Properties

Label 403.2.l.c.25.20
Level 403
Weight 2
Character 403.25
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 403 = 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 403.l (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.20
Character \(\chi\) = 403.25
Dual form 403.2.l.c.129.15

$q$-expansion

\(f(q)\) \(=\) \(q+0.216546i q^{2} +(1.35890 + 2.35368i) q^{3} +1.95311 q^{4} +(-0.933057 - 0.538701i) q^{5} +(-0.509681 + 0.294264i) q^{6} +(2.50436 - 1.44590i) q^{7} +0.856030i q^{8} +(-2.19321 + 3.79876i) q^{9} +O(q^{10})\) \(q+0.216546i q^{2} +(1.35890 + 2.35368i) q^{3} +1.95311 q^{4} +(-0.933057 - 0.538701i) q^{5} +(-0.509681 + 0.294264i) q^{6} +(2.50436 - 1.44590i) q^{7} +0.856030i q^{8} +(-2.19321 + 3.79876i) q^{9} +(0.116654 - 0.202050i) q^{10} +(-1.69734 - 0.979961i) q^{11} +(2.65408 + 4.59700i) q^{12} +(3.03278 + 1.94993i) q^{13} +(0.313103 + 0.542310i) q^{14} -2.92816i q^{15} +3.72085 q^{16} +(-2.22424 - 3.85250i) q^{17} +(-0.822606 - 0.474932i) q^{18} +(-3.53832 + 2.04285i) q^{19} +(-1.82236 - 1.05214i) q^{20} +(6.80636 + 3.92965i) q^{21} +(0.212207 - 0.367553i) q^{22} -0.663330 q^{23} +(-2.01482 + 1.16326i) q^{24} +(-1.91960 - 3.32485i) q^{25} +(-0.422249 + 0.656737i) q^{26} -3.76803 q^{27} +(4.89129 - 2.82399i) q^{28} -4.34035 q^{29} +0.634082 q^{30} +(-5.33130 + 1.60538i) q^{31} +2.51779i q^{32} -5.32668i q^{33} +(0.834243 - 0.481650i) q^{34} -3.11562 q^{35} +(-4.28358 + 7.41939i) q^{36} +(-0.514023 + 0.296771i) q^{37} +(-0.442371 - 0.766209i) q^{38} +(-0.468267 + 9.78797i) q^{39} +(0.461144 - 0.798725i) q^{40} +(-6.64980 - 3.83926i) q^{41} +(-0.850950 + 1.47389i) q^{42} +(2.15673 + 3.73557i) q^{43} +(-3.31509 - 1.91397i) q^{44} +(4.09279 - 2.36297i) q^{45} -0.143642i q^{46} -0.255427i q^{47} +(5.05625 + 8.75769i) q^{48} +(0.681225 - 1.17992i) q^{49} +(0.719983 - 0.415682i) q^{50} +(6.04504 - 10.4703i) q^{51} +(5.92335 + 3.80842i) q^{52} +(1.64889 - 2.85596i) q^{53} -0.815953i q^{54} +(1.05581 + 1.82872i) q^{55} +(1.23773 + 2.14381i) q^{56} +(-9.61644 - 5.55206i) q^{57} -0.939885i q^{58} +(9.81008 - 5.66385i) q^{59} -5.71901i q^{60} +5.31550 q^{61} +(-0.347640 - 1.15447i) q^{62} +12.6846i q^{63} +6.89647 q^{64} +(-1.77933 - 3.45316i) q^{65} +1.15347 q^{66} +(-8.18899 - 4.72791i) q^{67} +(-4.34418 - 7.52434i) q^{68} +(-0.901399 - 1.56127i) q^{69} -0.674675i q^{70} +(6.83812 + 3.94799i) q^{71} +(-3.25185 - 1.87746i) q^{72} +(0.249101 + 0.143819i) q^{73} +(-0.0642646 - 0.111310i) q^{74} +(5.21709 - 9.03627i) q^{75} +(-6.91072 + 3.98991i) q^{76} -5.66768 q^{77} +(-2.11955 - 0.101401i) q^{78} +(-2.03383 - 3.52270i) q^{79} +(-3.47176 - 2.00442i) q^{80} +(1.45926 + 2.52752i) q^{81} +(0.831377 - 1.43999i) q^{82} +(12.3268 + 7.11691i) q^{83} +(13.2935 + 7.67503i) q^{84} +4.79280i q^{85} +(-0.808923 + 0.467032i) q^{86} +(-5.89810 - 10.2158i) q^{87} +(0.838876 - 1.45298i) q^{88} +5.37232i q^{89} +(0.511692 + 0.886277i) q^{90} +(10.4146 + 0.498246i) q^{91} -1.29556 q^{92} +(-11.0233 - 10.3666i) q^{93} +0.0553117 q^{94} +4.40194 q^{95} +(-5.92609 + 3.42143i) q^{96} -1.70597i q^{97} +(0.255506 + 0.147517i) q^{98} +(7.44527 - 4.29853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + O(q^{10}) \) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + 8q^{10} - 10q^{12} - 3q^{13} + 10q^{14} + 84q^{16} + 6q^{17} + 4q^{22} - 44q^{23} + 30q^{25} - 3q^{26} - 12q^{27} + 48q^{29} - 4q^{30} - 48q^{35} + 40q^{36} + 60q^{38} - 14q^{39} + 20q^{40} - 10q^{42} - 12q^{43} + 32q^{48} + 58q^{49} + 20q^{51} - 27q^{52} + 8q^{53} - 36q^{55} - 50q^{56} - 12q^{61} - 74q^{62} - 15q^{65} + 164q^{66} + 4q^{68} - 34q^{69} - 4q^{74} + 20q^{75} - 200q^{77} - 58q^{78} - 80q^{79} - 82q^{81} - 66q^{82} + 52q^{87} + 16q^{88} - 14q^{90} - 70q^{91} + 108q^{92} - 4q^{94} + 76q^{95} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.216546i 0.153121i 0.997065 + 0.0765606i \(0.0243939\pi\)
−0.997065 + 0.0765606i \(0.975606\pi\)
\(3\) 1.35890 + 2.35368i 0.784561 + 1.35890i 0.929261 + 0.369424i \(0.120445\pi\)
−0.144700 + 0.989476i \(0.546222\pi\)
\(4\) 1.95311 0.976554
\(5\) −0.933057 0.538701i −0.417276 0.240914i 0.276635 0.960975i \(-0.410781\pi\)
−0.693911 + 0.720061i \(0.744114\pi\)
\(6\) −0.509681 + 0.294264i −0.208076 + 0.120133i
\(7\) 2.50436 1.44590i 0.946560 0.546497i 0.0545497 0.998511i \(-0.482628\pi\)
0.892011 + 0.452014i \(0.149294\pi\)
\(8\) 0.856030i 0.302652i
\(9\) −2.19321 + 3.79876i −0.731071 + 1.26625i
\(10\) 0.116654 0.202050i 0.0368891 0.0638938i
\(11\) −1.69734 0.979961i −0.511768 0.295469i 0.221792 0.975094i \(-0.428809\pi\)
−0.733560 + 0.679625i \(0.762143\pi\)
\(12\) 2.65408 + 4.59700i 0.766166 + 1.32704i
\(13\) 3.03278 + 1.94993i 0.841143 + 0.540813i
\(14\) 0.313103 + 0.542310i 0.0836803 + 0.144938i
\(15\) 2.92816i 0.756048i
\(16\) 3.72085 0.930211
\(17\) −2.22424 3.85250i −0.539457 0.934368i −0.998933 0.0461774i \(-0.985296\pi\)
0.459476 0.888190i \(-0.348037\pi\)
\(18\) −0.822606 0.474932i −0.193890 0.111943i
\(19\) −3.53832 + 2.04285i −0.811746 + 0.468662i −0.847562 0.530696i \(-0.821930\pi\)
0.0358156 + 0.999358i \(0.488597\pi\)
\(20\) −1.82236 1.05214i −0.407492 0.235266i
\(21\) 6.80636 + 3.92965i 1.48527 + 0.857520i
\(22\) 0.212207 0.367553i 0.0452426 0.0783625i
\(23\) −0.663330 −0.138314 −0.0691570 0.997606i \(-0.522031\pi\)
−0.0691570 + 0.997606i \(0.522031\pi\)
\(24\) −2.01482 + 1.16326i −0.411274 + 0.237449i
\(25\) −1.91960 3.32485i −0.383921 0.664970i
\(26\) −0.422249 + 0.656737i −0.0828099 + 0.128797i
\(27\) −3.76803 −0.725159
\(28\) 4.89129 2.82399i 0.924367 0.533684i
\(29\) −4.34035 −0.805982 −0.402991 0.915204i \(-0.632029\pi\)
−0.402991 + 0.915204i \(0.632029\pi\)
\(30\) 0.634082 0.115767
\(31\) −5.33130 + 1.60538i −0.957529 + 0.288336i
