Properties

Label 403.2.l.c.25.14
Level 403
Weight 2
Character 403.25
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 403 = 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 403.l (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.14
Character \(\chi\) = 403.25
Dual form 403.2.l.c.129.21

$q$-expansion

\(f(q)\) \(=\) \(q-0.768888i q^{2} +(-0.723761 - 1.25359i) q^{3} +1.40881 q^{4} +(0.354729 + 0.204803i) q^{5} +(-0.963871 + 0.556491i) q^{6} +(-0.855619 + 0.493992i) q^{7} -2.62099i q^{8} +(0.452340 - 0.783476i) q^{9} +O(q^{10})\) \(q-0.768888i q^{2} +(-0.723761 - 1.25359i) q^{3} +1.40881 q^{4} +(0.354729 + 0.204803i) q^{5} +(-0.963871 + 0.556491i) q^{6} +(-0.855619 + 0.493992i) q^{7} -2.62099i q^{8} +(0.452340 - 0.783476i) q^{9} +(0.157470 - 0.272747i) q^{10} +(1.18713 + 0.685387i) q^{11} +(-1.01964 - 1.76607i) q^{12} +(-0.850558 - 3.50379i) q^{13} +(0.379824 + 0.657875i) q^{14} -0.592913i q^{15} +0.802369 q^{16} +(-0.514354 - 0.890888i) q^{17} +(-0.602406 - 0.347799i) q^{18} +(0.266857 - 0.154070i) q^{19} +(0.499746 + 0.288528i) q^{20} +(1.23853 + 0.715064i) q^{21} +(0.526986 - 0.912767i) q^{22} +4.43618 q^{23} +(-3.28565 + 1.89697i) q^{24} +(-2.41611 - 4.18483i) q^{25} +(-2.69402 + 0.653984i) q^{26} -5.65211 q^{27} +(-1.20540 + 0.695941i) q^{28} +3.23233 q^{29} -0.455884 q^{30} +(-2.67082 + 4.88536i) q^{31} -5.85892i q^{32} -1.98423i q^{33} +(-0.684993 + 0.395481i) q^{34} -0.404683 q^{35} +(0.637262 - 1.10377i) q^{36} +(-6.52893 + 3.76948i) q^{37} +(-0.118463 - 0.205183i) q^{38} +(-3.77672 + 3.60216i) q^{39} +(0.536787 - 0.929742i) q^{40} +(1.40110 + 0.808925i) q^{41} +(0.549804 - 0.952289i) q^{42} +(3.77694 + 6.54184i) q^{43} +(1.67243 + 0.965581i) q^{44} +(0.320916 - 0.185281i) q^{45} -3.41093i q^{46} -9.98933i q^{47} +(-0.580723 - 1.00584i) q^{48} +(-3.01194 + 5.21684i) q^{49} +(-3.21767 + 1.85772i) q^{50} +(-0.744539 + 1.28958i) q^{51} +(-1.19827 - 4.93618i) q^{52} +(-1.20902 + 2.09409i) q^{53} +4.34584i q^{54} +(0.280738 + 0.486253i) q^{55} +(1.29475 + 2.24257i) q^{56} +(-0.386282 - 0.223020i) q^{57} -2.48530i q^{58} +(11.1451 - 6.43461i) q^{59} -0.835302i q^{60} -2.55141 q^{61} +(3.75629 + 2.05356i) q^{62} +0.893809i q^{63} -2.90012 q^{64} +(0.415869 - 1.41709i) q^{65} -1.52565 q^{66} +(7.90391 + 4.56333i) q^{67} +(-0.724628 - 1.25509i) q^{68} +(-3.21074 - 5.56116i) q^{69} +0.311156i q^{70} +(8.21061 + 4.74040i) q^{71} +(-2.05349 - 1.18558i) q^{72} +(3.28711 + 1.89782i) q^{73} +(2.89831 + 5.02002i) q^{74} +(-3.49737 + 6.05763i) q^{75} +(0.375951 - 0.217056i) q^{76} -1.35430 q^{77} +(2.76966 + 2.90388i) q^{78} +(7.10174 + 12.3006i) q^{79} +(0.284623 + 0.164327i) q^{80} +(2.73376 + 4.73500i) q^{81} +(0.621973 - 1.07729i) q^{82} +(6.42313 + 3.70839i) q^{83} +(1.74485 + 1.00739i) q^{84} -0.421365i q^{85} +(5.02995 - 2.90404i) q^{86} +(-2.33943 - 4.05202i) q^{87} +(1.79640 - 3.11145i) q^{88} +10.6730i q^{89} +(-0.142460 - 0.246749i) q^{90} +(2.45860 + 2.57774i) q^{91} +6.24974 q^{92} +(8.05727 - 0.187717i) q^{93} -7.68068 q^{94} +0.126216 q^{95} +(-7.34469 + 4.24046i) q^{96} -11.8188i q^{97} +(4.01117 + 2.31585i) q^{98} +(1.07397 - 0.620056i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + O(q^{10}) \) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + 8q^{10} - 