Properties

Label 403.2.l.c.25.18
Level 403
Weight 2
Character 403.25
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 403 = 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 403.l (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.18
Character \(\chi\) = 403.25
Dual form 403.2.l.c.129.17

$q$-expansion

\(f(q)\) \(=\) \(q+0.0456796i q^{2} +(-1.38907 - 2.40594i) q^{3} +1.99791 q^{4} +(1.25901 + 0.726890i) q^{5} +(0.109902 - 0.0634522i) q^{6} +(3.37083 - 1.94615i) q^{7} +0.182623i q^{8} +(-2.35904 + 4.08597i) q^{9} +O(q^{10})\) \(q+0.0456796i q^{2} +(-1.38907 - 2.40594i) q^{3} +1.99791 q^{4} +(1.25901 + 0.726890i) q^{5} +(0.109902 - 0.0634522i) q^{6} +(3.37083 - 1.94615i) q^{7} +0.182623i q^{8} +(-2.35904 + 4.08597i) q^{9} +(-0.0332040 + 0.0575110i) q^{10} +(4.61476 + 2.66433i) q^{11} +(-2.77524 - 4.80686i) q^{12} +(-2.43729 + 2.65700i) q^{13} +(0.0888992 + 0.153978i) q^{14} -4.03881i q^{15} +3.98748 q^{16} +(-0.180975 - 0.313457i) q^{17} +(-0.186645 - 0.107760i) q^{18} +(-1.92657 + 1.11231i) q^{19} +(2.51539 + 1.45226i) q^{20} +(-9.36464 - 5.40668i) q^{21} +(-0.121706 + 0.210800i) q^{22} +0.428612 q^{23} +(0.439380 - 0.253676i) q^{24} +(-1.44326 - 2.49980i) q^{25} +(-0.121370 - 0.111334i) q^{26} +4.77305 q^{27} +(6.73462 - 3.88823i) q^{28} -7.70065 q^{29} +0.184491 q^{30} +(-5.49130 - 0.919550i) q^{31} +0.547392i q^{32} -14.8038i q^{33} +(0.0143186 - 0.00826685i) q^{34} +5.65854 q^{35} +(-4.71315 + 8.16342i) q^{36} +(5.16646 - 2.98286i) q^{37} +(-0.0508098 - 0.0880051i) q^{38} +(9.77814 + 2.17322i) q^{39} +(-0.132747 + 0.229924i) q^{40} +(1.59673 + 0.921870i) q^{41} +(0.246975 - 0.427773i) q^{42} +(-4.68376 - 8.11250i) q^{43} +(9.21989 + 5.32311i) q^{44} +(-5.94010 + 3.42952i) q^{45} +0.0195788i q^{46} +3.48799i q^{47} +(-5.53890 - 9.59366i) q^{48} +(4.07498 - 7.05808i) q^{49} +(0.114190 - 0.0659276i) q^{50} +(-0.502774 + 0.870829i) q^{51} +(-4.86949 + 5.30845i) q^{52} +(-2.49130 + 4.31506i) q^{53} +0.218031i q^{54} +(3.87335 + 6.70884i) q^{55} +(0.355411 + 0.615590i) q^{56} +(5.35230 + 3.09015i) q^{57} -0.351763i q^{58} +(-12.0997 + 6.98577i) q^{59} -8.06918i q^{60} -11.3454 q^{61} +(0.0420047 - 0.250840i) q^{62} +18.3641i q^{63} +7.94996 q^{64} +(-4.99991 + 1.57354i) q^{65} +0.676231 q^{66} +(9.07912 + 5.24183i) q^{67} +(-0.361572 - 0.626261i) q^{68} +(-0.595372 - 1.03122i) q^{69} +0.258480i q^{70} +(1.24196 + 0.717045i) q^{71} +(-0.746192 - 0.430814i) q^{72} +(-11.8818 - 6.85998i) q^{73} +(0.136256 + 0.236002i) q^{74} +(-4.00959 + 6.94481i) q^{75} +(-3.84913 + 2.22230i) q^{76} +20.7407 q^{77} +(-0.0992717 + 0.446661i) q^{78} +(-1.88892 - 3.27171i) q^{79} +(5.02028 + 2.89846i) q^{80} +(0.447000 + 0.774227i) q^{81} +(-0.0421106 + 0.0729377i) q^{82} +(10.3146 + 5.95513i) q^{83} +(-18.7097 - 10.8021i) q^{84} -0.526195i q^{85} +(0.370576 - 0.213952i) q^{86} +(10.6968 + 18.5273i) q^{87} +(-0.486568 + 0.842761i) q^{88} +16.5238i q^{89} +(-0.156659 - 0.271341i) q^{90} +(-3.04477 + 13.6996i) q^{91} +0.856329 q^{92} +(5.41543 + 14.4891i) q^{93} -0.159330 q^{94} -3.23410 q^{95} +(1.31699 - 0.760367i) q^{96} -14.3360i q^{97} +(0.322410 + 0.186143i) q^{98} +(-21.7728 + 12.5705i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + O(q^{10}) \) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + 8q^{10} - 10q^{12} - 3q^{13} + 10q^{14} + 84q^{16} + 6q^{17} + 4q^{22} - 44q^{23} + 30q^{25} - 3q^{26} - 12q^{27} + 48q^{29} - 4q^{30} - 48q^{35} + 40q^{36} + 60q^{38} - 14q^{39} + 20q^{40} - 10q^{42} - 12q^{43} + 32q^{48} + 58q^{49} + 20q^{51} - 27q^{52} + 8q^{53} - 36q^{55} - 50q^{56} - 12q^{61} - 74q^{62} - 15q^{65} + 164q^{66} + 4q^{68} - 34q^{69} - 4q^{74} + 20q^{75} - 200q^{77} - 58q^{78} - 80q^{79} - 82q^{81} - 66q^{82} + 52q^{87} + 16q^{88} - 14q^{90} - 70q^{91} + 108q^{92} - 4q^{94} + 76q^{95} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0456796i 0.0323003i 0.999870 + 0.0161502i \(0.00514098\pi\)
−0.999870 + 0.0161502i \(0.994859\pi\)
\(3\) −1.38907 2.40594i −0.801981 1.38907i −0.918311 0.395860i \(-0.870446\pi\)
0.116330 0.993211i \(-0.462887\pi\)
\(4\) 1.99791 0.998957
\(5\) 1.25901 + 0.726890i 0.563046 + 0.325075i 0.754367 0.656453i \(-0.227944\pi\)
−0.191321 + 0.981528i \(0.561277\pi\)
\(6\) 0.109902 0.0634522i 0.0448675 0.0259042i
\(7\) 3.37083 1.94615i 1.27405 0.735575i 0.298305 0.954471i \(-0.403579\pi\)
0.975748 + 0.218896i \(0.0702455\pi\)
\(8\) 0.182623i 0.0645670i
\(9\) −2.35904 + 4.08597i −0.786346 + 1.36199i
\(10\) −0.0332040 + 0.0575110i −0.0105000 + 0.0181866i
\(11\) 4.61476 + 2.66433i 1.39140 + 0.803327i 0.993471 0.114088i \(-0.0363946\pi\)
0.397932 + 0.917415i \(0.369728\pi\)
\(12\) −2.77524 4.80686i −0.801144 1.38762i
\(13\) −2.43729 + 2.65700i −0.675982 + 0.736918i
\(14\) 0.0888992 + 0.153978i 0.0237593 + 0.0411523i
\(15\) 4.03881i 1.04282i
\(16\) 3.98748 0.996871
\(17\) −0.180975 0.313457i −0.0438928 0.0760246i 0.843244 0.537530i \(-0.180643\pi\)
−0.887137 + 0.461506i \(0.847309\pi\)
\(18\) −0.186645 0.107760i −0.0439927 0.0253992i
\(19\) −1.92657 + 1.11231i −0.441986 + 0.255181i −0.704440 0.709764i \(-0.748802\pi\)
0.262453 + 0.964945i \(0.415468\pi\)
\(20\) 2.51539 + 1.45226i 0.562459 + 0.324736i
\(21\) −9.36464 5.40668i −2.04353 1.17983i
\(22\) −0.121706 + 0.210800i −0.0259477 + 0.0449428i
\(23\) 0.428612 0.0893718 0.0446859 0.999001i \(-0.485771\pi\)
0.0446859 + 0.999001i \(0.485771\pi\)
\(24\) 0.439380 0.253676i 0.0896881 0.0517814i
\(25\) −1.44326 2.49980i −0.288653 0.499961i
\(26\) −0.121370 0.111334i −0.0238027 0.0218345i
\(27\) 4.77305 0.918575
\(28\) 6.73462 3.88823i 1.27272 0.734807i
\(29\) −7.70065 −1.42998 −0.714988 0.699137i \(-0.753568\pi\)
−0.714988 + 0.699137i \(0.753568\pi\)
\(30\) 0.184491 0.0336833
\(31\) −5.49130 0.919550i −0.986267 0.165156i
\(32\) 0.547392i 0.0967662i