\(32\) 2.51779i 0.445087i
\(33\) 5.32668i 0.927255i
\(34\) 0.834243 0.481650i 0.143071 0.0826024i
\(35\) −3.11562 −0.526636
\(36\) −4.28358 + 7.41939i −0.713931 + 1.23656i
\(37\) −0.514023 + 0.296771i −0.0845048 + 0.0487889i −0.541657 0.840600i \(-0.682203\pi\)
0.457152 + 0.889389i \(0.348869\pi\)
\(38\) −0.442371 0.766209i −0.0717621 0.124296i
\(39\) −0.468267 + 9.78797i −0.0749828 + 1.56733i
\(40\) 0.461144 0.798725i 0.0729133 0.126289i
\(41\) −6.64980 3.83926i −1.03852 0.599592i −0.119109 0.992881i \(-0.538004\pi\)
−0.919415 + 0.393289i \(0.871337\pi\)
\(42\) −0.850950 + 1.47389i −0.131305 + 0.227426i
\(43\) 2.15673 + 3.73557i 0.328899 + 0.569669i 0.982294 0.187348i \(-0.0599892\pi\)
−0.653395 + 0.757017i \(0.726656\pi\)
\(44\) −3.31509 1.91397i −0.499769 0.288542i
\(45\) 4.09279 2.36297i 0.610117 0.352251i
\(46\) 0.143642i 0.0211788i
\(47\) 0.255427i 0.0372579i −0.999826 0.0186289i \(-0.994070\pi\)
0.999826 0.0186289i \(-0.00593012\pi\)
\(48\) 5.05625 + 8.75769i 0.729807 + 1.26406i
\(49\) 0.681225 1.17992i 0.0973178 0.168559i
\(50\) 0.719983 0.415682i 0.101821 0.0587864i
\(51\) 6.04504 10.4703i 0.846474 1.46614i
\(52\) 5.92335 + 3.80842i 0.821421 + 0.528133i
\(53\) 1.64889 2.85596i 0.226492 0.392296i −0.730274 0.683155i \(-0.760608\pi\)
0.956766 + 0.290858i \(0.0939409\pi\)
\(54\) 0.815953i 0.111037i
\(55\) 1.05581 + 1.82872i 0.142366 + 0.246585i
\(56\) 1.23773 + 2.14381i 0.165399 + 0.286479i
\(57\) −9.61644 5.55206i −1.27373 0.735388i
\(58\) 0.939885i 0.123413i
\(59\) 9.81008 5.66385i 1.27716 0.737371i 0.300838 0.953675i \(-0.402734\pi\)
0.976326 + 0.216304i \(0.0694004\pi\)
\(60\) 5.71901i 0.738321i
\(61\) 5.31550 0.680580 0.340290 0.940321i \(-0.389475\pi\)
0.340290 + 0.940321i \(0.389475\pi\)
\(62\) −0.347640 1.15447i −0.0441503 0.146618i
\(63\) 12.6846i 1.59811i
\(64\) 6.89647 0.862059
\(65\) −1.77933 3.45316i −0.220699 0.428312i
\(66\) 1.15347 0.141982
\(67\) −8.18899 4.72791i −1.00044 0.577607i −0.0920644 0.995753i \(-0.529347\pi\)
−0.908380 + 0.418146i \(0.862680\pi\)
\(68\) −4.34418 7.52434i −0.526809 0.912460i
\(69\) −0.901399 1.56127i −0.108516 0.187955i
\(70\) 0.674675i 0.0806391i
\(71\) 6.83812 + 3.94799i 0.811535 + 0.468540i 0.847489 0.530813i \(-0.178113\pi\)
−0.0359533 + 0.999353i \(0.511447\pi\)
\(72\) −3.25185 1.87746i −0.383234 0.221260i
\(73\) 0.249101 + 0.143819i 0.0291551 + 0.0168327i 0.514507 0.857486i \(-0.327975\pi\)
−0.485352 + 0.874319i \(0.661308\pi\)
\(74\) −0.0642646 0.111310i −0.00747061 0.0129395i
\(75\) 5.21709 9.03627i 0.602418 1.04342i
\(76\) −6.91072 + 3.98991i −0.792714 + 0.457674i
\(77\) −5.66768 −0.645893
\(78\) −2.11955 0.101401i −0.239991 0.0114815i
\(79\) −2.03383 3.52270i −0.228824 0.396334i 0.728636 0.684901i \(-0.240155\pi\)
−0.957460 + 0.288567i \(0.906821\pi\)
\(80\) −3.47176 2.00442i −0.388155 0.224101i
\(81\) 1.45926 + 2.52752i 0.162140 + 0.280835i
\(82\) 0.831377 1.43999i 0.0918103 0.159020i
\(83\) 12.3268 + 7.11691i 1.35305 + 0.781182i 0.988675 0.150071i \(-0.0479503\pi\)
0.364372 + 0.931253i \(0.381284\pi\)
\(84\) 13.2935 + 7.67503i 1.45044 + 0.837415i
\(85\) 4.79280i 0.519852i
\(86\) −0.808923 + 0.467032i −0.0872284 + 0.0503613i
\(87\) −5.89810 10.2158i −0.632342 1.09525i
\(88\) 0.838876 1.45298i 0.0894245 0.154888i
\(89\) 5.37232i 0.569464i 0.958607 + 0.284732i \(0.0919047\pi\)
−0.958607 + 0.284732i \(0.908095\pi\)
\(90\) 0.511692 + 0.886277i 0.0539371 + 0.0934218i
\(91\) 10.4146 + 0.498246i 1.09175 + 0.0522303i
\(92\) −1.29556 −0.135071
\(93\) −11.0233 10.3666i −1.14306 1.07497i
\(94\) 0.0553117 0.00570497
\(95\) 4.40194 0.451630
\(96\) −5.92609 + 3.42143i −0.604829 + 0.349198i
\(97\) 1.70597i 0.173216i −0.996242 0.0866078i \(-0.972397\pi\)
0.996242 0.0866078i \(-0.0276027\pi\)
\(98\) 0.255506 + 0.147517i 0.0258100 + 0.0149014i
\(99\) 7.44527 4.29853i 0.748278 0.432019i
\(100\) −3.74919 6.49379i −0.374919 0.649379i
\(101\) −8.31840 −0.827711 −0.413856 0.910342i \(-0.635818\pi\)
−0.413856 + 0.910342i \(0.635818\pi\)
\(102\) 2.26730 + 1.30903i 0.224497 + 0.129613i
\(103\) −1.71285 + 2.96674i −0.168772 + 0.292322i −0.937988 0.346667i \(-0.887314\pi\)
0.769216 + 0.638989i \(0.220647\pi\)
\(104\) −1.66920 + 2.59615i −0.163678 + 0.254574i
\(105\) −4.23381 7.33318i −0.413178 0.715645i
\(106\) 0.618447 + 0.357060i 0.0600688 + 0.0346808i
\(107\) −7.21523 12.4972i −0.697523 1.20815i −0.969323 0.245792i \(-0.920952\pi\)
0.271800 0.962354i \(-0.412381\pi\)
\(108\) −7.35938 −0.708156
\(109\) 14.1796i 1.35816i −0.734064 0.679080i \(-0.762379\pi\)
0.734064 0.679080i \(-0.237621\pi\)
\(110\) −0.396002 + 0.228632i −0.0377573 + 0.0217992i
\(111\) −1.39701 0.806565i −0.132598 0.0765557i
\(112\) 9.31835 5.37995i 0.880501 0.508358i
\(113\) −2.72624 + 4.72198i −0.256463 + 0.444207i −0.965292 0.261174i \(-0.915890\pi\)
0.708829 + 0.705380i \(0.249224\pi\)
\(114\) 1.20228 2.08240i 0.112603 0.195035i
\(115\) 0.618925 + 0.357337i 0.0577151 + 0.0333218i
\(116\) −8.47717 −0.787085
\(117\) −14.0589 + 7.24420i −1.29974 + 0.669727i
\(118\) 1.22648 + 2.12433i 0.112907 + 0.195561i
\(119\) −11.1406 6.43204i −1.02126 0.589624i
\(120\) 2.50659 0.228820
\(121\) −3.57935 6.19962i −0.325396 0.563602i
\(122\) 1.15105i 0.104211i
\(123\) 20.8687i 1.88167i
\(124\) −10.4126 + 3.13549i −0.935079 + 0.281575i
\(125\) 9.52337i 0.851797i
\(126\) −2.74681 −0.244705
\(127\) −9.01988 15.6229i −0.800385 1.38631i −0.919363 0.393411i \(-0.871295\pi\)
0.118978 0.992897i \(-0.462038\pi\)
\(128\) 6.52899i 0.577087i
\(129\) −5.86156 + 10.1525i −0.516082 + 0.893880i
\(130\) 0.747768 0.385307i 0.0655836 0.0337937i
\(131\) 2.44773 + 4.23960i 0.213859 + 0.370415i 0.952919 0.303225i \(-0.0980632\pi\)
−0.739060 + 0.673640i \(0.764730\pi\)
