.163029 0.236550i
\(573\) 59.4793 2.48478
\(574\) −0.206923 0.119467i −0.00863681 0.00498646i
\(575\) 2.88558 + 4.99798i 0.120337 + 0.208430i
\(576\) 3.97793 6.88997i 0.165747 0.287082i
\(577\) −10.5151 6.07088i −0.437748 0.252734i 0.264894 0.964278i \(-0.414663\pi\)
−0.702642 + 0.711543i \(0.747996\pi\)
\(578\) 1.10359 + 0.637159i 0.0459034 + 0.0265023i
\(579\) −2.90590 1.67772i −0.120765 0.0697236i
\(580\) −5.32244 + 3.07291i −0.221002 + 0.127596i
\(581\) −0.339377 0.587818i −0.0140797 0.0243868i
\(582\) −3.62150 6.27263i −0.150116 0.260009i
\(583\) 6.76759 3.90727i 0.280285 0.161823i
\(584\) −5.23725 9.07118i −0.216719 0.375368i
\(585\) 17.3894 + 36.5797i 0.718964 + 1.51239i
\(586\) −4.98748 + 8.63857i −0.206031 + 0.356856i
\(587\) 5.25017 + 3.03119i 0.216698 + 0.125111i 0.604420 0.796666i \(-0.293405\pi\)
−0.387722 + 0.921776i \(0.626738\pi\)
\(588\) 15.2885 26.4805i 0.630488 1.09204i
\(589\) 6.09605 43.7191i 0.251184 1.80141i
\(590\) 3.71394i 0.152900i
\(591\) 7.87299 4.54547i 0.323851 0.186976i
\(592\) 12.4372i 0.511165i
\(593\) 0.335542i 0.0137791i −0.999976 0.00688953i \(-0.997807\pi\)
0.999976 0.00688953i \(-0.00219302\pi\)
\(594\) 3.09624 5.36285i 0.127040 0.220040i
\(595\) 0.616819 + 1.06836i 0.0252871 + 0.0437985i
\(596\) 22.2048 12.8199i 0.909544 0.525125i
\(597\) −65.7774 −2.69209
\(598\) 11.7753 17.0856i 0.481527 0.698682i
\(599\) 14.7507 + 25.5489i 0.602695 + 1.04390i 0.992411 + 0.122964i \(0.0392399\pi\)
−0.389716 + 0.920935i \(0.627427\pi\)
\(600\) 4.99920i 0.204091i
\(601\) 19.4635 + 33.7119i 0.793935 + 1.37514i 0.923513 + 0.383566i \(0.125304\pi\)
−0.129579 + 0.991569i \(0.541363\pi\)
\(602\) 0.495052 0.857456i 0.0201768 0.0349473i
\(603\) −47.5948 27.4789i −1.93821 1.11903i
\(604\) −3.61050 + 2.08452i −0.146909 + 0.0848180i
\(605\) −16.8929 + 9.75315i −0.686796 + 0.396522i
\(606\) −9.37204 5.41095i −0.380713 0.219805i
\(607\) 2.90392 5.02974i 0.117867 0.204151i −0.801055 0.598590i \(-0.795728\pi\)
0.918922 + 0.394439i \(0.129061\pi\)
\(608\) 23.0848 + 39.9840i 0.936211 + 1.62156i
\(609\) 0.869592i 0.0352376i
\(610\) 5.14703 + 8.91492i 0.208397 + 0.360954i
\(611\) 7.14891 + 15.0382i 0.289214 + 0.608379i
\(612\) −31.8866 −1.28894
\(613\) 19.1238 11.0411i 0.772402 0.445946i −0.0613291 0.998118i \(-0.519534\pi\)
0.833731 + 0.552171i \(0.186201\pi\)
\(614\) −4.22721 7.32174i −0.170596 0.295481i
\(615\) −6.72583 + 11.6495i −0.271211 + 0.469752i
\(616\) 0.473207i 0.0190661i
\(617\) 23.6853i 0.953534i −0.879030 0.476767i \(-0.841808\pi\)
0.879030 0.476767i \(-0.158192\pi\)
\(618\) 9.88142 5.70504i 0.397489 0.229490i