\(33\) 14.8038i 2.57701i
\(34\) 0.0143186 0.00826685i 0.00245562 0.00141775i
\(35\) 5.65854 0.956468
\(36\) −4.71315 + 8.16342i −0.785525 + 1.36057i
\(37\) 5.16646 2.98286i 0.849361 0.490379i −0.0110742 0.999939i \(-0.503525\pi\)
0.860435 + 0.509560i \(0.170192\pi\)
\(38\) −0.0508098 0.0880051i −0.00824243 0.0142763i
\(39\) 9.77814 + 2.17322i 1.56576 + 0.347994i
\(40\) −0.132747 + 0.229924i −0.0209891 + 0.0363542i
\(41\) 1.59673 + 0.921870i 0.249367 + 0.143972i 0.619474 0.785017i \(-0.287346\pi\)
−0.370108 + 0.928989i \(0.620679\pi\)
\(42\) 0.246975 0.427773i 0.0381090 0.0660067i
\(43\) −4.68376 8.11250i −0.714266 1.23715i −0.963242 0.268636i \(-0.913427\pi\)
0.248976 0.968510i \(-0.419906\pi\)
\(44\) 9.21989 + 5.32311i 1.38995 + 0.802489i
\(45\) −5.94010 + 3.42952i −0.885498 + 0.511243i
\(46\) 0.0195788i 0.00288674i
\(47\) 3.48799i 0.508776i 0.967102 + 0.254388i \(0.0818741\pi\)
−0.967102 + 0.254388i \(0.918126\pi\)
\(48\) −5.53890 9.59366i −0.799471 1.38472i
\(49\) 4.07498 7.05808i 0.582140 1.00830i
\(50\) 0.114190 0.0659276i 0.0161489 0.00932357i
\(51\) −0.502774 + 0.870829i −0.0704024 + 0.121941i
\(52\) −4.86949 + 5.30845i −0.675277 + 0.736149i
\(53\) −2.49130 + 4.31506i −0.342206 + 0.592719i −0.984842 0.173453i \(-0.944507\pi\)
0.642636 + 0.766172i \(0.277841\pi\)
\(54\) 0.218031i 0.0296703i
\(55\) 3.87335 + 6.70884i 0.522283 + 0.904620i
\(56\) 0.355411 + 0.615590i 0.0474938 + 0.0822617i
\(57\) 5.35230 + 3.09015i 0.708929 + 0.409300i
\(58\) 0.351763i 0.0461887i
\(59\) −12.0997 + 6.98577i −1.57525 + 0.909470i −0.579738 + 0.814803i \(0.696845\pi\)
−0.995509 + 0.0946669i \(0.969821\pi\)
\(60\) 8.06918i 1.04173i
\(61\) −11.3454 −1.45263 −0.726314 0.687363i \(-0.758768\pi\)
−0.726314 + 0.687363i \(0.758768\pi\)
\(62\) 0.0420047 0.250840i 0.00533460 0.0318568i
\(63\) 18.3641i 2.31366i
\(64\) 7.94996 0.993746
\(65\) −4.99991 + 1.57354i −0.620163 + 0.195174i
\(66\) 0.676231 0.0832383
\(67\) 9.07912 + 5.24183i 1.10919 + 0.640392i 0.938620 0.344954i \(-0.112105\pi\)
0.170571 + 0.985345i \(0.445439\pi\)
\(68\) −0.361572 0.626261i −0.0438470 0.0759453i
\(69\) −0.595372 1.03122i −0.0716744 0.124144i
\(70\) 0.258480i 0.0308942i
\(71\) 1.24196 + 0.717045i 0.147393 + 0.0850976i 0.571883 0.820335i \(-0.306213\pi\)
−0.424490 + 0.905433i \(0.639546\pi\)
\(72\) −0.746192 0.430814i −0.0879396 0.0507719i
\(73\) −11.8818 6.85998i −1.39066 0.802900i −0.397275 0.917700i \(-0.630044\pi\)
−0.993389 + 0.114800i \(0.963377\pi\)
\(74\) 0.136256 + 0.236002i 0.0158394 + 0.0274346i
\(75\) −4.00959 + 6.94481i −0.462987 + 0.801918i
\(76\) −3.84913 + 2.22230i −0.441525 + 0.254915i
\(77\) 20.7407 2.36363
\(78\) −0.0992717 + 0.446661i −0.0112403 + 0.0505744i
\(79\) −1.88892 3.27171i −0.212520 0.368096i 0.739982 0.672626i \(-0.234834\pi\)
−0.952503 + 0.304530i \(0.901500\pi\)
\(80\) 5.02028 + 2.89846i 0.561285 + 0.324058i
\(81\) 0.447000 + 0.774227i 0.0496667 + 0.0860252i
\(82\) −0.0421106 + 0.0729377i −0.00465034 + 0.00805463i
\(83\) 10.3146 + 5.95513i 1.13217 + 0.653660i 0.944480 0.328567i \(-0.106566\pi\)
0.187692 + 0.982228i \(0.439899\pi\)
\(84\) −18.7097 10.8021i −2.04140 1.17860i
\(85\) 0.526195i 0.0570738i
\(86\) 0.370576 0.213952i 0.0399602 0.0230710i
\(87\) 10.6968 + 18.5273i 1.14681 + 1.98634i
\(88\) −0.486568 + 0.842761i −0.0518684 + 0.0898386i
\(89\) 16.5238i 1.75152i 0.482747 + 0.875760i \(0.339639\pi\)
−0.482747 + 0.875760i \(0.660361\pi\)
\(90\) −0.156659 0.271341i −0.0165133 0.0286019i
\(91\) −3.04477 + 13.6996i −0.319179 + 1.43611i
\(92\) 0.856329 0.0892785
\(93\) 5.41543 + 14.4891i 0.561554 + 1.50245i
\(94\) −0.159330 −0.0164336
\(95\) −3.23410 −0.331812
\(96\) 1.31699 0.760367i 0.134415 0.0776046i
\(97\) 14.3360i 1.45560i −0.685788 0.727802i \(-0.740542\pi\)
0.685788 0.727802i \(-0.259458\pi\)
\(98\) 0.322410 + 0.186143i 0.0325683 + 0.0188033i
\(99\) −21.7728 + 12.5705i −2.18825 + 1.26338i
\(100\) −2.88351 4.99439i −0.288351 0.499439i
\(101\) 12.5359 1.24737 0.623683 0.781677i \(-0.285636\pi\)
0.623683 + 0.781677i \(0.285636\pi\)
\(102\) −0.0397791 0.0229665i −0.00393872 0.00227402i
\(103\) −2.67855 + 4.63938i −0.263925 + 0.457131i −0.967281 0.253706i \(-0.918350\pi\)
0.703356 + 0.710837i \(0.251684\pi\)
\(104\) −0.485228 0.445105i −0.0475805 0.0436461i
\(105\) −7.86011 13.6141i −0.767069 1.32860i
\(106\) −0.197110 0.113801i −0.0191450 0.0110534i
\(107\) −5.65905 9.80176i −0.547081 0.947571i −0.998473 0.0552458i \(-0.982406\pi\)
0.451392 0.892326i \(-0.350928\pi\)
\(108\) 9.53615 0.917616
\(109\) 3.50754i 0.335962i 0.985790 + 0.167981i \(0.0537247\pi\)
−0.985790 + 0.167981i \(0.946275\pi\)
\(110\) −0.306457 + 0.176933i −0.0292195 + 0.0168699i
\(111\) −14.3532 8.28680i −1.36234 0.786549i
\(112\) 13.4411 7.76023i 1.27007 0.733273i
\(113\) 6.52165 11.2958i 0.613505 1.06262i −0.377140 0.926156i \(-0.623092\pi\)
0.990645 0.136466i \(-0.0435743\pi\)
\(114\) −0.141157 + 0.244491i −0.0132205 + 0.0228986i
\(115\) 0.539627 + 0.311554i 0.0503204 + 0.0290525i
\(116\) −15.3852 −1.42848
\(117\) −5.10675 16.2266i −0.472119 1.50015i
\(118\) −0.319107 0.552709i −0.0293762 0.0508810i
\(119\) −1.22007 0.704407i −0.111844 0.0645729i
\(120\) 0.737579 0.0673314
\(121\) 8.69734 + 15.0642i 0.790668 + 1.36948i
\(122\) 0.518253i 0.0469204i
\(123\) 5.12217i 0.461851i
\(124\) −10.9712 1.83718i −0.985238 0.164984i
\(125\) 11.4653i 1.02548i
\(126\) −0.838866 −0.0747321
\(127\) 0.152041 + 0.263343i 0.0134915 + 0.0233679i 0.872692 0.488271i \(-0.162372\pi\)
−0.859201 + 0.511638i \(0.829039\pi\)
\(128\) 1.45794i 0.128865i
\(129\) −13.0121 + 22.5377i −1.14566 + 1.98433i
\(130\) −0.0718788 0.228394i −0.00630418 0.0200315i
\(131\) −2.18790 3.78955i −0.191158 0.331095i 0.754477 0.656327i \(-0.227891\pi\)
−0.945634 + 0.325232i \(0.894557\pi\)
\(132\) 29.5767i 2.57432i