10q^{12} - 3q^{13} + 10q^{14} + 84q^{16} + 6q^{17} + 4q^{22} - 44q^{23} + 30q^{25} - 3q^{26} - 12q^{27} + 48q^{29} - 4q^{30} - 48q^{35} + 40q^{36} + 60q^{38} - 14q^{39} + 20q^{40} - 10q^{42} - 12q^{43} + 32q^{48} + 58q^{49} + 20q^{51} - 27q^{52} + 8q^{53} - 36q^{55} - 50q^{56} - 12q^{61} - 74q^{62} - 15q^{65} + 164q^{66} + 4q^{68} - 34q^{69} - 4q^{74} + 20q^{75} - 200q^{77} - 58q^{78} - 80q^{79} - 82q^{81} - 66q^{82} + 52q^{87} + 16q^{88} - 14q^{90} - 70q^{91} + 108q^{92} - 4q^{94} + 76q^{95} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.768888i 0.543686i −0.962342 0.271843i \(-0.912367\pi\)
0.962342 0.271843i \(-0.0876332\pi\)
\(3\) −0.723761 1.25359i −0.417864 0.723761i 0.577861 0.816135i \(-0.303888\pi\)
−0.995724 + 0.0923744i \(0.970554\pi\)
\(4\) 1.40881 0.704405
\(5\) 0.354729 + 0.204803i 0.158639 + 0.0915906i 0.577218 0.816590i \(-0.304138\pi\)
−0.418579 + 0.908181i \(0.637472\pi\)
\(6\) −0.963871 + 0.556491i −0.393499 + 0.227187i
\(7\) −0.855619 + 0.493992i −0.323393 + 0.186711i −0.652904 0.757441i \(-0.726450\pi\)
0.329511 + 0.944152i \(0.393116\pi\)
\(8\) 2.62099i 0.926662i
\(9\) 0.452340 0.783476i 0.150780 0.261159i
\(10\) 0.157470 0.272747i 0.0497965 0.0862501i
\(11\) 1.18713 + 0.685387i 0.357932 + 0.206652i 0.668173 0.744006i \(-0.267077\pi\)
−0.310241 + 0.950658i \(0.600410\pi\)
\(12\) −1.01964 1.76607i −0.294345 0.509821i
\(13\) −0.850558 3.50379i −0.235902 0.971777i
\(14\) 0.379824 + 0.657875i 0.101512 + 0.175825i
\(15\) 0.592913i 0.153089i
\(16\) 0.802369 0.200592
\(17\) −0.514354 0.890888i −0.124749 0.216072i 0.796886 0.604130i \(-0.206479\pi\)
−0.921635 + 0.388058i \(0.873146\pi\)
\(18\) −0.602406 0.347799i −0.141988 0.0819770i
\(19\) 0.266857 0.154070i 0.0612212 0.0353461i −0.469077 0.883157i \(-0.655413\pi\)
0.530298 + 0.847811i \(0.322080\pi\)
\(20\) 0.499746 + 0.288528i 0.111747 + 0.0645169i
\(21\) 1.23853 + 0.715064i 0.270269 + 0.156040i
\(22\) 0.526986 0.912767i 0.112354 0.194603i
\(23\) 4.43618 0.925008 0.462504 0.886617i \(-0.346951\pi\)
0.462504 + 0.886617i \(0.346951\pi\)
\(24\) −3.28565 + 1.89697i −0.670681 + 0.387218i
\(25\) −2.41611 4.18483i −0.483222 0.836966i
\(26\) −2.69402 + 0.653984i −0.528342 + 0.128257i
\(27\) −5.65211 −1.08775
\(28\) −1.20540 + 0.695941i −0.227800 + 0.131520i
\(29\) 3.23233 0.600229 0.300114 0.953903i \(-0.402975\pi\)
0.300114 + 0.953903i \(0.402975\pi\)
\(30\) −0.455884 −0.0832326
\(31\) −2.67082 + 4.88536i −0.479693 + 0.877436i
\(32\) 5.85892i 1.03572i
\(33\) 1.98423i 0.345409i
\(34\) −0.684993 + 0.395481i −0.117475 + 0.0678244i
\(35\) −0.404683 −0.0684040
\(36\) 0.637262 1.10377i 0.106210 0.183962i
\(37\) −6.52893 + 3.76948i −1.07335 + 0.619699i −0.929095 0.369842i \(-0.879412\pi\)
−0.144255 + 0.989541i \(0.546078\pi\)
\(38\) −0.118463 0.205183i −0.0192172 0.0332851i
\(39\) −3.77672 + 3.60216i −0.604759 + 0.576807i
\(40\) 0.536787 0.929742i 0.0848734 0.147005i
\(41\) 1.40110 + 0.808925i 0.218815 + 0.126333i 0.605401 0.795920i \(-0.293013\pi\)
−0.386586 + 0.922253i \(0.626346\pi\)
\(42\) 0.549804 0.952289i 0.0848366 0.146941i
\(43\) 3.77694 + 6.54184i 0.575977 + 0.997622i 0.995935 + 0.0900781i \(0.0287117\pi\)
−0.419957 + 0.907544i \(0.637955\pi\)
\(44\) 1.67243 + 0.965581i 0.252129 + 0.145567i
\(45\) 0.320916 0.185281i 0.0478393 0.0276201i