\(619\) 30.6359i 1.23136i 0.787996 + 0.615681i \(0.211119\pi\)
−0.787996 + 0.615681i \(0.788881\pi\)
\(620\) −13.7522 10.7204i −0.552302 0.430543i
\(621\) −28.8587 + 49.9848i −1.15806 + 2.00582i
\(622\) −3.16033 1.82461i −0.126718 0.0731604i
\(623\) −0.0478494 + 0.0828775i −0.00191704 + 0.00332042i
\(624\) 12.3097 5.85182i 0.492781 0.234260i
\(625\) 10.5000 + 18.1866i 0.420001 + 0.727463i
\(626\) 8.21297 4.74176i 0.328256 0.189519i
\(627\) 14.5097 + 25.1316i 0.579462 + 1.00366i
\(628\) 2.68016 + 4.64218i 0.106950 + 0.185243i
\(629\) 32.2077 18.5951i 1.28420 0.741436i
\(630\) −1.03947 0.600138i −0.0414135 0.0239101i
\(631\) −4.21758 2.43502i −0.167899 0.0969366i 0.413696 0.910415i \(-0.364238\pi\)
−0.581595 + 0.813479i \(0.697571\pi\)
\(632\) 26.5882 + 15.3507i 1.05762 + 0.610618i
\(633\) −18.8160 + 32.5903i −0.747869 + 1.29535i
\(634\) 3.16509 + 5.48210i 0.125702 + 0.217722i
\(635\) 7.64845 + 4.41584i 0.303520 + 0.175237i
\(636\) 27.1484 1.07650
\(637\) −22.7183 + 10.7999i −0.900134 + 0.427909i
\(638\) −0.865997 1.49995i −0.0342851 0.0593836i
\(639\) −67.4389 + 38.9359i −2.66784 + 1.54028i
\(640\) 22.0176 0.870320
\(641\) 21.9608 38.0372i 0.867400 1.50238i 0.00275536 0.999996i \(-0.499123\pi\)
0.864644 0.502384i \(-0.167544\pi\)
\(642\) −14.5965 + 8.42727i −0.576077 + 0.332598i
\(643\) 11.1439 6.43395i 0.439474 0.253730i −0.263901 0.964550i \(-0.585009\pi\)
0.703374 + 0.710819i \(0.251676\pi\)
\(644\) 1.89782i 0.0747846i
\(645\) −48.2735 27.8707i −1.90077 1.09741i
\(646\) −10.8046 + 18.7141i −0.425100 + 0.736295i
\(647\) −3.62825 + 6.28431i −0.142641 + 0.247062i −0.928490 0.371356i \(-0.878893\pi\)
0.785849 + 0.618418i \(0.212226\pi\)
\(648\) 8.72576 5.03782i 0.342780 0.197904i
\(649\) 3.23024 0.126798
\(650\) −1.00423 + 1.45711i −0.0393891 + 0.0571525i
\(651\) 2.28657 0.926714i 0.0896176 0.0363208i
\(652\) 29.2792 + 16.9043i 1.14666 + 0.662025i
\(653\) 6.15198 10.6555i 0.240746 0.416984i −0.720181 0.693786i \(-0.755941\pi\)
0.960927 + 0.276802i \(0.0892747\pi\)
\(654\) −13.1323 −0.513515
\(655\) 21.0233i 0.821450i
\(656\) 2.52318 + 1.45676i 0.0985137 + 0.0568769i
\(657\) 23.1080i 0.901529i
\(658\) −0.427333 0.246721i −0.0166592 0.00961817i
\(659\) 16.5388 + 28.6461i 0.644262 + 1.11589i 0.984472 + 0.175544i \(0.0561685\pi\)
−0.340210 + 0.940349i \(0.610498\pi\)
\(660\) 11.4633 0.446208
\(661\) 0.631684i 0.0245697i 0.999925 + 0.0122848i \(0.00391048\pi\)
−0.999925 + 0.0122848i \(0.996090\pi\)
\(662\) 2.27253 + 3.93614i 0.0883244 + 0.152982i
\(663\) 33.5585 + 23.1283i 1.30330 + 0.898227i
\(664\) −5.45749 9.45264i −0.211792 0.366834i