\(132\) 10.4036i 0.905515i
\(133\) −5.90749 + 10.2321i −0.512245 + 0.887234i
\(134\) 1.02381 1.77329i 0.0884438 0.153189i
\(135\) 3.51579 + 2.02984i 0.302591 + 0.174701i
\(136\) 3.29785 1.90402i 0.282788 0.163268i
\(137\) 12.5462 + 7.24358i 1.07190 + 0.618860i 0.928699 0.370834i \(-0.120928\pi\)
0.143198 + 0.989694i \(0.454261\pi\)
\(138\) 0.338087 0.195194i 0.0287798 0.0166160i
\(139\) 21.1636 1.79508 0.897538 0.440936i \(-0.145354\pi\)
0.897538 + 0.440936i \(0.145354\pi\)
\(140\) −6.08514 −0.514288
\(141\) 0.601194 0.347100i 0.0506297 0.0292311i
\(142\) −0.854922 + 1.48077i −0.0717434 + 0.124263i
\(143\) −3.23682 6.28171i −0.270676 0.525303i
\(144\) −8.16061 + 14.1346i −0.680051 + 1.17788i
\(145\) 4.04979 + 2.33815i 0.336317 + 0.194173i
\(146\) −0.0311434 + 0.0539419i −0.00257745 + 0.00446427i
\(147\) 3.70286 0.305407
\(148\) −1.00394 + 0.579626i −0.0825235 + 0.0476450i
\(149\) 11.3091 6.52932i 0.926478 0.534902i 0.0407821 0.999168i \(-0.487015\pi\)
0.885696 + 0.464266i \(0.153682\pi\)
\(150\) 1.95677 + 1.12974i 0.159770 + 0.0922430i
\(151\) 21.4537i 1.74587i 0.487833 + 0.872937i \(0.337788\pi\)
−0.487833 + 0.872937i \(0.662212\pi\)
\(152\) −1.74874 3.02891i −0.141842 0.245677i
\(153\) 19.5129 1.57753
\(154\) 1.22731i 0.0988998i
\(155\) 5.83923 + 1.37406i 0.469018 + 0.110367i
\(156\) −0.914577 + 19.1170i −0.0732248 + 1.53058i
\(157\) −0.204180 −0.0162954 −0.00814768 0.999967i \(-0.502594\pi\)
−0.00814768 + 0.999967i \(0.502594\pi\)
\(158\) 0.762826 0.440418i 0.0606872 0.0350377i
\(159\) 8.96269 0.710788
\(160\) 1.35634 2.34925i 0.107228 0.185724i
\(161\) −1.66122 + 0.959106i −0.130922 + 0.0755881i
\(162\) −0.547324 + 0.315998i −0.0430019 + 0.0248271i
\(163\) 8.34506i 0.653636i −0.945087 0.326818i \(-0.894024\pi\)
0.945087 0.326818i \(-0.105976\pi\)
\(164\) −12.9878 7.49849i −1.01417 0.585534i
\(165\) −2.86948 + 4.97009i −0.223389 + 0.386921i
\(166\) −1.54114 + 2.66933i −0.119616 + 0.207180i
\(167\) −7.36470 + 4.25201i −0.569898 + 0.329031i −0.757108 0.653289i \(-0.773389\pi\)
0.187211 + 0.982320i \(0.440055\pi\)
\(168\) −3.36390 + 5.82644i −0.259530 + 0.449520i
\(169\) 5.39555 + 11.8274i 0.415042 + 0.909802i
\(170\) −1.03786 −0.0796004
\(171\) 17.9216i 1.37050i
\(172\) 4.21233 + 7.29597i 0.321187 + 0.556312i
\(173\) −12.3780 + 21.4393i −0.941079 + 1.63000i −0.177661 + 0.984092i \(0.556853\pi\)
−0.763418 + 0.645905i \(0.776480\pi\)
\(174\) 2.21219 1.27721i 0.167706 0.0968250i
\(175\) −9.61477 5.55109i −0.726808 0.419623i
\(176\) −6.31555 3.64629i −0.476053 0.274849i
\(177\) 26.6618 + 15.3932i 2.00403 + 1.15702i
\(178\) −1.16335 −0.0871971
\(179\) 7.81732 + 13.5400i 0.584294 + 1.01203i 0.994963 + 0.100242i \(0.0319618\pi\)
−0.410669 + 0.911784i \(0.634705\pi\)
\(180\) 7.99366 4.61514i 0.595812 0.343992i
\(181\) 0.0959588 0.166206i 0.00713256 0.0123540i −0.862437 0.506164i \(-0.831063\pi\)
0.869570 + 0.493810i \(0.164396\pi\)
\(182\) −0.107893 + 2.25524i −0.00799757 + 0.167169i
\(183\) 7.22323 + 12.5110i 0.533957 + 0.924840i
\(184\) 0.567830i 0.0418610i
\(185\) 0.639484 0.0470158
\(186\) 2.24485 2.38704i 0.164601 0.175027i
\(187\) 8.71868i 0.637573i
\(188\) 0.498876i 0.0363843i
\(189\) −9.43653 + 5.44818i −0.686406 + 0.396297i
\(190\) 0.953223i 0.0691540i
\(191\) 10.8919 18.8654i 0.788112 1.36505i −0.139010 0.990291i \(-0.544392\pi\)
0.927122 0.374759i \(-0.122275\pi\)
\(192\) 9.37161 + 16.2321i 0.676338 + 1.17145i
\(193\) −20.9910 + 12.1192i −1.51097 + 0.872357i −0.511048 + 0.859552i \(0.670743\pi\)
−0.999918 + 0.0128045i \(0.995924\pi\)
\(194\) 0.369422 0.0265230
\(195\) 5.70971 8.88048i 0.408881 0.635944i
\(196\) 1.33051 2.30450i 0.0950361 0.164607i
\(197\) 4.91380 + 2.83698i 0.350093 + 0.202127i 0.664726 0.747087i \(-0.268548\pi\)
−0.314633 + 0.949213i \(0.601881\pi\)
\(198\) 0.930830 + 1.61224i 0.0661512 + 0.114577i
\(199\) −8.04415 + 13.9329i −0.570235 + 0.987676i 0.426307 + 0.904579i \(0.359814\pi\)
−0.996541 + 0.0830970i \(0.973519\pi\)
\(200\) 2.84617 1.64324i 0.201255 0.116194i
\(201\) 25.6990i 1.81267i
\(202\) 1.80132i 0.126740i
\(203\) −10.8698 + 6.27569i −0.762911 + 0.440467i
\(204\) 11.8066 20.4496i 0.826628 1.43176i
\(205\) 4.13643 + 7.16450i 0.288901 + 0.500391i
\(206\) −0.642437 0.370911i −0.0447607 0.0258426i
\(207\) 1.45483 2.51983i 0.101117 0.175140i
\(208\) 11.2845 + 7.25539i 0.782441 + 0.503071i
\(209\) 8.00766 0.553901
\(210\) 1.58797 0.916815i 0.109580 0.0632663i
\(211\) −3.65726 6.33456i −0.251776 0.436089i 0.712239 0.701937i \(-0.247681\pi\)
−0.964015 + 0.265848i \(0.914348\pi\)
\(212\) 3.22046 5.57800i 0.221182 0.383098i
\(213\) 21.4597i 1.47039i
\(214\) 2.70621 1.56243i 0.184993 0.106806i
\(215\) 4.64733i 0.316946i
\(216\) 3.22555i 0.219471i
\(217\) −11.0303 + 11.7290i −0.748785 + 0.796214i
\(218\) 3.07054 0.207963
\(219\) 0.781741i 0.0528252i
\(220\) 2.06211 + 3.57169i 0.139028 + 0.240803i
\(221\) 0.766458 16.0209i 0.0515575 1.07768i
\(222\) 0.174658 0.302517i 0.0117223 0.0203036i
\(223\) 24.4234 14.1009i 1.63551 0.944263i 0.653159 0.757220i \(-0.273443\pi\)
0.982352 0.187042i \(-0.0598902\pi\)
\(224\) 3.64047 + 6.30547i 0.243239 + 0.421302i
\(225\) 16.8404 1.12269
\(226\) −1.02253 0.590356i −0.0680175 0.0392699i
\(227\) −19.4653 11.2383i −1.29196 0.745913i −0.312957 0.949767i \(-0.601320\pi\)
−0.979001 + 0.203855i \(0.934653\pi\)
\(228\) −18.7819 10.8438i −1.24386 0.718146i
\(229\) −7.09051 + 4.09371i −0.468554 + 0.270520i −0.715634 0.698475i \(-0.753862\pi\)
0.247080 + 0.968995i \(0.420529\pi\)
\(230\) −0.0773798 + 0.134026i −0.00510227 + 0.00883740i
\(231\) −7.70181 13.3399i −0.506742 0.877703i
\(232\) 3.71547i 0.243932i
\(233\) 2.12578 0.139265 0.0696323 0.997573i \(-0.477817\pi\)
0.0696323 + 0.997573i \(0.477817\pi\)