\(133\) −4.32943 + 7.49880i −0.375409 + 0.650228i
\(134\) −0.239445 + 0.414730i −0.0206849 + 0.0358272i
\(135\) 6.00932 + 3.46948i 0.517200 + 0.298606i
\(136\) 0.0572445 0.0330501i 0.00490868 0.00283403i
\(137\) −5.51009 3.18125i −0.470759 0.271793i 0.245799 0.969321i \(-0.420950\pi\)
−0.716557 + 0.697528i \(0.754283\pi\)
\(138\) 0.0471055 0.0271964i 0.00400988 0.00231511i
\(139\) 5.18457 0.439749 0.219875 0.975528i \(-0.429435\pi\)
0.219875 + 0.975528i \(0.429435\pi\)
\(140\) 11.3053 0.955470
\(141\) 8.39191 4.84507i 0.706726 0.408029i
\(142\) −0.0327543 + 0.0567321i −0.00274868 + 0.00476085i
\(143\) −18.3266 + 5.76765i −1.53255 + 0.482315i
\(144\) −9.40662 + 16.2928i −0.783885 + 1.35773i
\(145\) −9.69520 5.59753i −0.805143 0.464849i
\(146\) 0.313361 0.542757i 0.0259339 0.0449189i
\(147\) −22.6418 −1.86746
\(148\) 10.3221 5.95949i 0.848475 0.489867i
\(149\) 13.3000 7.67878i 1.08958 0.629070i 0.156116 0.987739i \(-0.450103\pi\)
0.933465 + 0.358669i \(0.116769\pi\)
\(150\) −0.317236 0.183156i −0.0259022 0.0149546i
\(151\) 0.418901i 0.0340897i 0.999855 + 0.0170449i \(0.00542581\pi\)
−0.999855 + 0.0170449i \(0.994574\pi\)
\(152\) −0.203133 0.351837i −0.0164763 0.0285377i
\(153\) 1.70770 0.138060
\(154\) 0.947428i 0.0763459i
\(155\) −6.24520 5.14930i −0.501626 0.413601i
\(156\) 19.5359 + 4.34191i 1.56412 + 0.347631i
\(157\) 2.15899 0.172306 0.0861530 0.996282i \(-0.472543\pi\)
0.0861530 + 0.996282i \(0.472543\pi\)
\(158\) 0.149450 0.0862851i 0.0118896 0.00686447i
\(159\) 13.8424 1.09777
\(160\) −0.397894 + 0.689173i −0.0314563 + 0.0544839i
\(161\) 1.44478 0.834142i 0.113864 0.0657396i
\(162\) −0.0353663 + 0.0204188i −0.00277864 + 0.00160425i
\(163\) 15.3206i 1.20000i 0.800000 + 0.600000i \(0.204833\pi\)
−0.800000 + 0.600000i \(0.795167\pi\)
\(164\) 3.19012 + 1.84182i 0.249107 + 0.143822i
\(165\) 10.7607 18.6381i 0.837721 1.45098i
\(166\) −0.272028 + 0.471166i −0.0211134 + 0.0365696i
\(167\) 17.2091 9.93568i 1.33168 0.768846i 0.346123 0.938189i \(-0.387498\pi\)
0.985557 + 0.169344i \(0.0541648\pi\)
\(168\) 0.987383 1.71020i 0.0761783 0.131945i
\(169\) −1.11925 12.9517i −0.0860958 0.996287i
\(170\) 0.0240363 0.00184350
\(171\) 10.4959i 0.802642i
\(172\) −9.35774 16.2081i −0.713521 1.23585i
\(173\) −1.91073 + 3.30947i −0.145270 + 0.251615i −0.929474 0.368889i \(-0.879738\pi\)
0.784204 + 0.620503i \(0.213072\pi\)
\(174\) −0.846320 + 0.488623i −0.0641594 + 0.0370424i
\(175\) −9.72998 5.61760i −0.735517 0.424651i
\(176\) 18.4013 + 10.6240i 1.38705 + 0.800813i
\(177\) 33.6147 + 19.4075i 2.52664 + 1.45875i
\(178\) −0.754800 −0.0565747
\(179\) 3.03131 + 5.25038i 0.226571 + 0.392432i 0.956790 0.290781i \(-0.0939152\pi\)
−0.730219 + 0.683213i \(0.760582\pi\)
\(180\) −11.8678 + 6.85188i −0.884574 + 0.510709i
\(181\) 3.55562 6.15851i 0.264287 0.457758i −0.703090 0.711101i \(-0.748197\pi\)
0.967377 + 0.253343i \(0.0815301\pi\)
\(182\) −0.625792 0.139084i −0.0463868 0.0103096i
\(183\) 15.7596 + 27.2964i 1.16498 + 2.01780i
\(184\) 0.0782744i 0.00577046i
\(185\) 8.67284 0.637640
\(186\) −0.661855 + 0.247374i −0.0485296 + 0.0181384i
\(187\) 1.92871i 0.141041i
\(188\) 6.96871i 0.508245i
\(189\) 16.0891 9.28907i 1.17031 0.675680i
\(190\) 0.147732i 0.0107176i
\(191\) −5.02568 + 8.70473i −0.363645 + 0.629852i −0.988558 0.150843i \(-0.951801\pi\)
0.624912 + 0.780695i \(0.285135\pi\)
\(192\) −11.0431 19.1272i −0.796965 1.38038i
\(193\) 0.620882 0.358467i 0.0446921 0.0258030i −0.477487 0.878639i \(-0.658452\pi\)
0.522180 + 0.852836i \(0.325119\pi\)
\(194\) 0.654864 0.0470165
\(195\) 10.7311 + 9.84374i 0.768469 + 0.704925i
\(196\) 8.14146 14.1014i 0.581533 1.00724i
\(197\) −4.76127 2.74892i −0.339227 0.195853i 0.320703 0.947180i \(-0.396081\pi\)
−0.659930 + 0.751327i \(0.729414\pi\)
\(198\) −0.574216 0.994571i −0.0408078 0.0706811i
\(199\) 7.59611 13.1569i 0.538474 0.932665i −0.460512 0.887653i \(-0.652334\pi\)
0.998986 0.0450113i \(-0.0143324\pi\)
\(200\) 0.456522 0.263573i 0.0322810 0.0186374i
\(201\) 29.1251i 2.05433i
\(202\) 0.572633i 0.0402903i
\(203\) −25.9576 + 14.9866i −1.82186 + 1.05185i
\(204\) −1.00450 + 1.73984i −0.0703289 + 0.121813i
\(205\) 1.34020 + 2.32129i 0.0936033 + 0.162126i
\(206\) −0.211925 0.122355i −0.0147655 0.00852486i
\(207\) −1.01111 + 1.75130i −0.0702771 + 0.121723i
\(208\) −9.71865 + 10.5947i −0.673867 + 0.734612i
\(209\) −11.8542 −0.819975
\(210\) 0.621887 0.359047i 0.0429143 0.0247766i
\(211\) 11.4894 + 19.9002i 0.790962 + 1.36999i 0.925372 + 0.379060i \(0.123753\pi\)
−0.134410 + 0.990926i \(0.542914\pi\)
\(212\) −4.97740 + 8.62111i −0.341849 + 0.592100i
\(213\) 3.98411i 0.272986i
\(214\) 0.447740 0.258503i 0.0306069 0.0176709i
\(215\) 13.6183i 0.928760i
\(216\) 0.871669i 0.0593096i
\(217\) −20.2998 + 7.58725i −1.37804 + 0.515056i
\(218\) −0.160223 −0.0108517
\(219\) 38.1160i 2.57564i
\(220\) 7.73862 + 13.4037i 0.521738 + 0.903677i
\(221\) 1.27394 + 0.283137i 0.0856947 + 0.0190459i
\(222\) 0.378538 0.655646i 0.0254058 0.0440041i
\(223\) 0.675531 0.390018i 0.0452369 0.0261175i −0.477211 0.878789i \(-0.658352\pi\)
0.522448 + 0.852671i \(0.325019\pi\)
\(224\) 1.06531 + 1.84517i 0.0711788 + 0.123285i
\(225\) 13.6188 0.907923
\(226\) 0.515988 + 0.297906i 0.0343230 + 0.0198164i
\(227\) 3.25775 + 1.88086i 0.216225 + 0.124837i 0.604201 0.796832i \(-0.293492\pi\)
−0.387976 + 0.921669i \(0.626826\pi\)
\(228\) 10.6934 + 6.17385i 0.708189 + 0.408873i
\(229\) −2.54141 + 1.46728i −0.167941 + 0.0969608i −0.581615 0.813464i \(-0.697579\pi\)
0.413674 + 0.910425i \(0.364245\pi\)
\(230\) −0.0142316 + 0.0246499i −0.000938406 + 0.00162537i
\(231\) −28.8104 49.9010i −1.89558 3.28325i
\(232\) 1.40632i 0.0923292i
\(233\) −9.22280 −0.604205 −0.302103 0.953275i \(-0.597689\pi\)
−0.302103 + 0.953275i \(0.597689\pi\)