\(46\) 3.41093i 0.502914i
\(47\) 9.98933i 1.45709i −0.684996 0.728546i \(-0.740196\pi\)
0.684996 0.728546i \(-0.259804\pi\)
\(48\) −0.580723 1.00584i −0.0838202 0.145181i
\(49\) −3.01194 + 5.21684i −0.430278 + 0.745263i
\(50\) −3.21767 + 1.85772i −0.455047 + 0.262721i
\(51\) −0.744539 + 1.28958i −0.104256 + 0.180577i
\(52\) −1.19827 4.93618i −0.166171 0.684525i
\(53\) −1.20902 + 2.09409i −0.166072 + 0.287645i −0.937035 0.349234i \(-0.886442\pi\)
0.770963 + 0.636879i \(0.219775\pi\)
\(54\) 4.34584i 0.591394i
\(55\) 0.280738 + 0.486253i 0.0378547 + 0.0655663i
\(56\) 1.29475 + 2.24257i 0.173018 + 0.299676i
\(57\) −0.386282 0.223020i −0.0511643 0.0295397i
\(58\) 2.48530i 0.326336i
\(59\) 11.1451 6.43461i 1.45096 0.837715i 0.452428 0.891801i \(-0.350558\pi\)
0.998536 + 0.0540858i \(0.0172245\pi\)
\(60\) 0.835302i 0.107837i
\(61\) −2.55141 −0.326674 −0.163337 0.986570i \(-0.552226\pi\)
−0.163337 + 0.986570i \(0.552226\pi\)
\(62\) 3.75629 + 2.05356i 0.477050 + 0.260803i
\(63\) 0.893809i 0.112609i
\(64\) −2.90012 −0.362515
\(65\) 0.415869 1.41709i 0.0515822 0.175769i
\(66\) −1.52565 −0.187794
\(67\) 7.90391 + 4.56333i 0.965617 + 0.557499i 0.897897 0.440205i \(-0.145094\pi\)
0.0677195 + 0.997704i \(0.478428\pi\)
\(68\) −0.724628 1.25509i −0.0878740 0.152202i
\(69\) −3.21074 5.56116i −0.386527 0.669485i
\(70\) 0.311156i 0.0371903i
\(71\) 8.21061 + 4.74040i 0.974420 + 0.562582i 0.900581 0.434689i \(-0.143142\pi\)
0.0738391 + 0.997270i \(0.476475\pi\)
\(72\) −2.05349 1.18558i −0.242006 0.139722i
\(73\) 3.28711 + 1.89782i 0.384728 + 0.222123i 0.679873 0.733330i \(-0.262035\pi\)
−0.295146 + 0.955452i \(0.595368\pi\)
\(74\) 2.89831 + 5.02002i 0.336922 + 0.583565i
\(75\) −3.49737 + 6.05763i −0.403842 + 0.699475i
\(76\) 0.375951 0.217056i 0.0431246 0.0248980i
\(77\) −1.35430 −0.154337
\(78\) 2.76966 + 2.90388i 0.313602 + 0.328799i
\(79\) 7.10174 + 12.3006i 0.799008 + 1.38392i 0.920262 + 0.391302i \(0.127975\pi\)
−0.121254 + 0.992622i \(0.538692\pi\)
\(80\) 0.284623 + 0.164327i 0.0318219 + 0.0183724i
\(81\) 2.73376 + 4.73500i 0.303751 + 0.526112i
\(82\) 0.621973 1.07729i 0.0686855 0.118967i
\(83\) 6.42313 + 3.70839i 0.705030 + 0.407049i 0.809218 0.587509i \(-0.199891\pi\)
−0.104188 + 0.994558i \(0.533224\pi\)
\(84\) 1.74485 + 1.00739i 0.190379 + 0.109915i
\(85\) 0.421365i 0.0457034i
\(86\) 5.02995 2.90404i 0.542393 0.313151i
\(87\) −2.33943 4.05202i −0.250814 0.434422i
\(88\) 1.79640 3.11145i 0.191496 0.331682i
\(89\) 10.6730i 1.13133i 0.824634 + 0.565667i \(0.191381\pi\)
−0.824634 + 0.565667i \(0.808619\pi\)
\(90\) −0.142460 0.246749i −0.0150166 0.0260096i
\(91\) 2.45860 + 2.57774i 0.257731 + 0.270221i
\(92\) 6.24974 0.651581
\(93\) 8.05727 0.187717i 0.835500 0.0194653i
\(94\) −7.68068 −0.792201
\(95\) 0.126216 0.0129495
\(96\) −7.34469 + 4.24046i −0.749614 + 0.432790i
\(97\) 11.8188i 1.20002i −0.799993 0.600009i \(-0.795164\pi\)
0.799993 0.600009i \(-0.204836\pi\)
\(98\) 4.01117 + 2.31585i 0.405189 + 0.233936i
\(99\) 1.07397 0.620056i 0.107938 0.0623180i
\(100\) −3.40384 5.89563i −0.340384 0.589563i
\(101\) −5.34222 −0.531571 −0.265785 0.964032i \(-0.585631\pi\)
−0.265785 + 0.964032i \(0.585631\pi\)
\(102\) 0.991543 + 0.572467i 0.0981774 + 0.0566827i