\(234\) −1.56870 3.04439i −0.102549 0.199018i
\(235\) −0.137599 + 0.238328i −0.00897595 + 0.0155468i
\(236\) 19.1601 11.0621i 1.24722 0.720082i
\(237\) 5.52754 9.57398i 0.359052 0.621897i
\(238\) 1.39283 2.41246i 0.0902839 0.156376i
\(239\) 7.07031 + 4.08204i 0.457340 + 0.264045i 0.710925 0.703268i \(-0.248276\pi\)
−0.253585 + 0.967313i \(0.581610\pi\)
\(240\) 10.8952i 0.703284i
\(241\) 19.6980 11.3727i 1.26886 0.732577i 0.294088 0.955778i \(-0.404984\pi\)
0.974772 + 0.223201i \(0.0716506\pi\)
\(242\) 1.34250 0.775094i 0.0862994 0.0498250i
\(243\) −9.61804 + 16.6589i −0.616997 + 1.06867i
\(244\) 10.3817 0.664623
\(245\) −1.27124 + 0.733953i −0.0812168 + 0.0468905i
\(246\) 4.51903 0.288123
\(247\) −14.7144 0.703952i −0.936253 0.0447914i
\(248\) −1.37426 4.56375i −0.0872654 0.289798i
\(249\) 38.6846i 2.45154i
\(250\) −2.06225 −0.130428
\(251\) 8.40806 + 14.5632i 0.530712 + 0.919221i 0.999358 + 0.0358343i \(0.0114088\pi\)
−0.468646 + 0.883386i \(0.655258\pi\)
\(252\) 24.7745i 1.56064i
\(253\) 1.12590 + 0.650038i 0.0707847 + 0.0408675i
\(254\) 3.38308 1.95322i 0.212273 0.122556i
\(255\) −11.2807 + 6.51293i −0.706427 + 0.407856i
\(256\) 12.3791 0.773695
\(257\) −11.6255 + 20.1359i −0.725177 + 1.25604i 0.233725 + 0.972303i \(0.424909\pi\)
−0.958901 + 0.283740i \(0.908425\pi\)
\(258\) −2.19849 1.26930i −0.136872 0.0790231i
\(259\) −0.858200 + 1.48645i −0.0533260 + 0.0923633i
\(260\) −3.47523 6.74439i −0.215524 0.418269i
\(261\) 9.51931 16.4879i 0.589231 1.02058i
\(262\) −0.918068 + 0.530047i −0.0567184 + 0.0327464i
\(263\) −21.7782 −1.34290 −0.671451 0.741049i \(-0.734328\pi\)
−0.671451 + 0.741049i \(0.734328\pi\)
\(264\) 4.55979 0.280636
\(265\) −3.07701 + 1.77652i −0.189020 + 0.109130i
\(266\) −2.21572 1.27924i −0.135854 0.0784355i
\(267\) −12.6447 + 7.30044i −0.773845 + 0.446779i
\(268\) −15.9940 9.23413i −0.976988 0.564064i
\(269\) −13.7118 + 23.7495i −0.836020 + 1.44803i 0.0571764 + 0.998364i \(0.481790\pi\)
−0.893197 + 0.449666i \(0.851543\pi\)
\(270\) −0.439555 + 0.761331i −0.0267504 + 0.0463331i
\(271\) 10.2933i 0.625271i 0.949873 + 0.312635i \(0.101212\pi\)
−0.949873 + 0.312635i \(0.898788\pi\)
\(272\) −8.27605 14.3345i −0.501810 0.869160i
\(273\) 12.9797 + 25.1897i 0.785565 + 1.52455i
\(274\) −1.56857 + 2.71684i −0.0947606 + 0.164130i
\(275\) 7.52455i 0.453747i
\(276\) −1.76053 3.04933i −0.105971 0.183548i
\(277\) −25.6564 −1.54154 −0.770772 0.637111i \(-0.780129\pi\)
−0.770772 + 0.637111i \(0.780129\pi\)
\(278\) 4.58290i 0.274864i
\(279\) 5.59421 23.7733i 0.334917 1.42327i
\(280\) 2.66706i 0.159388i
\(281\) 10.7924i 0.643819i −0.946771 0.321909i \(-0.895675\pi\)
0.946771 0.321909i \(-0.104325\pi\)
\(282\) 0.0751630 + 0.130186i 0.00447589 + 0.00775248i
\(283\) −1.13064 −0.0672096 −0.0336048 0.999435i \(-0.510699\pi\)
−0.0336048 + 0.999435i \(0.510699\pi\)
\(284\) 13.3556 + 7.71085i 0.792508 + 0.457555i
\(285\) 5.98179 + 10.3608i 0.354331 + 0.613719i
\(286\) 1.36028 0.700920i 0.0804350 0.0414463i
\(287\) −22.2047 −1.31070
\(288\) −9.56449 5.52206i −0.563593 0.325391i
\(289\) −1.39449 + 2.41532i −0.0820287 + 0.142078i
\(290\) −0.506317 + 0.876967i −0.0297320 + 0.0514973i
\(291\) 4.01532 2.31825i 0.235382 0.135898i
\(292\) 0.486522 + 0.280894i 0.0284715 + 0.0164381i
\(293\) 8.91703 5.14825i 0.520938 0.300764i −0.216380 0.976309i \(-0.569425\pi\)
0.737318 + 0.675545i \(0.236092\pi\)
\(294\) 0.801840i 0.0467643i
\(295\) −12.2045 −0.710573
\(296\) −0.254045 0.440019i −0.0147661 0.0255756i
\(297\) 6.39565 + 3.69253i 0.371113 + 0.214262i
\(298\) 1.41390 + 2.44894i 0.0819049 + 0.141863i
\(299\) −2.01174 1.29345i −0.116342 0.0748020i
\(300\) 10.1895 17.6488i 0.588294 1.01895i
\(301\) 10.8025 + 6.23682i 0.622645 + 0.359484i
\(302\) −4.64571 −0.267330
\(303\) −11.3039 19.5789i −0.649390 1.12478i
\(304\) −13.1655 + 7.60113i −0.755096 + 0.435955i
\(305\) −4.95967 2.86346i −0.283990 0.163962i
\(306\) 4.22545i 0.241553i
\(307\) −2.74732 + 1.58616i −0.156798 + 0.0905272i −0.576346 0.817206i \(-0.695522\pi\)
0.419548 + 0.907733i \(0.362189\pi\)
\(308\) −11.0696 −0.630749
\(309\) −9.31036 −0.529648
\(310\) −0.297547 + 1.26446i −0.0168995 + 0.0718166i
\(311\) −12.7270 −0.721682 −0.360841 0.932627i \(-0.617510\pi\)
−0.360841 + 0.932627i \(0.617510\pi\)
\(312\) −8.37879 0.400851i −0.474356 0.0226937i
\(313\) 5.03964 + 8.72891i 0.284857 + 0.493387i 0.972575 0.232592i \(-0.0747205\pi\)
−0.687717 + 0.725978i \(0.741387\pi\)
\(314\) 0.0442144i 0.00249517i
\(315\) 6.83322 11.8355i 0.385008 0.666854i
\(316\) −3.97229 6.88020i −0.223459 0.387042i
\(317\) −28.7576 + 16.6032i −1.61519 + 0.932530i −0.627049 + 0.778980i \(0.715737\pi\)
−0.988141 + 0.153550i \(0.950929\pi\)
\(318\) 1.94084i 0.108837i
\(319\) 7.36706 + 4.25337i 0.412476 + 0.238143i
\(320\) −6.43480 3.71514i −0.359716 0.207682i
\(321\) 19.6096 33.9647i 1.09450 1.89573i
\(322\) −0.207691 0.359731i −0.0115741 0.0200470i
\(323\) 15.7401 + 9.08758i 0.875805 + 0.505646i
\(324\) 2.85010 + 4.93652i 0.158339 + 0.274251i
\(325\) 0.661482 13.8266i 0.0366924 0.766964i
\(326\) 1.80709 0.100085
\(327\) 33.3743 19.2687i 1.84560 1.06556i
\(328\) 3.28652 5.69243i 0.181468 0.314312i
\(329\) −0.369321 0.639682i −0.0203613 0.0352668i
\(330\) −1.07625 0.621375i −0.0592458 0.0342056i
\(331\) −4.91037 2.83500i −0.269898 0.155826i 0.358943 0.933359i \(-0.383137\pi\)
−0.628841 + 0.777534i \(0.716471\pi\)
\(332\) 24.0757 + 13.9001i 1.32132 + 0.762867i
\(333\) 2.60353i 0.142673i
\(334\) −0.920756 1.59480i −0.0503815 0.0872634i
\(335\) 5.09386 + 8.82283i 0.278307 + 0.482043i
\(336\) 25.3254 + 14.6216i 1.38161 + 0.797675i
\(337\) 21.0424 1.14625 0.573127 0.819467i \(-0.305730\pi\)
0.573127 + 0.819467i \(0.305730\pi\)
\(338\) −2.56118 + 1.16839i −0.139310 + 0.0635518i