\(234\) 0.741226 0.233274i 0.0484555 0.0152496i
\(235\) −2.53539 + 4.39142i −0.165390 + 0.286465i
\(236\) −24.1742 + 13.9570i −1.57360 + 0.908521i
\(237\) −5.24769 + 9.08927i −0.340874 + 0.590411i
\(238\) 0.0321770 0.0557322i 0.00208573 0.00361258i
\(239\) −5.22248 3.01520i −0.337814 0.195037i 0.321491 0.946913i \(-0.395816\pi\)
−0.659305 + 0.751876i \(0.729149\pi\)
\(240\) 16.1047i 1.03955i
\(241\) −7.07505 + 4.08478i −0.455744 + 0.263124i −0.710253 0.703946i \(-0.751420\pi\)
0.254509 + 0.967070i \(0.418086\pi\)
\(242\) −0.688128 + 0.397291i −0.0442345 + 0.0255388i
\(243\) 8.40141 14.5517i 0.538951 0.933490i
\(244\) −22.6671 −1.45111
\(245\) 10.2609 5.92413i 0.655544 0.378479i
\(246\) 0.233979 0.0149179
\(247\) 1.74022 7.82991i 0.110728 0.498206i
\(248\) 0.167931 1.00284i 0.0106636 0.0636803i
\(249\) 33.0884i 2.09689i
\(250\) 0.523728 0.0331235
\(251\) 13.8774 + 24.0364i 0.875934 + 1.51716i 0.855765 + 0.517365i \(0.173087\pi\)
0.0201694 + 0.999797i \(0.493579\pi\)
\(252\) 36.6900i 2.31125i
\(253\) 1.97794 + 1.14196i 0.124352 + 0.0717947i
\(254\) −0.0120294 + 0.00694518i −0.000754792 + 0.000435779i
\(255\) −1.26599 + 0.730922i −0.0792796 + 0.0457721i
\(256\) 15.8333 0.989583
\(257\) −4.00758 + 6.94133i −0.249986 + 0.432988i −0.963522 0.267630i \(-0.913759\pi\)
0.713536 + 0.700619i \(0.247093\pi\)
\(258\) −1.02951 0.594389i −0.0640946 0.0370050i
\(259\) 11.6102 20.1094i 0.721421 1.24954i
\(260\) −9.98939 + 3.14380i −0.619516 + 0.194970i
\(261\) 18.1661 31.4647i 1.12445 1.94761i
\(262\) 0.173105 0.0999422i 0.0106945 0.00617445i
\(263\) 2.00561 0.123671 0.0618355 0.998086i \(-0.480305\pi\)
0.0618355 + 0.998086i \(0.480305\pi\)
\(264\) 2.70351 0.166390
\(265\) −6.27314 + 3.62180i −0.385356 + 0.222485i
\(266\) −0.342542 0.197767i −0.0210026 0.0121258i
\(267\) 39.7553 22.9527i 2.43298 1.40468i
\(268\) 18.1393 + 10.4727i 1.10803 + 0.639724i
\(269\) −6.12969 + 10.6169i −0.373734 + 0.647326i −0.990137 0.140105i \(-0.955256\pi\)
0.616403 + 0.787431i \(0.288589\pi\)
\(270\) −0.158485 + 0.274503i −0.00964506 + 0.0167057i
\(271\) 15.2475i 0.926219i −0.886301 0.463110i \(-0.846734\pi\)
0.886301 0.463110i \(-0.153266\pi\)
\(272\) −0.721634 1.24991i −0.0437555 0.0757867i
\(273\) 37.1898 11.7042i 2.25083 0.708368i
\(274\) 0.145318 0.251698i 0.00877899 0.0152057i
\(275\) 15.3813i 0.927529i
\(276\) −1.18950 2.06028i −0.0715996 0.124014i
\(277\) −5.74669 −0.345285 −0.172643 0.984985i \(-0.555231\pi\)
−0.172643 + 0.984985i \(0.555231\pi\)
\(278\) 0.236829i 0.0142040i
\(279\) 16.7114 20.2681i 1.00049 1.21342i
\(280\) 1.03338i 0.0617562i
\(281\) 23.5073i 1.40233i −0.713000 0.701164i \(-0.752664\pi\)
0.713000 0.701164i \(-0.247336\pi\)
\(282\) 0.221321 + 0.383339i 0.0131795 + 0.0228275i
\(283\) −6.94506 −0.412841 −0.206420 0.978463i \(-0.566181\pi\)
−0.206420 + 0.978463i \(0.566181\pi\)
\(284\) 2.48132 + 1.43259i 0.147240 + 0.0850088i
\(285\) 4.49240 + 7.78106i 0.266107 + 0.460910i
\(286\) −0.263464 0.837152i −0.0155789 0.0495019i
\(287\) 7.17638 0.423608
\(288\) −2.23663 1.29132i −0.131795 0.0760917i
\(289\) 8.43450 14.6090i 0.496147 0.859352i
\(290\) 0.255693 0.442873i 0.0150148 0.0260064i
\(291\) −34.4917 + 19.9138i −2.02194 + 1.16737i
\(292\) −23.7389 13.7056i −1.38921 0.802062i
\(293\) −11.2418 + 6.49047i −0.656754 + 0.379177i −0.791039 0.611766i \(-0.790460\pi\)
0.134285 + 0.990943i \(0.457126\pi\)
\(294\) 1.03427i 0.0603196i
\(295\) −20.3115 −1.18258
\(296\) 0.544738 + 0.943514i 0.0316623 + 0.0548407i
\(297\) 22.0265 + 12.7170i 1.27811 + 0.737915i
\(298\) 0.350763 + 0.607540i 0.0203192 + 0.0351938i
\(299\) −1.04465 + 1.13882i −0.0604137 + 0.0658596i
\(300\) −8.01081 + 13.8751i −0.462504 + 0.801081i
\(301\) −31.5763 18.2306i −1.82003 1.05079i
\(302\) −0.0191352 −0.00110111
\(303\) −17.4132 30.1606i −1.00036 1.73268i
\(304\) −7.68218 + 4.43531i −0.440604 + 0.254383i
\(305\) −14.2840 8.24685i −0.817898 0.472213i
\(306\) 0.0780072i 0.00445937i
\(307\) 13.7200 7.92122i 0.783040 0.452088i −0.0544669 0.998516i \(-0.517346\pi\)
0.837506 + 0.546427i \(0.184013\pi\)
\(308\) 41.4382 2.36116
\(309\) 14.8828 0.846651
\(310\) 0.235218 0.285278i 0.0133595 0.0162027i
\(311\) −20.1613 −1.14325 −0.571623 0.820517i \(-0.693686\pi\)
−0.571623 + 0.820517i \(0.693686\pi\)
\(312\) −0.396880 + 1.78571i −0.0224689 + 0.101096i
\(313\) 7.60195 + 13.1670i 0.429688 + 0.744241i 0.996845 0.0793685i \(-0.0252904\pi\)
−0.567158 + 0.823609i \(0.691957\pi\)
\(314\) 0.0986217i 0.00556554i
\(315\) −13.3487 + 23.1206i −0.752114 + 1.30270i
\(316\) −3.77390 6.53659i −0.212299 0.367712i
\(317\) −4.85475 + 2.80289i −0.272670 + 0.157426i −0.630100 0.776514i \(-0.716986\pi\)
0.357431 + 0.933940i \(0.383653\pi\)
\(318\) 0.632313i 0.0354584i
\(319\) −35.5367 20.5171i −1.98967 1.14874i
\(320\) 10.0091 + 5.77875i 0.559525 + 0.323042i
\(321\) −15.7216 + 27.2307i −0.877496 + 1.51987i
\(322\) 0.0381033 + 0.0659968i 0.00212341 + 0.00367786i
\(323\) 0.697323 + 0.402599i 0.0388001 + 0.0224012i
\(324\) 0.893067 + 1.54684i 0.0496149 + 0.0859355i
\(325\) 10.1596 + 2.25800i 0.563554 + 0.125251i
\(326\) −0.699837 −0.0387604
\(327\) 8.43895 4.87223i 0.466675 0.269435i
\(328\) −0.168355 + 0.291599i −0.00929583 + 0.0161009i
\(329\) 6.78815 + 11.7574i 0.374243 + 0.648208i
\(330\) 0.851381 + 0.491545i 0.0468670 + 0.0270587i
\(331\) 16.1012 + 9.29600i 0.884999 + 0.510955i 0.872304 0.488965i \(-0.162625\pi\)
0.0126958 + 0.999919i \(0.495959\pi\)
\(332\) 20.6077 + 11.8978i 1.13099 + 0.652978i
\(333\) 28.1467i 1.54243i
\(334\) 0.453857 + 0.786104i 0.0248340 + 0.0430137i
\(335\) 7.62047 + 13.1990i 0.416351 + 0.721141i
\(336\) −37.3413 21.5590i −2.03714 1.17614i
\(337\) −1.60605 −0.0874871 −0.0437435 0.999043i \(-0.513928\pi\)
−0.0437435 + 0.999043i \(0.513928\pi\)
\(338\) 0.591629 0.0511267i 0.0321804 0.00278092i