\(103\) −5.64200 + 9.77223i −0.555923 + 0.962886i 0.441908 + 0.897060i \(0.354302\pi\)
−0.997831 + 0.0658261i \(0.979032\pi\)
\(104\) −9.18342 + 2.22931i −0.900508 + 0.218602i
\(105\) 0.292894 + 0.507307i 0.0285835 + 0.0495081i
\(106\) 1.61012 + 0.929604i 0.156389 + 0.0902911i
\(107\) 9.85254 + 17.0651i 0.952481 + 1.64975i 0.740030 + 0.672574i \(0.234811\pi\)
0.212451 + 0.977172i \(0.431855\pi\)
\(108\) −7.96275 −0.766216
\(109\) 5.61187i 0.537520i 0.963207 + 0.268760i \(0.0866139\pi\)
−0.963207 + 0.268760i \(0.913386\pi\)
\(110\) 0.373874 0.215856i 0.0356475 0.0205811i
\(111\) 9.45077 + 5.45640i 0.897027 + 0.517899i
\(112\) −0.686522 + 0.396364i −0.0648702 + 0.0374528i
\(113\) −0.435958 + 0.755101i −0.0410115 + 0.0710339i −0.885803 0.464062i \(-0.846391\pi\)
0.844791 + 0.535096i \(0.179725\pi\)
\(114\) −0.171477 + 0.297007i −0.0160603 + 0.0278173i
\(115\) 1.57364 + 0.908542i 0.146743 + 0.0847220i
\(116\) 4.55374 0.422804
\(117\) −3.12988 0.918514i −0.289357 0.0849166i
\(118\) −4.94750 8.56932i −0.455454 0.788869i
\(119\) 0.880182 + 0.508174i 0.0806862 + 0.0465842i
\(120\) −1.55402 −0.141862
\(121\) −4.56049 7.89900i −0.414590 0.718091i
\(122\) 1.96175i 0.177608i
\(123\) 2.34187i 0.211160i
\(124\) −3.76268 + 6.88254i −0.337899 + 0.618071i
\(125\) 4.02733i 0.360216i
\(126\) 0.687239 0.0612242
\(127\) −3.23465 5.60258i −0.287029 0.497149i 0.686070 0.727535i \(-0.259334\pi\)
−0.973099 + 0.230387i \(0.926001\pi\)
\(128\) 9.48798i 0.838627i
\(129\) 5.46720 9.46946i 0.481360 0.833740i
\(130\) −1.08959 0.319757i −0.0955630 0.0280445i
\(131\) −0.377185 0.653304i −0.0329548 0.0570794i 0.849078 0.528268i \(-0.177158\pi\)
−0.882032 + 0.471189i \(0.843825\pi\)
\(132\) 2.79540i 0.243308i
\(133\) −0.152219 + 0.263650i −0.0131990 + 0.0228614i
\(134\) 3.50869 6.07723i 0.303104 0.524992i
\(135\) −2.00497 1.15757i −0.172560 0.0996275i
\(136\) −2.33501 + 1.34812i −0.200226 + 0.115600i
\(137\) −8.71296 5.03043i −0.744399 0.429779i 0.0792677 0.996853i \(-0.474742\pi\)
−0.823666 + 0.567075i \(0.808075\pi\)
\(138\) −4.27591 + 2.46870i −0.363990 + 0.210149i
\(139\) −7.76904 −0.658961 −0.329481 0.944162i \(-0.606874\pi\)
−0.329481 + 0.944162i \(0.606874\pi\)
\(140\) −0.570122 −0.0481841
\(141\) −12.5225 + 7.22988i −1.05459 + 0.608866i
\(142\) 3.64484 6.31304i 0.305868 0.529779i
\(143\) 1.39173 4.74240i 0.116383 0.396579i
\(144\) 0.362944 0.628637i 0.0302453 0.0523864i
\(145\) 1.14660 + 0.661990i 0.0952200 + 0.0549753i
\(146\) 1.45921 2.52742i 0.120765 0.209171i
\(147\) 8.71971 0.719190
\(148\) −9.19803 + 5.31048i −0.756073 + 0.436519i
\(149\) 14.9225 8.61552i 1.22250 0.705811i 0.257051 0.966398i \(-0.417249\pi\)
0.965450 + 0.260587i \(0.0839160\pi\)
\(150\) 4.65764 + 2.68909i 0.380295 + 0.219563i
\(151\) 2.25736i 0.183701i 0.995773 + 0.0918505i \(0.0292782\pi\)
−0.995773 + 0.0918505i \(0.970722\pi\)
\(152\) −0.403817 0.699431i −0.0327539 0.0567314i
\(153\) −0.930653 −0.0752388
\(154\) 1.04131i 0.0839109i
\(155\) −1.94795 + 1.18599i −0.156463 + 0.0952606i
\(156\) −5.32068 + 5.07476i −0.425996 + 0.406306i
\(157\) 12.3767 0.987766 0.493883 0.869528i \(-0.335577\pi\)
0.493883 + 0.869528i \(0.335577\pi\)
\(158\) 9.45777 5.46045i 0.752420 0.434410i
\(159\) 3.50017 0.277582
\(160\) 1.19992 2.07833i 0.0948622 0.164306i
\(161\) −3.79568 + 2.19144i −0.299142 + 0.172709i