\(339\) −14.8187 −0.804843
\(340\) 9.36085i 0.507664i
\(341\) 10.6223 + 2.49958i 0.575227 + 0.135360i
\(342\) 3.88086 0.209853
\(343\) 16.3026i 0.880258i
\(344\) −3.19776 + 1.84623i −0.172412 + 0.0995419i
\(345\) 1.94234i 0.104572i
\(346\) −4.64259 2.68040i −0.249587 0.144099i
\(347\) −3.45932 5.99172i −0.185706 0.321653i 0.758108 0.652129i \(-0.226124\pi\)
−0.943814 + 0.330476i \(0.892791\pi\)
\(348\) −11.5196 19.9526i −0.617516 1.06957i
\(349\) 20.4459i 1.09444i −0.836988 0.547221i \(-0.815686\pi\)
0.836988 0.547221i \(-0.184314\pi\)
\(350\) 1.20207 2.08204i 0.0642531 0.111290i
\(351\) −11.4276 7.34740i −0.609962 0.392175i
\(352\) 2.46734 4.27356i 0.131510 0.227782i
\(353\) 10.3755 5.99032i 0.552234 0.318832i −0.197789 0.980245i \(-0.563376\pi\)
0.750022 + 0.661412i \(0.230043\pi\)
\(354\) −3.33334 + 5.77351i −0.177165 + 0.306859i
\(355\) −4.25357 7.36740i −0.225756 0.391021i
\(356\) 10.4927i 0.556113i
\(357\) 34.9620i 1.85038i
\(358\) −2.93203 + 1.69281i −0.154963 + 0.0894678i
\(359\) −26.0022 15.0124i −1.37234 0.792322i −0.381119 0.924526i \(-0.624461\pi\)
−0.991223 + 0.132204i \(0.957795\pi\)
\(360\) 2.02278 + 3.50355i 0.106610 + 0.184653i
\(361\) −1.15353 + 1.99797i −0.0607120 + 0.105156i
\(362\) 0.0359912 + 0.0207795i 0.00189165 + 0.00109215i
\(363\) 9.72796 16.8493i 0.510585 0.884360i
\(364\) 20.3408 + 0.973127i 1.06615 + 0.0510057i
\(365\) −0.154951 0.268382i −0.00811049 0.0140478i
\(366\) −2.70921 + 1.56416i −0.141613 + 0.0817601i
\(367\) −4.65412 + 8.06117i −0.242943 + 0.420790i −0.961551 0.274626i \(-0.911446\pi\)
0.718608 + 0.695415i \(0.244779\pi\)
\(368\) −2.46815 −0.128661
\(369\) 29.1689 16.8407i 1.51847 0.876689i
\(370\) 0.138478i 0.00719911i
\(371\) 9.53648i 0.495109i
\(372\) −21.5296 20.2471i −1.11626 1.04977i
\(373\) 22.1171 1.14518 0.572589 0.819843i \(-0.305939\pi\)
0.572589 + 0.819843i \(0.305939\pi\)
\(374\) −1.88800 −0.0976259
\(375\) −22.4150 + 12.9413i −1.15751 + 0.668286i
\(376\) 0.218653 0.0112762
\(377\) −13.1633 8.46337i −0.677946 0.435886i
\(378\) −1.17978 2.04344i −0.0606815 0.105103i
\(379\) −3.68888 + 2.12978i −0.189485 + 0.109399i −0.591742 0.806128i \(-0.701559\pi\)
0.402256 + 0.915527i \(0.368226\pi\)
\(380\) 8.59746 0.441041
\(381\) 24.5142 42.4599i 1.25590 2.17529i
\(382\) 4.08522 + 2.35860i 0.209018 + 0.120677i
\(383\) −19.5460 11.2849i −0.998751 0.576629i −0.0908728 0.995863i \(-0.528966\pi\)
−0.907879 + 0.419233i \(0.862299\pi\)
\(384\) −15.3672 + 8.87224i −0.784203 + 0.452760i
\(385\) 5.28827 + 3.05319i 0.269515 + 0.155605i
\(386\) −2.62436 4.54552i −0.133576 0.231361i
\(387\) −18.9207 −0.961793
\(388\) 3.33195i 0.169154i
\(389\) −3.81794 6.61287i −0.193577 0.335286i 0.752856 0.658185i \(-0.228676\pi\)
−0.946433 + 0.322900i \(0.895342\pi\)
\(390\) 1.92303 + 1.23641i 0.0973765 + 0.0626083i
\(391\) 1.47541 + 2.55548i 0.0746145 + 0.129236i
\(392\) 1.01004 + 0.583149i 0.0510149 + 0.0294535i
\(393\) −6.65244 + 11.5224i −0.335571 + 0.581227i
\(394\) −0.614337 + 1.06406i −0.0309499 + 0.0536067i
\(395\) 4.38250i 0.220508i
\(396\) 14.5414 8.39549i 0.730734 0.421889i
\(397\) 7.76424 4.48269i 0.389676 0.224980i −0.292344 0.956313i \(-0.594435\pi\)
0.682020 + 0.731334i \(0.261102\pi\)
\(398\) −3.01711 1.74193i −0.151234 0.0873150i
\(399\) −32.1108 −1.60755
\(400\) −7.14255 12.3713i −0.357127 0.618563i
\(401\) 35.4154i 1.76856i 0.466955 + 0.884281i \(0.345351\pi\)
−0.466955 + 0.884281i \(0.654649\pi\)
\(402\) 5.56502 0.277558
\(403\) −19.2991 5.52687i −0.961355 0.275313i
\(404\) −16.2467 −0.808305
\(405\) 3.14443i 0.156248i
\(406\) −1.35898 2.35381i −0.0674448 0.116818i
\(407\) 1.16330 0.0576625
\(408\) 8.96290 + 5.17473i 0.443730 + 0.256187i
\(409\) −14.9021 + 8.60372i −0.736860 + 0.425426i −0.820927 0.571034i \(-0.806543\pi\)
0.0840665 + 0.996460i \(0.473209\pi\)
\(410\) −1.55145 + 0.895727i −0.0766204 + 0.0442368i
\(411\) 39.3732i 1.94213i
\(412\) −3.34538 + 5.79437i −0.164815 + 0.285468i
\(413\) 16.3787 28.3687i 0.805942 1.39593i
\(414\) 0.545660 + 0.315037i 0.0268177 + 0.0154832i
\(415\) −7.66777 13.2810i −0.376396 0.651937i
\(416\) −4.90952 + 7.63592i −0.240709 + 0.374382i
\(417\) 28.7593 + 49.8125i 1.40835 + 2.43933i
\(418\) 1.73403i 0.0848140i
\(419\) 26.3377 1.28668 0.643341 0.765580i \(-0.277548\pi\)
0.643341 + 0.765580i \(0.277548\pi\)
\(420\) −8.26909 14.3225i −0.403490 0.698866i
\(421\) 10.0044 + 5.77603i 0.487583 + 0.281506i 0.723571 0.690250i \(-0.242499\pi\)
−0.235988 + 0.971756i \(0.575833\pi\)
\(422\) 1.37172 0.791965i 0.0667744 0.0385522i
\(423\) 0.970306 + 0.560206i 0.0471779 + 0.0272382i
\(424\) 2.44479 + 1.41150i 0.118729 + 0.0685484i
\(425\) −8.53932 + 14.7905i −0.414218 + 0.717446i
\(426\) −4.64701 −0.225148
\(427\) 13.3119 7.68566i 0.644210 0.371935i
\(428\) −14.0921 24.4083i −0.681169 1.17982i
\(429\) 10.3866 16.1547i 0.501472 0.779954i
\(430\) 1.00636 0.0485311
\(431\) 0.0776939 0.0448566i 0.00374239 0.00216067i −0.498128 0.867104i \(-0.665979\pi\)
0.501870 + 0.864943i \(0.332646\pi\)
\(432\) −14.0203 −0.674551
\(433\) 26.7326 1.28469 0.642344 0.766416i \(-0.277962\pi\)
0.642344 + 0.766416i \(0.277962\pi\)
\(434\) −2.53986 2.38857i −0.121917 0.114655i
\(435\) 12.7092i 0.609361i
\(436\) 27.6943i 1.32632i
\(437\) 2.34707 1.35508i 0.112276 0.0648225i
\(438\) −0.169283 −0.00808865
\(439\) 0.475013 0.822747i 0.0226711 0.0392676i −0.854467 0.519505i \(-0.826116\pi\)
0.877138 + 0.480238i \(0.159450\pi\)
\(440\) −1.56544 + 0.903807i −0.0746294 + 0.0430873i
\(441\) 2.98814 + 5.17562i 0.142293 + 0.246458i
\(442\) 3.46926 + 0.165973i 0.165016 + 0.00789455i
\(443\) 14.3958 24.9342i 0.683964 1.18466i −0.289797 0.957088i \(-0.593588\pi\)
0.973761 0.227573i \(-0.0730790\pi\)