\(339\) −36.2361 −1.96808
\(340\) 1.05129i 0.0570143i
\(341\) −22.8911 18.8742i −1.23962 1.02209i
\(342\) 0.479448 0.0259256
\(343\) 4.47601i 0.241682i
\(344\) 1.48153 0.855361i 0.0798787 0.0461180i
\(345\) 1.73108i 0.0931982i
\(346\) −0.151175 0.0872811i −0.00812723 0.00469226i
\(347\) 0.940923 + 1.62973i 0.0505114 + 0.0874883i 0.890176 0.455618i \(-0.150582\pi\)
−0.839664 + 0.543106i \(0.817248\pi\)
\(348\) 21.3712 + 37.0160i 1.14562 + 1.98427i
\(349\) 23.6256i 1.26465i 0.774704 + 0.632324i \(0.217899\pi\)
−0.774704 + 0.632324i \(0.782101\pi\)
\(350\) 0.256610 0.444461i 0.0137164 0.0237574i
\(351\) −11.6333 + 12.6820i −0.620940 + 0.676914i
\(352\) −1.45844 + 2.52609i −0.0777349 + 0.134641i
\(353\) −17.0288 + 9.83158i −0.906352 + 0.523282i −0.879256 0.476350i \(-0.841959\pi\)
−0.0270963 + 0.999633i \(0.508626\pi\)
\(354\) −0.886524 + 1.53550i −0.0471182 + 0.0816112i
\(355\) 1.04243 + 1.80553i 0.0553262 + 0.0958278i
\(356\) 33.0131i 1.74969i
\(357\) 3.91389i 0.207145i
\(358\) −0.239835 + 0.138469i −0.0126757 + 0.00731831i
\(359\) 6.07359 + 3.50659i 0.320552 + 0.185071i 0.651638 0.758530i \(-0.274082\pi\)
−0.331087 + 0.943600i \(0.607415\pi\)
\(360\) −0.626309 1.08480i −0.0330094 0.0571739i
\(361\) −7.02554 + 12.1686i −0.369765 + 0.640452i
\(362\) 0.281318 + 0.162419i 0.0147857 + 0.00853655i
\(363\) 24.1625 41.8506i 1.26820 2.19659i
\(364\) −6.08319 + 27.3706i −0.318846 + 1.43461i
\(365\) −9.97290 17.2736i −0.522005 0.904140i
\(366\) −1.24689 + 0.719890i −0.0651758 + 0.0376292i
\(367\) 13.1443 22.7666i 0.686126 1.18841i −0.286955 0.957944i \(-0.592643\pi\)
0.973081 0.230462i \(-0.0740236\pi\)
\(368\) 1.70908 0.0890921
\(369\) −7.53347 + 4.34945i −0.392177 + 0.226423i
\(370\) 0.396171i 0.0205960i
\(371\) 19.3937i 1.00687i
\(372\) 10.8196 + 28.9479i 0.560968 + 1.50088i
\(373\) −0.891291 −0.0461493 −0.0230747 0.999734i \(-0.507346\pi\)
−0.0230747 + 0.999734i \(0.507346\pi\)
\(374\) 0.0881025 0.00455567
\(375\) −27.5848 + 15.9261i −1.42447 + 0.822419i
\(376\) −0.636988 −0.0328501
\(377\) 18.7687 20.4606i 0.966638 1.05377i
\(378\) 0.424321 + 0.734945i 0.0218247 + 0.0378015i
\(379\) −6.00363 + 3.46620i −0.308386 + 0.178046i −0.646204 0.763165i \(-0.723644\pi\)
0.337818 + 0.941211i \(0.390311\pi\)
\(380\) −6.46145 −0.331466
\(381\) 0.422392 0.731605i 0.0216398 0.0374813i
\(382\) −0.397628 0.229571i −0.0203444 0.0117459i
\(383\) −1.27372 0.735384i −0.0650841 0.0375763i 0.467105 0.884202i \(-0.345297\pi\)
−0.532189 + 0.846626i \(0.678630\pi\)
\(384\) 3.50771 2.02518i 0.179002 0.103347i
\(385\) 26.1128 + 15.0762i 1.33083 + 0.768356i
\(386\) 0.0163746 + 0.0283616i 0.000833445 + 0.00144357i
\(387\) 44.1966 2.24664
\(388\) 28.6422i 1.45408i
\(389\) −15.4827 26.8168i −0.785002 1.35966i −0.928998 0.370085i \(-0.879329\pi\)
0.143996 0.989578i \(-0.454005\pi\)
\(390\) −0.449658 + 0.490191i −0.0227693 + 0.0248218i
\(391\) −0.0775679 0.134352i −0.00392278 0.00679445i
\(392\) 1.28897 + 0.744185i 0.0651027 + 0.0375870i
\(393\) −6.07829 + 10.5279i −0.306609 + 0.531063i
\(394\) 0.125570 0.217493i 0.00632610 0.0109571i
\(395\) 5.49215i 0.276340i
\(396\) −43.5001 + 25.1148i −2.18596 + 1.26207i
\(397\) −11.8136 + 6.82056i −0.592906 + 0.342314i −0.766246 0.642548i \(-0.777877\pi\)
0.173340 + 0.984862i \(0.444544\pi\)
\(398\) 0.600999 + 0.346987i 0.0301254 + 0.0173929i
\(399\) 24.0556 1.20428
\(400\) −5.75499 9.96793i −0.287749 0.498397i
\(401\) 18.9283i 0.945235i 0.881268 + 0.472617i \(0.156691\pi\)
−0.881268 + 0.472617i \(0.843309\pi\)
\(402\) 1.33042 0.0663554
\(403\) 15.8271 12.3492i 0.788406 0.615155i
\(404\) 25.0456 1.24607
\(405\) 1.29968i 0.0645816i
\(406\) −0.684582 1.18573i −0.0339752 0.0588468i
\(407\) 31.7893 1.57574
\(408\) −0.159033 0.0918180i −0.00787333 0.00454567i
\(409\) 23.6452 13.6515i 1.16918 0.675025i 0.215691 0.976462i \(-0.430799\pi\)
0.953486 + 0.301436i \(0.0974661\pi\)
\(410\) −0.106035 + 0.0612196i −0.00523672 + 0.00302342i
\(411\) 17.6759i 0.871890i
\(412\) −5.35150 + 9.26907i −0.263650 + 0.456654i
\(413\) −27.1907 + 47.0956i −1.33797 + 2.31742i
\(414\) −0.0799984 0.0461871i −0.00393171 0.00226997i
\(415\) 8.65745 + 14.9951i 0.424977 + 0.736082i
\(416\) −1.45442 1.33415i −0.0713088 0.0654123i
\(417\) −7.20173 12.4738i −0.352670 0.610843i
\(418\) 0.541496i 0.0264855i
\(419\) −7.67420 −0.374909 −0.187455 0.982273i \(-0.560024\pi\)
−0.187455 + 0.982273i \(0.560024\pi\)
\(420\) −15.7038 27.1998i −0.766268 1.32722i
\(421\) −9.77317 5.64254i −0.476315 0.275001i 0.242564 0.970135i \(-0.422011\pi\)
−0.718880 + 0.695135i \(0.755345\pi\)
\(422\) −0.909032 + 0.524830i −0.0442510 + 0.0255483i
\(423\) −14.2518 8.22831i −0.692948 0.400074i
\(424\) −0.788028 0.454968i −0.0382700 0.0220952i
\(425\) −0.522388 + 0.904803i −0.0253395 + 0.0438894i
\(426\) 0.181992 0.00881755
\(427\) −38.2434 + 22.0798i −1.85073 + 1.06852i
\(428\) −11.3063 19.5831i −0.546510 0.946583i
\(429\) 39.3336 + 36.0811i 1.89904 + 1.74201i
\(430\) 0.622078 0.0299993
\(431\) 9.75404 5.63150i 0.469836 0.271260i −0.246335 0.969185i \(-0.579226\pi\)
0.716171 + 0.697925i \(0.245893\pi\)
\(432\) 19.0325 0.915701
\(433\) 2.41491 0.116053 0.0580267 0.998315i \(-0.481519\pi\)
0.0580267 + 0.998315i \(0.481519\pi\)
\(434\) −0.346582 0.927287i −0.0166365 0.0445112i
\(435\) 31.1014i 1.49120i
\(436\) 7.00777i 0.335611i
\(437\) −0.825753 + 0.476749i −0.0395011 + 0.0228060i
\(438\) −1.74112 −0.0831940
\(439\) 7.81146 13.5298i 0.372821 0.645744i −0.617178 0.786824i \(-0.711724\pi\)
0.989998 + 0.141079i \(0.0450573\pi\)
\(440\) −1.22519 + 0.707363i −0.0584086 + 0.0337222i
\(441\) 19.2261 + 33.3005i 0.915527 + 1.58574i
\(442\) −0.0129336 + 0.0581931i −0.000615188 + 0.00276797i
\(443\) −5.53076 + 9.57956i −0.262774 + 0.455138i −0.966978 0.254859i \(-0.917971\pi\)