\(162\) 3.64069 2.10195i 0.286040 0.165145i
\(163\) 21.3428i 1.67169i −0.548963 0.835847i \(-0.684977\pi\)
0.548963 0.835847i \(-0.315023\pi\)
\(164\) 1.97388 + 1.13962i 0.154134 + 0.0889896i
\(165\) 0.406375 0.703862i 0.0316362 0.0547956i
\(166\) 2.85134 4.93867i 0.221307 0.383315i
\(167\) −15.0313 + 8.67830i −1.16315 + 0.671547i −0.952058 0.305918i \(-0.901037\pi\)
−0.211096 + 0.977465i \(0.567703\pi\)
\(168\) 1.87418 3.24617i 0.144596 0.250448i
\(169\) −11.5531 + 5.96035i −0.888700 + 0.458489i
\(170\) −0.323982 −0.0248483
\(171\) 0.278768i 0.0213180i
\(172\) 5.32099 + 9.21622i 0.405721 + 0.702730i
\(173\) −7.26576 + 12.5847i −0.552406 + 0.956795i 0.445694 + 0.895185i \(0.352957\pi\)
−0.998100 + 0.0616099i \(0.980377\pi\)
\(174\) −3.11555 + 1.79876i −0.236189 + 0.136364i
\(175\) 4.13454 + 2.38708i 0.312542 + 0.180446i
\(176\) 0.952512 + 0.549933i 0.0717983 + 0.0414528i
\(177\) −16.1327 9.31424i −1.21261 0.700101i
\(178\) 8.20633 0.615091
\(179\) −1.29839 2.24888i −0.0970465 0.168089i 0.813414 0.581685i \(-0.197606\pi\)
−0.910461 + 0.413595i \(0.864273\pi\)
\(180\) 0.452110 0.261026i 0.0336983 0.0194557i
\(181\) −1.86623 + 3.23241i −0.138716 + 0.240263i −0.927011 0.375035i \(-0.877631\pi\)
0.788295 + 0.615298i \(0.210964\pi\)
\(182\) 1.98199 1.89039i 0.146915 0.140125i
\(183\) 1.84661 + 3.19842i 0.136505 + 0.236434i
\(184\) 11.6272i 0.857169i
\(185\) −3.08800 −0.227034
\(186\) −0.144333 6.19514i −0.0105830 0.454250i
\(187\) 1.41013i 0.103119i
\(188\) 14.0731i 1.02638i
\(189\) 4.83605 2.79210i 0.351771 0.203095i
\(190\) 0.0970459i 0.00704045i
\(191\) 3.17274 5.49534i 0.229571 0.397629i −0.728110 0.685460i \(-0.759601\pi\)
0.957681 + 0.287832i \(0.0929343\pi\)
\(192\) 2.09899 + 3.63556i 0.151482 + 0.262374i
\(193\) −19.7858 + 11.4233i −1.42421 + 0.822270i −0.996656 0.0817172i \(-0.973960\pi\)
−0.427559 + 0.903988i \(0.640626\pi\)
\(194\) −9.08735 −0.652434
\(195\) −2.07744 + 0.504307i −0.148769 + 0.0361141i
\(196\) −4.24326 + 7.34954i −0.303090 + 0.524967i
\(197\) −3.13938 1.81252i −0.223672 0.129137i 0.383978 0.923342i \(-0.374554\pi\)
−0.607649 + 0.794206i \(0.707887\pi\)
\(198\) −0.476754 0.825762i −0.0338814 0.0586844i
\(199\) −1.56206 + 2.70556i −0.110731 + 0.191792i −0.916065 0.401029i \(-0.868653\pi\)
0.805334 + 0.592821i \(0.201986\pi\)
\(200\) −10.9684 + 6.33262i −0.775584 + 0.447784i
\(201\) 13.2110i 0.931834i
\(202\) 4.10757i 0.289008i
\(203\) −2.76564 + 1.59674i −0.194110 + 0.112069i
\(204\) −1.04891 + 1.81677i −0.0734387 + 0.127200i
\(205\) 0.331340 + 0.573898i 0.0231418 + 0.0400828i
\(206\) 7.51375 + 4.33807i 0.523508 + 0.302247i
\(207\) 2.00666 3.47564i 0.139473 0.241574i
\(208\) −0.682461 2.81133i −0.0473202 0.194931i
\(209\) 0.422391 0.0292174
\(210\) 0.390063 0.225203i 0.0269169 0.0155405i
\(211\) 3.26901 + 5.66210i 0.225048 + 0.389795i 0.956334 0.292276i \(-0.0944127\pi\)
−0.731286 + 0.682071i \(0.761079\pi\)
\(212\) −1.70328 + 2.95018i −0.116982 + 0.202619i
\(213\) 13.7237i 0.940329i
\(214\) 13.1212 7.57550i 0.896944 0.517851i
\(215\) 3.09411i 0.211016i
\(216\) 14.8142i 1.00798i
\(217\) −0.128123 5.49937i −0.00869756 0.373321i
\(218\) 4.31491 0.292242
\(219\) 5.49426i 0.371268i
\(220\) 0.395507 + 0.685038i 0.0266651 + 0.0461853i
\(221\) −2.68400 + 2.55994i −0.180545 + 0.172200i