\(444\) −2.72851 1.57531i −0.129489 0.0747608i
\(445\) 2.89407 5.01268i 0.137192 0.237624i
\(446\) 3.05348 + 5.28879i 0.144587 + 0.250431i
\(447\) 30.7359 + 17.7454i 1.45376 + 0.839327i
\(448\) 17.2713 9.97158i 0.815991 0.471113i
\(449\) 27.7320i 1.30875i 0.756169 + 0.654377i \(0.227069\pi\)
−0.756169 + 0.654377i \(0.772931\pi\)
\(450\) 3.64672i 0.171908i
\(451\) 7.52466 + 13.0331i 0.354322 + 0.613704i
\(452\) −5.32464 + 9.22254i −0.250450 + 0.433792i
\(453\) −50.4951 + 29.1534i −2.37247 + 1.36974i
\(454\) 2.43361 4.21514i 0.114215 0.197826i
\(455\) −9.44900 6.07524i −0.442976 0.284812i
\(456\) 4.75272 8.23196i 0.222567 0.385497i
\(457\) 26.0706i 1.21953i −0.792582 0.609765i \(-0.791264\pi\)
0.792582 0.609765i \(-0.208736\pi\)
\(458\) −0.886477 1.53542i −0.0414223 0.0717456i
\(459\) 8.38101 + 14.5163i 0.391192 + 0.677565i
\(460\) 1.20883 + 0.697917i 0.0563619 + 0.0325405i
\(461\) 1.87261i 0.0872160i −0.999049 0.0436080i \(-0.986115\pi\)
0.999049 0.0436080i \(-0.0138853\pi\)
\(462\) 2.88871 1.66780i 0.134395 0.0775929i
\(463\) 2.06017i 0.0957441i 0.998853 + 0.0478720i \(0.0152440\pi\)
−0.998853 + 0.0478720i \(0.984756\pi\)
\(464\) −16.1498 −0.749734
\(465\) 4.70082 + 15.6109i 0.217995 + 0.723938i
\(466\) 0.460330i 0.0213244i
\(467\) 25.5423 1.18196 0.590979 0.806687i \(-0.298741\pi\)
0.590979 + 0.806687i \(0.298741\pi\)
\(468\) −27.4585 + 14.1487i −1.26927 + 0.654024i
\(469\) −27.3443 −1.26264
\(470\) −0.0516090 0.0297965i −0.00238054 0.00137441i
\(471\) −0.277461 0.480576i −0.0127847 0.0221438i
\(472\) 4.84843 + 8.39772i 0.223167 + 0.386536i
\(473\) 8.45406i 0.388718i
\(474\) 2.07321 + 1.19697i 0.0952255 + 0.0549785i
\(475\) 13.5843 + 7.84292i 0.623292 + 0.359858i
\(476\) −21.7588 12.5625i −0.997314 0.575799i
\(477\) 7.23273 + 12.5275i 0.331164 + 0.573593i
\(478\) −0.883950 + 1.53105i −0.0404309 + 0.0700284i
\(479\) 35.3344 20.4004i 1.61447 0.932116i 0.626156 0.779698i \(-0.284627\pi\)
0.988316 0.152418i \(-0.0487060\pi\)
\(480\) 7.37251 0.336507
\(481\) −2.13760 0.102265i −0.0974663 0.00466290i
\(482\) 2.46270 + 4.26553i 0.112173 + 0.194289i
\(483\) −4.51486 2.60666i −0.205433 0.118607i
\(484\) −6.99086 12.1085i −0.317766 0.550387i
\(485\) −0.919010 + 1.59177i −0.0417301 + 0.0722786i
\(486\) −3.60743 2.08275i −0.163636 0.0944754i
\(487\) −25.0470 14.4609i −1.13499 0.655287i −0.189805 0.981822i \(-0.560785\pi\)
−0.945185 + 0.326535i \(0.894119\pi\)
\(488\) 4.55023i 0.205979i
\(489\) 19.6416 11.3401i 0.888225 0.512817i
\(490\) −0.158935 0.275283i −0.00717993 0.0124360i
\(491\) 14.1441 24.4983i 0.638313 1.10559i −0.347489 0.937684i \(-0.612966\pi\)
0.985803 0.167907i \(-0.0537010\pi\)
\(492\) 40.7588i 1.83755i
\(493\) 9.65398 + 16.7212i 0.434793 + 0.753084i
\(494\) 0.152438 3.18634i 0.00685851 0.143360i
\(495\) −9.26249 −0.416318
\(496\) −19.8369 + 5.97339i −0.890705 + 0.268213i
\(497\) 22.8335 1.02422
\(498\) −8.37701 −0.375383
\(499\) 14.5917 8.42449i 0.653212 0.377132i −0.136474 0.990644i \(-0.543577\pi\)
0.789686 + 0.613512i \(0.210244\pi\)
\(500\) 18.6002i 0.831825i
\(501\) −20.0158 11.5561i −0.894239 0.516289i
\(502\) −3.15360 + 1.82073i −0.140752 + 0.0812633i
\(503\) 6.38581 + 11.0605i 0.284729 + 0.493165i 0.972543 0.232721i \(-0.0747630\pi\)
−0.687814 + 0.725887i \(0.741430\pi\)
\(504\) −10.8584 −0.483673
\(505\) 7.76154 + 4.48113i 0.345384 + 0.199408i
\(506\) −0.140763 + 0.243809i −0.00625769 + 0.0108386i
\(507\) −20.5060 + 28.7717i −0.910703 + 1.27780i
\(508\) −17.6168 30.5132i −0.781619 1.35380i
\(509\) 20.0967 + 11.6028i 0.890770 + 0.514286i 0.874194 0.485577i \(-0.161390\pi\)
0.0165755 + 0.999863i \(0.494724\pi\)
\(510\) −1.41035 2.44280i −0.0624513 0.108169i
\(511\) 0.831787 0.0367961
\(512\) 15.7386i 0.695556i
\(513\) 13.3325 7.69753i 0.588645 0.339854i
\(514\) −4.36035 2.51745i −0.192327 0.111040i
\(515\) 3.19637 1.84543i 0.140849 0.0813193i
\(516\) −11.4483 + 19.8290i −0.503982 + 0.872922i
\(517\) −0.250309 + 0.433547i −0.0110086 + 0.0190674i
\(518\) −0.321884 0.185840i −0.0141428 0.00816533i
\(519\) −67.2816 −2.95333
\(520\) 2.95601 1.52316i 0.129629 0.0667950i
\(521\) 8.40806 + 14.5632i 0.368364 + 0.638025i 0.989310 0.145828i \(-0.0465847\pi\)
−0.620946 + 0.783853i \(0.713251\pi\)
\(522\) 3.57040 + 2.06137i 0.156272 + 0.0902237i
\(523\) −9.01605 −0.394244 −0.197122 0.980379i \(-0.563160\pi\)
−0.197122 + 0.980379i \(0.563160\pi\)
\(524\) 4.78069 + 8.28039i 0.208845 + 0.361731i
\(525\) 30.1735i 1.31688i
\(526\) 4.71598i 0.205627i
\(527\) 18.0428 + 16.9680i 0.785958 + 0.739140i
\(528\) 19.8197i 0.862543i
\(529\) −22.5600 −0.980869
\(530\) −0.384697 0.666315i −0.0167102 0.0289429i
\(531\) 49.6882i 2.15628i
\(532\) −11.5380 + 19.9844i −0.500235 + 0.866432i
\(533\) −12.6811 24.6103i −0.549280 1.06599i
\(534\) −1.58088 2.73817i −0.0684114 0.118492i
\(535\) 15.5474i 0.672173i
\(536\) 4.04724 7.01002i 0.174814 0.302787i
\(537\) −21.2459 + 36.7990i −0.916828 + 1.58799i
\(538\) −5.14285 2.96923i −0.221724 0.128012i
\(539\) −2.31254 + 1.33515i −0.0996083 + 0.0575089i
\(540\) 6.86672 + 3.96450i 0.295497 + 0.170605i
\(541\) 12.7800 7.37852i 0.549454 0.317227i −0.199448 0.979908i \(-0.563915\pi\)
0.748902 + 0.662681i \(0.230582\pi\)
\(542\) −2.22896 −0.0957422
\(543\) 0.521593 0.0223837
\(544\) 9.69979 5.60018i 0.415875 0.240106i
\(545\) −7.63857 + 13.2304i −0.327200 + 0.566728i
\(546\) −5.45473 + 2.81069i −0.233441 + 0.120287i
\(547\) −7.94526 + 13.7616i −0.339715 + 0.588403i −0.984379 0.176063i \(-0.943664\pi\)
0.644664 + 0.764466i \(0.276997\pi\)
\(548\) 24.5042 + 14.1475i 1.04677 + 0.604351i
\(549\) −11.6580 + 20.1923i −0.497553 + 0.861787i
\(550\) −1.62941 −0.0694783
\(551\) 15.3575 8.86668i 0.654253 0.377733i
\(552\) 1.33649 0.771624i 0.0568849 0.0328425i