0.704204 + 0.709998i \(0.251304\pi\)
\(444\) −28.6764 16.5563i −1.36092 0.785728i
\(445\) −12.0110 + 20.8036i −0.569375 + 0.986187i
\(446\) 0.0178159 + 0.0308580i 0.000843605 + 0.00146117i
\(447\) −36.9494 21.3327i −1.74765 1.00900i
\(448\) 26.7980 15.4718i 1.26608 0.730974i
\(449\) 10.7069i 0.505290i 0.967559 + 0.252645i \(0.0813005\pi\)
−0.967559 + 0.252645i \(0.918700\pi\)
\(450\) 0.622103i 0.0293262i
\(451\) 4.91234 + 8.50842i 0.231313 + 0.400646i
\(452\) 13.0297 22.5681i 0.612865 1.06151i
\(453\) 1.00785 0.581884i 0.0473530 0.0273393i
\(454\) −0.0859170 + 0.148813i −0.00403229 + 0.00698412i
\(455\) −13.7915 + 15.0347i −0.646555 + 0.704838i
\(456\) −0.564332 + 0.977452i −0.0264273 + 0.0457734i
\(457\) 20.3654i 0.952653i 0.879268 + 0.476327i \(0.158032\pi\)
−0.879268 + 0.476327i \(0.841968\pi\)
\(458\) −0.0670249 0.116091i −0.00313187 0.00542455i
\(459\) −0.863802 1.49615i −0.0403188 0.0698343i
\(460\) 1.07813 + 0.622457i 0.0502679 + 0.0290222i
\(461\) 19.4786i 0.907209i −0.891203 0.453604i \(-0.850138\pi\)
0.891203 0.453604i \(-0.149862\pi\)
\(462\) 2.27946 1.31605i 0.106050 0.0612280i
\(463\) 3.83752i 0.178345i 0.996016 + 0.0891723i \(0.0284222\pi\)
−0.996016 + 0.0891723i \(0.971578\pi\)
\(464\) −30.7062 −1.42550
\(465\) −3.71389 + 22.1783i −0.172227 + 1.02849i
\(466\) 0.421293i 0.0195160i
\(467\) 20.8281 0.963809 0.481905 0.876224i \(-0.339945\pi\)
0.481905 + 0.876224i \(0.339945\pi\)
\(468\) −10.2028 32.4194i −0.471627 1.49859i
\(469\) 40.8055 1.88422
\(470\) −0.200598 0.115815i −0.00925290 0.00534217i
\(471\) −2.99899 5.19440i −0.138186 0.239345i
\(472\) −1.27576 2.20968i −0.0587217 0.101709i
\(473\) 49.9164i 2.29516i
\(474\) −0.415194 0.239712i −0.0190705 0.0110103i
\(475\) 5.56110 + 3.21071i 0.255161 + 0.147317i
\(476\) −2.43759 1.40734i −0.111727 0.0645055i
\(477\) −11.7541 20.3588i −0.538185 0.932163i
\(478\) 0.137733 0.238561i 0.00629976 0.0109115i
\(479\) 10.8953 6.29038i 0.497817 0.287415i −0.229994 0.973192i \(-0.573871\pi\)
0.727812 + 0.685777i \(0.240537\pi\)
\(480\) 2.21081 0.100909
\(481\) −4.66672 + 20.9973i −0.212784 + 0.957397i
\(482\) −0.186591 0.323185i −0.00849899 0.0147207i
\(483\) −4.01379 2.31737i −0.182634 0.105444i
\(484\) 17.3765 + 30.0970i 0.789843 + 1.36805i
\(485\) 10.4207 18.0492i 0.473180 0.819572i
\(486\) 0.664714 + 0.383773i 0.0301520 + 0.0174083i
\(487\) 21.1166 + 12.1917i 0.956884 + 0.552457i 0.895213 0.445639i \(-0.147024\pi\)
0.0616713 + 0.998097i \(0.480357\pi\)
\(488\) 2.07193i 0.0937918i
\(489\) 36.8604 21.2814i 1.66689 0.962377i
\(490\) 0.270612 + 0.468713i 0.0122250 + 0.0211743i
\(491\) 7.47672 12.9501i 0.337420 0.584428i −0.646527 0.762891i \(-0.723779\pi\)
0.983947 + 0.178463i \(0.0571125\pi\)
\(492\) 10.2337i 0.461369i
\(493\) 1.39362 + 2.41383i 0.0627657 + 0.108713i
\(494\) 0.357667 + 0.0794925i 0.0160922 + 0.00357654i
\(495\) −36.5495 −1.64278
\(496\) −21.8965 3.66669i −0.983182 0.164639i
\(497\) 5.58190 0.250383
\(498\) 1.51146 0.0677303
\(499\) 36.5626 21.1094i 1.63677 0.944988i 0.654831 0.755776i \(-0.272740\pi\)
0.981936 0.189212i \(-0.0605934\pi\)
\(500\) 22.9066i 1.02441i
\(501\) −47.8093 27.6027i −2.13596 1.23320i
\(502\) −1.09797 + 0.633914i −0.0490048 + 0.0282930i
\(503\) −9.96985 17.2683i −0.444534 0.769955i 0.553486 0.832859i \(-0.313297\pi\)
−0.998020 + 0.0629034i \(0.979964\pi\)
\(504\) −3.35371 −0.149386
\(505\) 15.7828 + 9.11220i 0.702325 + 0.405488i
\(506\) −0.0521645 + 0.0903515i −0.00231899 + 0.00401661i
\(507\) −29.6064 + 20.6837i −1.31487 + 0.918596i
\(508\) 0.303765 + 0.526137i 0.0134774 + 0.0233436i
\(509\) 19.4167 + 11.2103i 0.860631 + 0.496886i 0.864224 0.503108i \(-0.167810\pi\)
−0.00359246 + 0.999994i \(0.501144\pi\)
\(510\) −0.0333882 0.0578301i −0.00147845 0.00256076i
\(511\) −53.4021 −2.36237
\(512\) 3.63913i 0.160828i
\(513\) −9.19564 + 5.30911i −0.405998 + 0.234403i
\(514\) −0.317077 0.183065i −0.0139857 0.00807463i
\(515\) −6.74463 + 3.89401i −0.297204 + 0.171591i
\(516\) −25.9971 + 45.0284i −1.14446 + 1.98226i
\(517\) −9.29318 + 16.0963i −0.408714 + 0.707913i
\(518\) 0.918588 + 0.530347i 0.0403605 + 0.0233021i
\(519\) 10.6165 0.466014
\(520\) −0.287365 0.913099i −0.0126018 0.0400420i
\(521\) −21.6959 37.5784i −0.950514 1.64634i −0.744314 0.667829i \(-0.767224\pi\)
−0.206200 0.978510i \(-0.566110\pi\)
\(522\) 1.43729 + 0.829821i 0.0629085 + 0.0363203i
\(523\) 34.3881 1.50369 0.751844 0.659341i \(-0.229165\pi\)
0.751844 + 0.659341i \(0.229165\pi\)
\(524\) −4.37123 7.57119i −0.190958 0.330749i
\(525\) 31.2130i 1.36225i
\(526\) 0.0916152i 0.00399461i
\(527\) 0.705548 + 1.88771i 0.0307341 + 0.0822298i
\(528\) 59.0299i 2.56895i
\(529\) −22.8163 −0.992013
\(530\) −0.165442 0.286554i −0.00718635 0.0124471i
\(531\) 65.9187i 2.86063i
\(532\) −8.64983 + 14.9819i −0.375018 + 0.649550i
\(533\) −6.34109 + 1.99563i −0.274663 + 0.0864403i
\(534\) 1.04847 + 1.81600i 0.0453718 + 0.0785862i
\(535\) 16.4540i 0.711369i
\(536\) −0.957279 + 1.65806i −0.0413482 + 0.0716171i
\(537\) 8.42141 14.5863i 0.363411 0.629446i
\(538\) −0.484977 0.280002i −0.0209088 0.0120717i
\(539\) 37.6101 21.7142i 1.61998 0.935298i
\(540\) 12.0061 + 6.93173i 0.516661 + 0.298294i
\(541\) 22.7855 13.1552i 0.979624 0.565586i 0.0774674 0.996995i \(-0.475317\pi\)
0.902157 + 0.431409i \(0.141983\pi\)
\(542\) 0.696499 0.0299172
\(543\) −19.7560 −0.847812
\(544\) 0.171584 0.0990642i 0.00735661 0.00424734i
\(545\) −2.54960 + 4.41603i −0.109213 + 0.189162i
\(546\) 0.534641 + 1.69882i 0.0228805 + 0.0727026i
\(547\) 6.17850 10.7015i 0.264174 0.457562i −0.703173 0.711019i \(-0.748234\pi\)
0.967347 + 0.253456i \(0.0815675\pi\)
\(548\) −11.0087 6.35586i −0.470268 0.271509i
\(549\) 26.7642 46.3570i 1.14227 1.97847i
\(550\) 0.702612 0.0299595
\(551\) 14.8359 8.56550i 0.632030 0.364903i