\(665\) 2.17408 1.25520i 0.0843071 0.0486747i
\(666\) −18.0922 + 31.3367i −0.701060 + 1.21427i
\(667\) 8.07159 + 13.9804i 0.312533 + 0.541323i
\(668\) −2.34217 1.35225i −0.0906212 0.0523202i
\(669\) −3.87067 2.23473i −0.149649 0.0863997i
\(670\) 14.7122i 0.568384i
\(671\) 7.75384 4.47668i 0.299334 0.172820i
\(672\) −1.29027 + 2.23482i −0.0497733 + 0.0862099i
\(673\) 1.93392 0.0745470 0.0372735 0.999305i \(-0.488133\pi\)
0.0372735 + 0.999305i \(0.488133\pi\)
\(674\) −0.0111098 0.00641424i −0.000427933 0.000247067i
\(675\) 2.46116 4.26285i 0.0947299 0.164077i
\(676\) −19.3874 3.12225i −0.745670 0.120087i
\(677\) 0.365369 + 0.632838i 0.0140423 + 0.0243219i 0.872961 0.487790i \(-0.162197\pi\)
−0.858919 + 0.512112i \(0.828863\pi\)
\(678\) −9.08985 5.24803i −0.349093 0.201549i
\(679\) 0.272486 + 0.471960i 0.0104571 + 0.0181122i
\(680\) 9.91899 + 17.1802i 0.380376 + 0.658831i
\(681\) 21.6178i 0.828395i
\(682\) 3.02119 3.87559i 0.115688 0.148404i
\(683\) −41.3961 + 23.9000i −1.58398 + 0.914509i −0.589706 + 0.807618i \(0.700756\pi\)
−0.994271 + 0.106892i \(0.965910\pi\)
\(684\) 64.8881i 2.48106i
\(685\) −17.6789 −0.675476
\(686\) 0.746694 1.29331i 0.0285089 0.0493789i
\(687\) 22.8676i 0.872455i
\(688\) −6.03657 + 10.4557i −0.230142 + 0.398618i
\(689\) −18.3897 12.6740i −0.700591 0.482842i
\(690\) 34.6193 1.31793
\(691\) 45.3073i 1.72357i −0.507272 0.861786i \(-0.669346\pi\)
0.507272 0.861786i \(-0.330654\pi\)
\(692\) 37.9444 1.44243
\(693\) −0.521976 + 0.904090i −0.0198282 + 0.0343435i
\(694\) −13.3272 7.69448i −0.505895 0.292079i
\(695\) −14.0364 8.10390i −0.532430 0.307398i
\(696\) 13.9838i 0.530055i
\(697\) 8.71213i 0.329995i
\(698\) −1.94566 3.36998i −0.0736442 0.127556i
\(699\) 4.88511 + 8.46127i 0.184772 + 0.320034i
\(700\) 0.161851i 0.00611741i
\(701\) 2.55028 4.41721i 0.0963226 0.166836i −0.813837 0.581093i \(-0.802625\pi\)
0.910160 + 0.414257i \(0.135959\pi\)
\(702\) −17.6418 1.41147i −0.665849 0.0532726i
\(703\) −37.8404 65.5415i −1.42718 2.47194i
\(704\) 1.85241i 0.0698153i
\(705\) −13.8900 + 24.0582i −0.523128 + 0.906084i
\(706\) −6.78167 −0.255231
\(707\) 0.705163 + 0.407126i 0.0265204 + 0.0153116i
\(708\) 9.71863 + 5.61106i 0.365249 + 0.210876i
\(709\) −13.7392 + 7.93235i −0.515988 + 0.297906i −0.735292 0.677751i \(-0.762955\pi\)
0.219304 + 0.975657i \(0.429621\pi\)
\(710\) 18.0535 + 10.4232i 0.677535 + 0.391175i
\(711\) 33.8655 + 58.6568i 1.27006 + 2.19980i
\(712\) −0.769461 + 1.33274i −0.0288368 + 0.0499467i
\(713\) −28.1593 + 36.1228i −1.05457 + 1.35281i
\(714\) −1.20780 −0.0452006