\(553\) −10.1869 5.88141i −0.433191 0.250103i
\(554\) 5.55579i 0.236043i
\(555\) 0.868994 + 1.50514i 0.0368867 + 0.0638897i
\(556\) 41.3349 1.75299
\(557\) 11.7837i 0.499291i −0.968337 0.249645i \(-0.919686\pi\)
0.968337 0.249645i \(-0.0803140\pi\)
\(558\) 5.14801 + 1.21140i 0.217933 + 0.0512828i
\(559\) −0.743195 + 15.5346i −0.0314338 + 0.657046i
\(560\) −11.5927 −0.489883
\(561\) −20.5210 + 11.8478i −0.866397 + 0.500215i
\(562\) 2.33704 0.0985823
\(563\) −4.86382 + 8.42438i −0.204985 + 0.355045i −0.950128 0.311860i \(-0.899048\pi\)
0.745143 + 0.666905i \(0.232381\pi\)
\(564\) 1.17420 0.677923i 0.0494426 0.0285457i
\(565\) 5.08747 2.93725i 0.214032 0.123571i
\(566\) 0.244836i 0.0102912i
\(567\) 7.30905 + 4.21988i 0.306951 + 0.177219i
\(568\) −3.37960 + 5.85363i −0.141805 + 0.245613i
\(569\) −18.4922 + 32.0295i −0.775234 + 1.34275i 0.159429 + 0.987209i \(0.449035\pi\)
−0.934663 + 0.355536i \(0.884298\pi\)
\(570\) −2.24358 + 1.29533i −0.0939734 + 0.0542556i
\(571\) 23.0626 39.9456i 0.965141 1.67167i 0.255905 0.966702i \(-0.417627\pi\)
0.709236 0.704971i \(-0.249040\pi\)
\(572\) −6.32185 12.2689i −0.264330 0.512987i
\(573\) 59.2041 2.47329
\(574\) 4.80834i 0.200696i
\(575\) 1.27333 + 2.20547i 0.0531016 + 0.0919746i
\(576\) −15.1254 + 26.1980i −0.630227 + 1.09158i
\(577\) −28.8138 + 16.6356i −1.19953 + 0.692550i −0.960451 0.278449i \(-0.910180\pi\)
−0.239081 + 0.971000i \(0.576846\pi\)
\(578\) −0.523029 0.301971i −0.0217551 0.0125603i
\(579\) −57.0493 32.9375i −2.37089 1.36883i
\(580\) 7.90968 + 4.56666i 0.328432 + 0.189620i
\(581\) 41.1612 1.70765
\(582\) 0.502007 + 0.869502i 0.0208089 + 0.0360420i
\(583\) −5.59746 + 3.23169i −0.231823 + 0.133843i
\(584\) −0.123113 + 0.213238i −0.00509446 + 0.00882386i
\(585\) 17.0202 + 0.814264i 0.703698 + 0.0336657i
\(586\) 1.11483 + 1.93095i 0.0460533 + 0.0797667i
\(587\) 6.92154i 0.285683i 0.989746 + 0.142841i \(0.0456238\pi\)
−0.989746 + 0.142841i \(0.954376\pi\)
\(588\) 7.23209 0.298246
\(589\) 15.5843 16.5714i 0.642139 0.682813i
\(590\) 2.64283i 0.108804i
\(591\) 15.4207i 0.634322i
\(592\) −1.91260 + 1.10424i −0.0786074 + 0.0453840i
\(593\) 14.0226i 0.575839i −0.957655 0.287919i \(-0.907036\pi\)
0.957655 0.287919i \(-0.0929635\pi\)
\(594\) −0.799602 + 1.38495i −0.0328081 + 0.0568253i
\(595\) 6.92989 + 12.0029i 0.284098 + 0.492071i
\(596\) 22.0879 12.7525i 0.904756 0.522361i
\(597\) −43.7248 −1.78954
\(598\) 0.280091 0.435634i 0.0114538 0.0178144i
\(599\) 5.52124 9.56307i 0.225592 0.390736i −0.730905 0.682479i \(-0.760902\pi\)
0.956497 + 0.291743i \(0.0942351\pi\)
\(600\) 7.73532 + 4.46599i 0.315793 + 0.182323i
\(601\) 2.59974 + 4.50288i 0.106046 + 0.183676i 0.914165 0.405343i \(-0.132848\pi\)
−0.808119 + 0.589019i \(0.799514\pi\)
\(602\) −1.35056 + 2.33923i −0.0550446 + 0.0953401i
\(603\) 35.9204 20.7387i 1.46279 0.844544i
\(604\) 41.9013i 1.70494i
\(605\) 7.71280i 0.313570i
\(606\) 4.23973 2.44781i 0.172227 0.0994354i
\(607\) 19.7074 34.1341i 0.799897 1.38546i −0.119786 0.992800i \(-0.538221\pi\)
0.919683 0.392662i \(-0.128446\pi\)
\(608\) −5.14348 8.90876i −0.208595 0.361298i
\(609\) −29.5420 17.0561i −1.19710 0.691146i
\(610\) 0.620072 1.07400i 0.0251060 0.0434848i
\(611\) 0.498065 0.774655i 0.0201495 0.0313392i
\(612\) 38.1109 1.54054
\(613\) −11.5373 + 6.66106i −0.465987 + 0.269038i −0.714558 0.699576i \(-0.753372\pi\)
0.248571 + 0.968614i \(0.420039\pi\)
\(614\) −0.343478 0.594921i −0.0138616 0.0240091i
\(615\) −11.2420 + 19.4717i −0.453320 + 0.785174i
\(616\) 4.85171i 0.195481i
\(617\) −2.04390 + 1.18005i −0.0822843 + 0.0475069i −0.540578 0.841294i \(-0.681794\pi\)
0.458293 + 0.888801i \(0.348461\pi\)
\(618\) 2.01612i 0.0811003i
\(619\) 9.60526i 0.386068i −0.981192 0.193034i \(-0.938167\pi\)
0.981192 0.193034i \(-0.0618328\pi\)
\(620\) 11.4046 + 2.68369i 0.458021 + 0.107779i
\(621\) 2.49945 0.100300
\(622\) 2.75598i 0.110505i
\(623\) 7.76780 + 13.4542i 0.311211 + 0.539032i
\(624\) −1.74235 + 36.4195i −0.0697499 + 1.45795i
\(625\) −4.46776 + 7.73839i −0.178711 + 0.309536i
\(626\) −1.89021 + 1.09131i −0.0755480 + 0.0436177i
\(627\) 10.8816 + 18.8475i 0.434569 + 0.752696i
\(628\) −0.398786 −0.0159133
\(629\) 2.28662 + 1.32018i 0.0911735 + 0.0526391i
\(630\) 2.56293 + 1.47971i 0.102109 + 0.0589529i
\(631\) −17.6572 10.1944i −0.702922 0.405832i 0.105513 0.994418i \(-0.466352\pi\)
−0.808435 + 0.588586i \(0.799685\pi\)
\(632\) 3.01553 1.74102i 0.119951 0.0692540i
\(633\) 9.93969 17.2160i 0.395067 0.684277i
\(634\) −3.59536 6.22735i −0.142790 0.247320i
\(635\) 19.4361i 0.771297i
\(636\) 17.5051 0.694123
\(637\) 4.36676 2.25009i 0.173017 0.0891518i
\(638\) −0.921051 + 1.59531i −0.0364648 + 0.0631588i
\(639\) −29.9949 + 17.3176i −1.18658 + 0.685073i
\(640\) 3.51717 6.09192i 0.139028 0.240804i
\(641\) 16.7963 29.0920i 0.663413 1.14907i −0.316300 0.948659i \(-0.602441\pi\)
0.979713 0.200406i \(-0.0642261\pi\)
\(642\) 7.35493 + 4.24637i 0.290276 + 0.167591i
\(643\) 0.727035i 0.0286714i 0.999897 + 0.0143357i \(0.00456336\pi\)
−0.999897 + 0.0143357i \(0.995437\pi\)
\(644\) −3.24454 + 1.87324i −0.127853 + 0.0738159i
\(645\) 10.9383 6.31526i 0.430697 0.248663i
\(646\) −1.96788 + 3.40847i −0.0774252 + 0.134104i
\(647\) 32.8776 1.29255 0.646276 0.763104i \(-0.276325\pi\)
0.646276 + 0.763104i \(0.276325\pi\)
\(648\) −2.16363 + 1.24917i −0.0849955 + 0.0490722i
\(649\) −22.2014 −0.871482
\(650\) 2.99410 + 0.143241i 0.117438 + 0.00561839i
\(651\) −42.5953 10.0233i −1.66944 0.392845i
\(652\) 16.2988i 0.638311i
\(653\) 8.29740 0.324702 0.162351 0.986733i \(-0.448092\pi\)
0.162351 + 0.986733i \(0.448092\pi\)
\(654\) 4.17255 + 7.22708i 0.163160 + 0.282601i
\(655\) 5.27438i 0.206087i
\(656\) −24.7429 14.2853i −0.966047 0.557747i