\(552\) 0.188324 0.108729i 0.00801558 0.00462780i
\(553\) −12.7345 7.35224i −0.541524 0.312649i
\(554\) 0.262507i 0.0111528i
\(555\) −12.0472 20.8663i −0.511375 0.885727i
\(556\) 10.3583 0.439291
\(557\) 38.0150i 1.61075i 0.592766 + 0.805375i \(0.298036\pi\)
−0.592766 + 0.805375i \(0.701964\pi\)
\(558\) 0.925836 + 0.763372i 0.0391938 + 0.0323161i
\(559\) 32.9706 + 7.32780i 1.39451 + 0.309933i
\(560\) 22.5633 0.953475
\(561\) −4.64036 + 2.67911i −0.195916 + 0.113112i
\(562\) 1.07380 0.0452957
\(563\) −15.3956 + 26.6660i −0.648848 + 1.12384i 0.334550 + 0.942378i \(0.391416\pi\)
−0.983398 + 0.181460i \(0.941918\pi\)
\(564\) 16.7663 9.68003i 0.705989 0.407603i
\(565\) 16.4216 9.48104i 0.690864 0.398870i
\(566\) 0.317247i 0.0133349i
\(567\) 3.01352 + 1.73986i 0.126556 + 0.0730671i
\(568\) −0.130949 + 0.226810i −0.00549449 + 0.00951674i
\(569\) 13.0541 22.6104i 0.547257 0.947876i −0.451204 0.892421i \(-0.649005\pi\)
0.998461 0.0554558i \(-0.0176612\pi\)
\(570\) −0.355435 + 0.205211i −0.0148876 + 0.00859533i
\(571\) −11.8892 + 20.5926i −0.497546 + 0.861775i −0.999996 0.00283159i \(-0.999099\pi\)
0.502450 + 0.864606i \(0.332432\pi\)
\(572\) −36.6150 + 11.5233i −1.53095 + 0.481812i
\(573\) 27.9241 1.16655
\(574\) 0.327814i 0.0136827i
\(575\) −0.618600 1.07145i −0.0257974 0.0446824i
\(576\) −18.7543 + 32.4833i −0.781428 + 1.35347i
\(577\) 24.8238 14.3320i 1.03343 0.596649i 0.115462 0.993312i \(-0.463165\pi\)
0.917964 + 0.396663i \(0.129832\pi\)
\(578\) 0.667332 + 0.385284i 0.0277573 + 0.0160257i
\(579\) −1.72490 0.995871i −0.0716844 0.0413870i
\(580\) −19.3702 11.1834i −0.804303 0.464364i
\(581\) 46.3582 1.92326
\(582\) −0.909652 1.57556i −0.0377063 0.0653092i
\(583\) −22.9935 + 13.2753i −0.952293 + 0.549807i
\(584\) 1.25279 2.16990i 0.0518408 0.0897909i
\(585\) 5.36553 24.1416i 0.221837 0.998130i
\(586\) −0.296482 0.513521i −0.0122475 0.0212134i
\(587\) 16.9101i 0.697956i −0.937131 0.348978i \(-0.886529\pi\)
0.937131 0.348978i \(-0.113471\pi\)
\(588\) −45.2363 −1.86551
\(589\) 11.6022 4.33644i 0.478062 0.178680i
\(590\) 0.927822i 0.0381978i
\(591\) 15.2738i 0.628280i
\(592\) 20.6012 11.8941i 0.846704 0.488845i
\(593\) 18.8997i 0.776118i −0.921635 0.388059i \(-0.873146\pi\)
0.921635 0.388059i \(-0.126854\pi\)
\(594\) −0.580907 + 1.00616i −0.0238349 + 0.0412833i
\(595\) −1.02405 1.77371i −0.0419821 0.0727151i
\(596\) 26.5723 15.3415i 1.08844 0.628414i
\(597\) −42.2062 −1.72738
\(598\) −0.0520208 0.0477192i −0.00212729 0.00195138i
\(599\) −15.6563 + 27.1175i −0.639700 + 1.10799i 0.345799 + 0.938309i \(0.387608\pi\)
−0.985499 + 0.169684i \(0.945725\pi\)
\(600\) −1.26828 0.732243i −0.0517774 0.0298937i
\(601\) −12.1642 21.0691i −0.496189 0.859425i 0.503801 0.863820i \(-0.331934\pi\)
−0.999990 + 0.00439478i \(0.998601\pi\)
\(602\) 0.832764 1.44239i 0.0339409 0.0587874i
\(603\) −42.8360 + 24.7314i −1.74442 + 1.00714i
\(604\) 0.836929i 0.0340541i
\(605\) 25.2880i 1.02810i
\(606\) 1.37772 0.795429i 0.0559662 0.0323121i
\(607\) 19.0218 32.9467i 0.772070 1.33727i −0.164356 0.986401i \(-0.552555\pi\)
0.936426 0.350864i \(-0.114112\pi\)
\(608\) −0.608869 1.05459i −0.0246929 0.0427694i
\(609\) 72.1138 + 41.6349i 2.92220 + 1.68713i
\(610\) 0.376713 0.652485i 0.0152526 0.0264184i
\(611\) −9.26758 8.50125i −0.374926 0.343924i
\(612\) 3.41185 0.137916
\(613\) −5.56881 + 3.21516i −0.224922 + 0.129859i −0.608227 0.793763i \(-0.708119\pi\)
0.383305 + 0.923622i \(0.374786\pi\)
\(614\) 0.361838 + 0.626722i 0.0146026 + 0.0252924i
\(615\) 3.72326 6.44887i 0.150136 0.260043i
\(616\) 3.78774i 0.152612i
\(617\) −29.9548 + 17.2944i −1.20593 + 0.696246i −0.961869 0.273512i \(-0.911815\pi\)
−0.244066 + 0.969759i \(0.578481\pi\)
\(618\) 0.679838i 0.0273471i
\(619\) 13.3254i 0.535592i 0.963476 + 0.267796i \(0.0862953\pi\)
−0.963476 + 0.267796i \(0.913705\pi\)
\(620\) −12.4774 10.2878i −0.501103 0.413170i
\(621\) 2.04579 0.0820946
\(622\) 0.920962i 0.0369272i
\(623\) 32.1578 + 55.6989i 1.28837 + 2.23153i
\(624\) 38.9902 + 8.66568i 1.56086 + 0.346905i
\(625\) 1.11767 1.93587i 0.0447070 0.0774347i
\(626\) −0.601461 + 0.347254i −0.0240392 + 0.0138790i
\(627\) 16.4664 + 28.5206i 0.657604 + 1.13900i
\(628\) 4.31347 0.172126
\(629\) −1.87000 1.07964i −0.0745617 0.0430482i
\(630\) −1.05614 0.609763i −0.0420776 0.0242935i
\(631\) 15.0213 + 8.67253i 0.597987 + 0.345248i 0.768249 0.640151i \(-0.221128\pi\)
−0.170262 + 0.985399i \(0.554461\pi\)
\(632\) 0.597489 0.344960i 0.0237668 0.0137218i
\(633\) 31.9191 55.2856i 1.26867 2.19740i
\(634\) −0.128035 0.221763i −0.00508491 0.00880732i
\(635\) 0.442069i 0.0175430i
\(636\) 27.6558 1.09663
\(637\) 8.82137 + 28.0298i 0.349515 + 1.11058i
\(638\) 0.937213 1.62330i 0.0371046 0.0642671i
\(639\) −5.85965 + 3.38307i −0.231804 + 0.133832i
\(640\) −1.05976 + 1.83556i −0.0418906 + 0.0725567i
\(641\) 21.7575 37.6851i 0.859369 1.48847i −0.0131618 0.999913i \(-0.504190\pi\)
0.872531 0.488558i \(-0.162477\pi\)
\(642\) −1.24389 0.718157i −0.0490922 0.0283434i
\(643\) 19.8059i 0.781068i 0.920589 + 0.390534i \(0.127710\pi\)
−0.920589 + 0.390534i \(0.872290\pi\)
\(644\) 2.88654 1.66654i 0.113746 0.0656710i
\(645\) −32.7648 + 18.9168i −1.29011 + 0.744848i
\(646\) −0.0183906 + 0.0318534i −0.000723567 + 0.00125325i
\(647\) −30.5580 −1.20136 −0.600679 0.799491i \(-0.705103\pi\)
−0.600679 + 0.799491i \(0.705103\pi\)
\(648\) −0.141392 + 0.0816325i −0.00555439 + 0.00320683i
\(649\) −74.4497 −2.92240
\(650\) −0.103145 + 0.464087i −0.00404566 + 0.0182030i
\(651\) 46.4524 + 38.3010i 1.82061 + 1.50113i
\(652\) 30.6092i 1.19875i
\(653\) −27.9507 −1.09379 −0.546897 0.837200i \(-0.684191\pi\)
−0.546897 + 0.837200i \(0.684191\pi\)
\(654\) 0.222561 + 0.385487i 0.00870284 + 0.0150738i
\(655\) 6.36144i 0.248562i
\(656\) 6.36692 + 3.67594i 0.248586 + 0.143521i