\(222\) 4.19536 7.26659i 0.281574 0.487701i
\(223\) 3.87804 2.23898i 0.259692 0.149934i −0.364502 0.931203i \(-0.618761\pi\)
0.624194 + 0.781269i \(0.285427\pi\)
\(224\) 2.89426 + 5.01300i 0.193381 + 0.334945i
\(225\) −4.37162 −0.291441
\(226\) 0.580588 + 0.335203i 0.0386202 + 0.0222974i
\(227\) 7.48328 + 4.32047i 0.496683 + 0.286760i 0.727343 0.686275i \(-0.240755\pi\)
−0.230660 + 0.973034i \(0.574088\pi\)
\(228\) −0.544198 0.314193i −0.0360404 0.0208079i
\(229\) −8.33620 + 4.81291i −0.550872 + 0.318046i −0.749474 0.662034i \(-0.769693\pi\)
0.198602 + 0.980080i \(0.436360\pi\)
\(230\) 0.698567 1.20995i 0.0460622 0.0797820i
\(231\) 0.980191 + 1.69774i 0.0644918 + 0.111703i
\(232\) 8.47192i 0.556209i
\(233\) 20.2755 1.32829 0.664147 0.747602i \(-0.268795\pi\)
0.664147 + 0.747602i \(0.268795\pi\)
\(234\) −0.706235 + 2.40653i −0.0461680 + 0.157320i
\(235\) 2.04584 3.54350i 0.133456 0.231152i
\(236\) 15.7013 9.06515i 1.02207 0.590091i
\(237\) 10.2799 17.8054i 0.667753 1.15658i
\(238\) 0.390729 0.676762i 0.0253272 0.0438680i
\(239\) −6.52519 3.76732i −0.422079 0.243688i 0.273887 0.961762i \(-0.411690\pi\)
−0.695966 + 0.718074i \(0.745024\pi\)
\(240\) 0.475735i 0.0307086i
\(241\) −11.1593 + 6.44284i −0.718835 + 0.415020i −0.814324 0.580411i \(-0.802892\pi\)
0.0954885 + 0.995431i \(0.469559\pi\)
\(242\) −6.07345 + 3.50651i −0.390416 + 0.225407i
\(243\) −4.52099 + 7.83059i −0.290022 + 0.502333i
\(244\) −3.59445 −0.230111
\(245\) −2.13685 + 1.23371i −0.136518 + 0.0788188i
\(246\) −1.80064 −0.114805
\(247\) −0.766807 0.803966i −0.0487908 0.0511552i
\(248\) 12.8045 + 7.00020i 0.813086 + 0.444513i
\(249\) 10.7360i 0.680364i
\(250\) −3.09657 −0.195844
\(251\) −7.60170 13.1665i −0.479815 0.831064i 0.519917 0.854217i \(-0.325963\pi\)
−0.999732 + 0.0231530i \(0.992630\pi\)
\(252\) 1.25921i 0.0793226i
\(253\) 5.26630 + 3.04050i 0.331090 + 0.191155i
\(254\) −4.30776 + 2.48709i −0.270293 + 0.156054i
\(255\) −0.528219 + 0.304967i −0.0330783 + 0.0190978i
\(256\) −13.0954 −0.818465
\(257\) 13.1268 22.7362i 0.818825 1.41825i −0.0877232 0.996145i \(-0.527959\pi\)
0.906548 0.422102i \(-0.138708\pi\)
\(258\) −7.28096 4.20366i −0.453293 0.261709i
\(259\) 3.72418 6.45047i 0.231409 0.400813i
\(260\) 0.585880 1.99641i 0.0363347 0.123812i
\(261\) 1.46211 2.53245i 0.0905025 0.156755i
\(262\) −0.502318 + 0.290013i −0.0310333 + 0.0179171i
\(263\) −29.7632 −1.83528 −0.917639 0.397416i \(-0.869907\pi\)
−0.917639 + 0.397416i \(0.869907\pi\)
\(264\) −5.20064 −0.320078
\(265\) −0.857750 + 0.495222i −0.0526912 + 0.0304213i
\(266\) 0.202718 + 0.117039i 0.0124294 + 0.00717613i
\(267\) 13.3796 7.72469i 0.818815 0.472743i
\(268\) 11.1351 + 6.42886i 0.680185 + 0.392705i
\(269\) 0.700445 1.21321i 0.0427069 0.0739705i −0.843882 0.536529i \(-0.819735\pi\)
0.886589 + 0.462559i \(0.153068\pi\)
\(270\) −0.890040 + 1.54159i −0.0541661 + 0.0938185i
\(271\) 12.0091i 0.729503i 0.931105 + 0.364751i \(0.118846\pi\)
−0.931105 + 0.364751i \(0.881154\pi\)
\(272\) −0.412702 0.714821i −0.0250237 0.0433424i
\(273\) 1.45200 4.94774i 0.0878788 0.299451i
\(274\) −3.86784 + 6.69930i −0.233665 + 0.404719i
\(275\) 6.62389i 0.399435i
\(276\) −4.52332 7.83462i −0.272272 0.471589i
\(277\) 11.4159 0.685915 0.342957 0.939351i \(-0.388571\pi\)