\(657\) −1.09267 + 0.630851i −0.0426290 + 0.0246118i
\(658\) 0.138521 0.0799749i 0.00540010 0.00311775i
\(659\) 27.7760 1.08200 0.541000 0.841023i \(-0.318046\pi\)
0.541000 + 0.841023i \(0.318046\pi\)
\(660\) −5.60441 + 9.70713i −0.218151 + 0.377849i
\(661\) −5.17216 2.98615i −0.201174 0.116148i 0.396029 0.918238i \(-0.370388\pi\)
−0.597203 + 0.802090i \(0.703721\pi\)
\(662\) 0.613908 1.06332i 0.0238602 0.0413271i
\(663\) 38.7497 19.9668i 1.50491 0.775446i
\(664\) −6.09229 + 10.5521i −0.236427 + 0.409503i
\(665\) 11.0241 6.36474i 0.427495 0.246814i
\(666\) 0.563785 0.0218462
\(667\) 2.87908 0.111479
\(668\) −14.3841 + 8.30464i −0.556536 + 0.321316i
\(669\) 66.3779 + 38.3233i 2.56632 + 1.48166i
\(670\) −1.91055 + 1.10306i −0.0738109 + 0.0426148i
\(671\) −9.02223 5.20899i −0.348299 0.201091i
\(672\) −9.89405 + 17.1370i −0.381671 + 0.661074i
\(673\) −7.18552 + 12.4457i −0.276982 + 0.479746i −0.970633 0.240565i \(-0.922667\pi\)
0.693652 + 0.720311i \(0.256001\pi\)
\(674\) 4.55665i 0.175516i
\(675\) 7.23313 + 12.5281i 0.278403 + 0.482209i
\(676\) 10.5381 + 23.1002i 0.405311 + 0.888471i
\(677\) 6.22535 10.7826i 0.239260 0.414410i −0.721242 0.692683i \(-0.756429\pi\)
0.960502 + 0.278273i \(0.0897619\pi\)
\(678\) 3.20894i 0.123238i
\(679\) −2.46666 4.27238i −0.0946617 0.163959i
\(680\) −4.10278 −0.157334
\(681\) 61.0869i 2.34086i
\(682\) −0.541274 + 2.30021i −0.0207264 + 0.0880795i
\(683\) 38.4734i 1.47214i −0.676903 0.736072i \(-0.736678\pi\)
0.676903 0.736072i \(-0.263322\pi\)
\(684\) 35.0029i 1.33837i
\(685\) −7.80424 13.5173i −0.298185 0.516471i
\(686\) −3.53027 −0.134786
\(687\) −19.2706 11.1259i −0.735219 0.424479i
\(688\) 8.02487 + 13.8995i 0.305945 + 0.529913i
\(689\) 10.5696 5.44629i 0.402671 0.207487i
\(690\) −0.420605 −0.0160122
\(691\) 17.3900 + 10.0401i 0.661548 + 0.381945i 0.792867 0.609395i \(-0.208588\pi\)
−0.131318 + 0.991340i \(0.541921\pi\)
\(692\) −24.1755 + 41.8732i −0.919014 + 1.59178i
\(693\) 12.4304 21.5302i 0.472194 0.817863i
\(694\) 1.29748 0.749103i 0.0492518 0.0284355i
\(695\) −19.7469 11.4009i −0.749042 0.432460i
\(696\) 8.74503 5.04895i 0.331480 0.191380i
\(697\) 34.1578i 1.29382i
\(698\) 4.42747 0.167582
\(699\) 2.88872 + 5.00342i 0.109262 + 0.189247i
\(700\) −18.7787 10.8419i −0.709767 0.409784i
\(701\) 11.6336 + 20.1499i 0.439394 + 0.761053i 0.997643 0.0686208i \(-0.0218599\pi\)
−0.558249 + 0.829674i \(0.688527\pi\)
\(702\) 1.59105 2.47461i 0.0600503 0.0933981i
\(703\) 1.21252 2.10014i 0.0457310 0.0792084i
\(704\) −11.7057 6.75828i −0.441174 0.254712i
\(705\) −0.747931 −0.0281687
\(706\) 1.29718 + 2.24678i 0.0488200 + 0.0845587i
\(707\) −20.8323 + 12.0275i −0.783479 + 0.452342i
\(708\) 52.0734 + 30.0646i 1.95704 + 1.12990i
\(709\) 3.26759i 0.122717i 0.998116 + 0.0613584i \(0.0195433\pi\)
−0.998116 + 0.0613584i \(0.980457\pi\)
\(710\) 1.59538 0.921094i 0.0598736 0.0345680i
\(711\) 17.8425 0.669146
\(712\) −4.59886 −0.172350
\(713\) 3.53641 1.06490i 0.132440 0.0398808i
\(714\) 7.57087 0.283333
\(715\) −0.363826 + 7.60487i −0.0136063 + 0.284406i
\(716\) 15.2681 + 26.4451i 0.570595 + 0.988299i
\(717\) 22.1883i 0.828639i
\(718\) 3.25087 5.63067i 0.121321 0.210135i
\(719\) −6.07474 10.5218i −0.226549 0.392395i 0.730234 0.683197i \(-0.239411\pi\)
−0.956783 + 0.290802i \(0.906078\pi\)
\(720\) 15.2286 8.79226i 0.567538 0.327668i
\(721\) 9.90641i 0.368934i
\(722\) −0.432652 0.249792i −0.0161016 0.00929629i
\(723\) 53.5352 + 30.9086i 1.99100 + 1.14950i
\(724\) 0.187418 0.324617i 0.00696533 0.0120643i
\(725\) 8.33174 + 14.4310i 0.309433 + 0.535954i
\(726\) 3.64865 + 2.10655i 0.135414 + 0.0781814i
\(727\) 15.3228 + 26.5399i 0.568293 + 0.984312i 0.996735 + 0.0807426i \(0.0257292\pi\)
−0.428442 + 0.903569i \(0.640937\pi\)
\(728\) −0.426513 + 8.91520i −0.0158076 + 0.330419i
\(729\) −43.5242 −1.61201
\(730\) 0.0581171 0.0335539i 0.00215101 0.00124189i
\(731\) 9.59418 16.6176i 0.354854 0.614624i
\(732\) 14.1077 + 24.4353i 0.521437 + 0.903156i
\(733\) −18.8745 10.8972i −0.697146 0.402498i 0.109137 0.994027i \(-0.465191\pi\)
−0.806284 + 0.591529i \(0.798525\pi\)
\(734\) −1.74561 1.00783i −0.0644318 0.0371997i
\(735\) −3.45498 1.99474i −0.127439 0.0735769i
\(736\) 1.67013i 0.0615618i
\(737\) 9.26635 + 16.0498i 0.341330 + 0.591201i
\(738\) 3.64678 + 6.31640i 0.134240 + 0.232510i
\(739\) 17.6198 + 10.1728i 0.648156 + 0.374213i 0.787750 0.615996i \(-0.211246\pi\)
−0.139593 + 0.990209i \(0.544579\pi\)
\(740\) 1.24898 0.0459134
\(741\) −18.3385 35.5896i −0.673681 1.30742i
\(742\) 2.06509 0.0758117
\(743\) 41.2679i 1.51397i −0.653431 0.756986i \(-0.726671\pi\)
0.653431 0.756986i \(-0.273329\pi\)
\(744\) 8.87414 9.43624i 0.325342 0.345949i
\(745\) −14.0694 −0.515463
\(746\) 4.78936i 0.175351i
\(747\) −54.0708 + 31.2178i −1.97835 + 1.14220i
\(748\) 17.0285i 0.622624i
\(749\) −36.1391 20.8649i −1.32050 0.762388i
\(750\) −2.80239 4.85388i −0.102329 0.177239i
\(751\) −25.0093 43.3173i −0.912602 1.58067i −0.810375 0.585911i \(-0.800737\pi\)
−0.102226 0.994761i \(-0.532597\pi\)
\(752\) 0.950404i 0.0346577i
\(753\) −22.8514 + 39.5798i −0.832752 + 1.44237i
\(754\) 1.83271 2.85047i 0.0667434 0.103808i
\(755\) 11.5571 20.0175i 0.420606 0.728511i
\(756\) −18.4306 + 10.6409i −0.670313 + 0.387005i
\(757\) −15.6416 + 27.0921i −0.568505 + 0.984680i 0.428209 + 0.903680i \(0.359145\pi\)
−0.996714 + 0.0810000i \(0.974189\pi\)
\(758\) −0.461195 0.798813i −0.0167514 0.0290142i
\(759\) 3.53334i 0.128252i
\(760\) 3.76819i 0.136687i
\(761\) 34.9676 20.1885i 1.26757 0.731834i 0.293045 0.956099i \(-0.405331\pi\)
0.974528 + 0.224265i \(0.0719981\pi\)
\(762\) 9.19452 + 5.30846i 0.333082 + 0.192305i
\(763\) −20.5022 35.5109i −0.742231 1.28558i
\(764\) 21.2731 36.8461i 0.769634 1.33305i