\(657\) 56.0594 32.3659i 2.18708 1.26271i
\(658\) −0.537074 + 0.310080i −0.0209373 + 0.0120882i
\(659\) −36.8074 −1.43381 −0.716906 0.697170i \(-0.754442\pi\)
−0.716906 + 0.697170i \(0.754442\pi\)
\(660\) 21.4990 37.2374i 0.836847 1.44946i
\(661\) −22.6262 13.0633i −0.880059 0.508102i −0.00938107 0.999956i \(-0.502986\pi\)
−0.870678 + 0.491854i \(0.836319\pi\)
\(662\) −0.424637 + 0.735494i −0.0165040 + 0.0285858i
\(663\) −1.08838 3.45833i −0.0422694 0.134310i
\(664\) −1.08754 + 1.88368i −0.0422049 + 0.0731010i
\(665\) −10.9016 + 6.29404i −0.422746 + 0.244072i
\(666\) −1.28573 −0.0498210
\(667\) −3.30059 −0.127799
\(668\) 34.3823 19.8506i 1.33029 0.768043i
\(669\) −1.87672 1.08353i −0.0725583 0.0418915i
\(670\) −0.602926 + 0.348100i −0.0232931 + 0.0134483i
\(671\) −52.3563 30.2279i −2.02119 1.16694i
\(672\) 2.95957 5.12613i 0.114168 0.197745i
\(673\) 20.8683 36.1449i 0.804413 1.39328i −0.112274 0.993677i \(-0.535814\pi\)
0.916687 0.399606i \(-0.130853\pi\)
\(674\) 0.0733636i 0.00282586i
\(675\) −6.88877 11.9317i −0.265149 0.459251i
\(676\) −2.23616 25.8764i −0.0860060 0.995247i
\(677\) −19.4456 + 33.6807i −0.747354 + 1.29445i 0.201733 + 0.979441i \(0.435343\pi\)
−0.949087 + 0.315014i \(0.897991\pi\)
\(678\) 1.65525i 0.0635695i
\(679\) −27.9000 48.3243i −1.07071 1.85452i
\(680\) 0.0960952 0.00368508
\(681\) 10.4506i 0.400468i
\(682\) 0.862164 1.04565i 0.0330140 0.0400402i
\(683\) 2.48961i 0.0952622i −0.998865 0.0476311i \(-0.984833\pi\)
0.998865 0.0476311i \(-0.0151672\pi\)
\(684\) 20.9699i 0.801804i
\(685\) −4.62484 8.01045i −0.176706 0.306064i
\(686\) 0.204462 0.00780640
\(687\) 7.06040 + 4.07632i 0.269371 + 0.155521i
\(688\) −18.6764 32.3485i −0.712031 1.23327i
\(689\) −5.39307 17.1364i −0.205460 0.652845i
\(690\) 0.0790750 0.00301033
\(691\) 33.3797 + 19.2718i 1.26982 + 0.733132i 0.974954 0.222406i \(-0.0713909\pi\)
0.294868 + 0.955538i \(0.404724\pi\)
\(692\) −3.81746 + 6.61204i −0.145118 + 0.251352i
\(693\) −48.9282 + 84.7461i −1.85863 + 3.21924i
\(694\) −0.0744452 + 0.0429810i −0.00282590 + 0.00163154i
\(695\) 6.52742 + 3.76861i 0.247599 + 0.142951i
\(696\) −3.38351 + 1.95347i −0.128252 + 0.0740462i
\(697\) 0.667341i 0.0252773i
\(698\) −1.07921 −0.0408486
\(699\) 12.8111 + 22.1895i 0.484561 + 0.839284i
\(700\) −19.4397 11.2235i −0.734750 0.424208i
\(701\) 5.20190 + 9.00995i 0.196473 + 0.340301i 0.947382 0.320104i \(-0.103718\pi\)
−0.750909 + 0.660405i \(0.770385\pi\)
\(702\) −0.579307 0.531405i −0.0218645 0.0200566i
\(703\) −6.63571 + 11.4934i −0.250271 + 0.433482i
\(704\) 36.6872 + 21.1814i 1.38270 + 0.798302i
\(705\) 14.0873 0.530560
\(706\) −0.449103 0.777868i −0.0169022 0.0292755i
\(707\) 42.2563 24.3967i 1.58921 0.917531i
\(708\) 67.1593 + 38.7744i 2.52400 + 1.45723i
\(709\) 26.4554i 0.993555i 0.867878 + 0.496778i \(0.165484\pi\)
−0.867878 + 0.496778i \(0.834516\pi\)
\(710\) −0.0824760 + 0.0476175i −0.00309527 + 0.00178705i
\(711\) 17.8241 0.668457
\(712\) −3.01763 −0.113090
\(713\) −2.35364 0.394130i −0.0881445 0.0147603i
\(714\) −0.178785 −0.00669085
\(715\) −27.2658 6.05991i −1.01968 0.226628i
\(716\) 6.05630 + 10.4898i 0.226334 + 0.392023i
\(717\) 16.7533i 0.625664i
\(718\) −0.160179 + 0.277439i −0.00597784 + 0.0103539i
\(719\) 20.5868 + 35.6573i 0.767757 + 1.32979i 0.938777 + 0.344526i \(0.111960\pi\)
−0.171020 + 0.985268i \(0.554706\pi\)
\(720\) −23.6861 + 13.6752i −0.882728 + 0.509643i
\(721\) 20.8514i 0.776546i
\(722\) −0.555856 0.320924i −0.0206868 0.0119435i
\(723\) 19.6555 + 11.3481i 0.730996 + 0.422041i
\(724\) 7.10381 12.3042i 0.264011 0.457281i
\(725\) 11.1141 + 19.2501i 0.412766 + 0.714932i
\(726\) 1.91172 + 1.10373i 0.0709505 + 0.0409633i
\(727\) −8.85220 15.3325i −0.328310 0.568650i 0.653867 0.756610i \(-0.273146\pi\)
−0.982177 + 0.187960i \(0.939812\pi\)
\(728\) −2.50186 0.556046i −0.0927251 0.0206084i
\(729\) −43.9986 −1.62958
\(730\) 0.789049 0.455558i 0.0292040 0.0168609i
\(731\) −1.69528 + 2.93632i −0.0627023 + 0.108604i
\(732\) 31.4862 + 54.5358i 1.16376 + 2.01570i
\(733\) −18.9721 10.9536i −0.700751 0.404579i 0.106876 0.994272i \(-0.465915\pi\)
−0.807627 + 0.589693i \(0.799249\pi\)
\(734\) 1.03997 + 0.600425i 0.0383859 + 0.0221621i
\(735\) −28.5062 16.4581i −1.05147 0.607065i
\(736\) 0.234619i 0.00864817i
\(737\) 27.9320 + 48.3796i 1.02889 + 1.78209i
\(738\) −0.198681 0.344126i −0.00731355 0.0126674i
\(739\) 31.9225 + 18.4305i 1.17429 + 0.677977i 0.954687 0.297613i \(-0.0961904\pi\)
0.219603 + 0.975589i \(0.429524\pi\)
\(740\) 17.3276 0.636974
\(741\) −21.2556 + 6.68944i −0.780844 + 0.245743i
\(742\) −0.885898 −0.0325223
\(743\) 5.05507i 0.185452i −0.995692 0.0927262i \(-0.970442\pi\)
0.995692 0.0927262i \(-0.0295581\pi\)
\(744\) −2.64604 + 0.988981i −0.0970085 + 0.0362578i
\(745\) 22.3265 0.817980
\(746\) 0.0407138i 0.00149064i
\(747\) −48.6650 + 28.0967i −1.78056 + 1.02801i
\(748\) 3.85339i 0.140894i
\(749\) −38.1513 22.0267i −1.39402 0.804837i
\(750\) −0.727496 1.26006i −0.0265644 0.0460109i
\(751\) 9.58618 + 16.6037i 0.349804 + 0.605879i 0.986215 0.165472i \(-0.0529147\pi\)
−0.636410 + 0.771351i \(0.719581\pi\)
\(752\) 13.9083i 0.507184i
\(753\) 38.5534 66.7764i 1.40496 2.43347i
\(754\) 0.934631 + 0.857347i 0.0340373 + 0.0312227i
\(755\) −0.304495 + 0.527401i −0.0110817 + 0.0191941i
\(756\) 32.1447 18.5588i 1.16909 0.674975i
\(757\) −13.6298 + 23.6075i −0.495383 + 0.858029i −0.999986 0.00532260i \(-0.998306\pi\)
0.504602 + 0.863352i \(0.331639\pi\)
\(758\) −0.158334 0.274243i −0.00575096 0.00996096i
\(759\) 6.34508i 0.230312i
\(760\) 0.590621i 0.0214241i
\(761\) 35.2717 20.3641i 1.27860 0.738198i 0.302006 0.953306i \(-0.402344\pi\)
0.976590 + 0.215108i \(0.0690103\pi\)
\(762\) 0.0334194 + 0.0192947i 0.00121066 + 0.000698973i
\(763\) 6.82620 + 11.8233i 0.247125 + 0.428033i
\(764\) −10.0409 +