0.342957 + 0.939351i \(0.388571\pi\)
\(278\) 5.97352i 0.358268i
\(279\) 2.61944 + 4.30237i 0.156822 + 0.257576i
\(280\) 1.06067i 0.0633873i
\(281\) 3.08535i 0.184057i 0.995756 + 0.0920284i \(0.0293351\pi\)
−0.995756 + 0.0920284i \(0.970665\pi\)
\(282\) 5.55897 + 9.62842i 0.331032 + 0.573364i
\(283\) −22.2452 −1.32234 −0.661170 0.750236i \(-0.729940\pi\)
−0.661170 + 0.750236i \(0.729940\pi\)
\(284\) 11.5672 + 6.67832i 0.686387 + 0.396285i
\(285\) −0.0913501 0.158223i −0.00541111 0.00937232i
\(286\) −3.64638 1.07009i −0.215615 0.0632757i
\(287\) −1.59841 −0.0943511
\(288\) −4.59033 2.65023i −0.270488 0.156166i
\(289\) 7.97088 13.8060i 0.468875 0.812116i
\(290\) 0.508996 0.881608i 0.0298893 0.0517698i
\(291\) −14.8160 + 8.55400i −0.868527 + 0.501444i
\(292\) 4.63092 + 2.67366i 0.271004 + 0.156464i
\(293\) −19.0010 + 10.9703i −1.11005 + 0.640889i −0.938843 0.344345i \(-0.888101\pi\)
−0.171210 + 0.985235i \(0.554768\pi\)
\(294\) 6.70448i 0.391013i
\(295\) 5.27130 0.306907
\(296\) 9.87978 + 17.1123i 0.574251 + 0.994632i
\(297\) −6.70976 3.87388i −0.389340 0.224785i
\(298\) −6.62438 11.4738i −0.383740 0.664657i
\(299\) −3.77323 15.5435i −0.218211 0.898901i
\(300\) −4.92714 + 8.53405i −0.284468 + 0.492714i
\(301\) −6.46323 3.73155i −0.372535 0.215083i
\(302\) 1.73565 0.0998757
\(303\) 3.86649 + 6.69696i 0.222124 + 0.384730i
\(304\) 0.214118 0.123621i 0.0122805 0.00709015i
\(305\) −0.905057 0.522535i −0.0518234 0.0299203i
\(306\) 0.715568i 0.0409063i
\(307\) −16.5909 + 9.57878i −0.946895 + 0.546690i −0.892115 0.451809i \(-0.850779\pi\)
−0.0547797 + 0.998498i \(0.517446\pi\)
\(308\) −1.90796 −0.108716
\(309\) 16.3338 0.929199
\(310\) 0.911890 + 1.49776i 0.0517919 + 0.0850669i
\(311\) −14.8758 −0.843530 −0.421765 0.906705i \(-0.638589\pi\)
−0.421765 + 0.906705i \(0.638589\pi\)
\(312\) 9.44124 + 9.89876i 0.534505 + 0.560407i
\(313\) −11.1105 19.2439i −0.628000 1.08773i −0.987952 0.154758i \(-0.950540\pi\)
0.359952 0.932971i \(-0.382793\pi\)
\(314\) 9.51628i 0.537035i
\(315\) −0.183055 + 0.317060i −0.0103140 + 0.0178643i
\(316\) 10.0050 + 17.3292i 0.562826 + 0.974843i
\(317\) 12.6650 7.31214i 0.711337 0.410691i −0.100219 0.994965i \(-0.531954\pi\)
0.811556 + 0.584275i \(0.198621\pi\)
\(318\) 2.69124i 0.150917i
\(319\) 3.83718 + 2.21540i 0.214841 + 0.124038i
\(320\) −1.02876 0.593952i −0.0575092 0.0332029i
\(321\) 14.2618 24.7021i 0.796014 1.37874i
\(322\) 1.68497 + 2.91845i 0.0938997 + 0.162639i
\(323\) −0.274518 0.158493i −0.0152746 0.00881880i
\(324\) 3.85134 + 6.67072i 0.213964 + 0.370596i
\(325\) −12.6077 + 12.0250i −0.699351 + 0.667026i
\(326\) −16.4102 −0.908877
\(327\) 7.03499 4.06166i 0.389036 0.224610i
\(328\) 2.12019 3.67228i 0.117068 0.202767i
\(329\) 4.93464 + 8.54705i 0.272056 + 0.471214i
\(330\) −0.541191 0.312457i −0.0297916 0.0172002i
\(331\) 20.5644 + 11.8728i 1.13032 + 0.652590i 0.944015 0.329902i \(-0.107016\pi\)
0.186305 + 0.982492i \(0.440349\pi\)
\(332\) 9.04897 + 5.22442i 0.496627 + 0.286728i
\(333\) 6.82035i 0.373753i
\(334\) 6.67265 + 11.5574i 0.365111 + 0.632391i
\(335\) 1.86916 + 3.23749i 0.102123 + 0.176883i
\(336\) 0.993755 + 0.573745i 0.0542138 + 0.0313004i
\(337\) −0.0890634 −0.00485159 −0.00242580 0.999997i \(-0.500772\pi\)
−0.00242580 + 0.999997i \(0.500772\pi\)