\(715\) −7.76498 5.35156i −0.290394 0.200137i
\(716\) −10.5715 + 18.3104i −0.395075 + 0.684290i
\(717\) 6.54446 + 3.77845i 0.244407 + 0.141109i
\(718\) −8.25570 −0.308100
\(719\) −42.5635 −1.58735 −0.793676 0.608340i \(-0.791836\pi\)
−0.793676 + 0.608340i \(0.791836\pi\)
\(720\) 12.6751 + 7.31797i 0.472373 + 0.272725i
\(721\) −0.743490 + 0.429254i −0.0276890 + 0.0159863i
\(722\) 26.5709 + 15.3407i 0.988866 + 0.570922i
\(723\) −24.3203 + 14.0413i −0.904480 + 0.522202i
\(724\) −16.7920 + 29.0846i −0.624070 + 1.08092i
\(725\) −0.688368 1.19229i −0.0255653 0.0442805i
\(726\) 19.0977i 0.708782i
\(727\) 11.9319 20.6666i 0.442529 0.766482i −0.555348 0.831618i \(-0.687415\pi\)
0.997876 + 0.0651362i \(0.0207482\pi\)
\(728\) 1.22144 0.580654i 0.0452697 0.0215205i
\(729\) −38.8433 −1.43864
\(730\) −5.35727 + 3.09302i −0.198281 + 0.114478i
\(731\) −36.1016 −1.33527
\(732\) 31.1047 1.14966
\(733\) 32.7290 18.8961i 1.20887 0.697943i 0.246359 0.969179i \(-0.420766\pi\)
0.962513 + 0.271236i \(0.0874324\pi\)
\(734\) −10.9535 6.32398i −0.404299 0.233422i
\(735\) −36.3450 20.9838i −1.34061 0.773999i
\(736\) 47.9054i 1.76582i
\(737\) 12.7961 0.471352
\(738\) −4.23826 7.34089i −0.156013 0.270222i
\(739\) 24.4937i 0.901015i 0.892773 + 0.450508i \(0.148757\pi\)
−0.892773 + 0.450508i \(0.851243\pi\)
\(740\) −29.8956 −1.09898
\(741\) 47.0652 68.2904i 1.72898 2.50871i
\(742\) 0.661859 0.0242976
\(743\) 10.6626 + 6.15605i 0.391173 + 0.225844i 0.682668 0.730729i \(-0.260820\pi\)
−0.291495 + 0.956572i \(0.594153\pi\)
\(744\) 36.7700 14.9024i 1.34805 0.546348i
\(745\) −17.5956 30.4765i −0.644654 1.11657i
\(746\) 16.1647i 0.591832i
\(747\) 24.0797i 0.881032i
\(748\) 6.42967 3.71217i 0.235092 0.135731i
\(749\) 1.09826 0.634078i 0.0401294 0.0231687i
\(750\) −23.9944 −0.876153
\(751\) 9.05415 + 15.6822i 0.330390 + 0.572253i 0.982588 0.185796i \(-0.0594862\pi\)
−0.652198 + 0.758049i \(0.726153\pi\)
\(752\) 5.21082 + 3.00847i 0.190019 + 0.109707i
\(753\) −5.25132 9.09555i −0.191369 0.331460i
\(754\) −2.80904 + 4.07584i −0.102299 + 0.148433i
\(755\) 2.86105 + 4.95548i 0.104124 + 0.180348i
\(756\) −1.40182 + 0.809339i −0.0509836 + 0.0294354i
\(757\) 13.1501 0.477950 0.238975 0.971026i \(-0.423189\pi\)
0.238975 + 0.971026i \(0.423189\pi\)
\(758\) −16.7400 −0.608022
\(759\) 30.1105i 1.09294i
\(760\) 34.9611 20.1848i 1.26817 0.732180i
\(761\) 26.3814i 0.956324i 0.878272 + 0.478162i \(0.158697\pi\)
−0.878272 + 0.478162i \(0.841303\pi\)
\(762\) −7.48824 + 4.32334i −0.271270 + 0.156618i
\(763\) 0.988093 0.0357714
\(764\) −30.9665 −1.12033
\(765\) 43.7650i 1.58233i
\(766\)