\(338\) 4.58285 + 8.88305i 0.249274 + 0.483174i
\(339\) 1.26212 0.0685488
\(340\) 0.593623i 0.0321937i
\(341\) −6.51896 + 3.96899i −0.353021 + 0.214933i
\(342\) −0.214342 −0.0115903
\(343\) 12.8674i 0.694774i
\(344\) 17.1461 9.89933i 0.924458 0.533736i
\(345\) 2.63027i 0.141609i
\(346\) 9.67621 + 5.58656i 0.520196 + 0.300335i
\(347\) 6.69253 + 11.5918i 0.359274 + 0.622281i 0.987840 0.155476i \(-0.0496910\pi\)
−0.628566 + 0.777757i \(0.716358\pi\)
\(348\) −3.29582 5.70853i −0.176675 0.306009i
\(349\) 6.57832i 0.352130i −0.984379 0.176065i \(-0.943663\pi\)
0.984379 0.176065i \(-0.0563368\pi\)
\(350\) 1.83540 3.17900i 0.0981061 0.169925i
\(351\) 4.80745 + 19.8038i 0.256602 + 1.05705i
\(352\) 4.01563 6.95527i 0.214034 0.370717i
\(353\) 10.3118 5.95351i 0.548841 0.316873i −0.199813 0.979834i \(-0.564034\pi\)
0.748654 + 0.662961i \(0.230700\pi\)
\(354\) −7.16161 + 12.4043i −0.380635 + 0.659280i
\(355\) 1.94169 + 3.36311i 0.103054 + 0.178495i
\(356\) 15.0362i 0.796918i
\(357\) 1.47118i 0.0778633i
\(358\) −1.72914 + 0.998320i −0.0913879 + 0.0527628i
\(359\) 5.29131 + 3.05494i 0.279265 + 0.161234i 0.633091 0.774078i \(-0.281786\pi\)
−0.353826 + 0.935311i \(0.615119\pi\)
\(360\) −0.485621 0.841119i −0.0255944 0.0443309i
\(361\) −9.45252 + 16.3723i −0.497501 + 0.861698i
\(362\) 2.48536 + 1.43492i 0.130628 + 0.0754180i
\(363\) −6.60141 + 11.4340i −0.346484 + 0.600128i
\(364\) 3.46370 + 3.63155i 0.181547 + 0.190345i
\(365\) 0.777356 + 1.34642i 0.0406887 + 0.0704748i
\(366\) 2.45923 1.41984i 0.128546 0.0742160i
\(367\) 3.39668 5.88322i 0.177305 0.307102i −0.763651 0.645629i \(-0.776595\pi\)
0.940957 + 0.338527i \(0.109929\pi\)
\(368\) 3.55946 0.185549
\(369\) 1.26755 0.731819i 0.0659859 0.0380970i
\(370\) 2.37433i 0.123435i
\(371\) 2.38899i 0.124030i
\(372\) 11.3512 0.264457i 0.588531 0.0137115i
\(373\) −15.9272 −0.824677 −0.412338 0.911031i \(-0.635288\pi\)
−0.412338 + 0.911031i \(0.635288\pi\)
\(374\) −1.08423 −0.0560642
\(375\) −5.04863 + 2.91483i −0.260710 + 0.150521i
\(376\) −26.1820 −1.35023
\(377\) −2.74928 11.3254i −0.141595 0.583288i
\(378\) −2.14681 3.71838i −0.110420 0.191253i
\(379\) 12.9183 7.45839i 0.663569 0.383112i −0.130067 0.991505i \(-0.541519\pi\)
0.793635 + 0.608394i \(0.208186\pi\)
\(380\) 0.177814 0.00912168
\(381\) −4.68223 + 8.10986i −0.239878 + 0.415481i
\(382\) −4.22530 2.43948i −0.216185 0.124815i
\(383\) 10.0296 + 5.79062i 0.512491 + 0.295887i 0.733857 0.679304i \(-0.237718\pi\)
−0.221366 + 0.975191i \(0.571052\pi\)
\(384\) −11.8940 + 6.86703i −0.606965 + 0.350431i
\(385\) −0.480410 0.277365i −0.0244839 0.0141358i
\(386\) 8.78328 + 15.2131i 0.447057 + 0.774326i
\(387\) 6.83384 0.347384
\(388\) 16.6505i 0.845300i
\(389\) 6.35730 + 11.0112i 0.322328 + 0.558288i 0.980968 0.194170i \(-0.0622014\pi\)
−0.658640 + 0.752458i \(0.728868\pi\)
\(390\) 0.387755 + 1.59732i 0.0196348 + 0.0808835i
\(391\) −2.28177 3.95214i −0.115394 0.199868i
\(392\) 13.6733 + 7.89429i 0.690607 + 0.398722i
\(393\) −0.545984 + 0.945672i −0.0275412 + 0.0477028i
\(394\) −1.39363 + 2.41383i −0.0702099 + 0.121607i
\(395\) 5.81782i 0.292727i
\(396\) 1.51302 0.873542i 0.0760321 0.0438971i
\(397\) 32.7281 18.8956i 1.64258 0.948342i 0.662663 0.748918i \(-0.269426\pi\)
0.979913 0.199424i \(-0.0639071\pi\)
\(398\) 2.08028 + 1.20105i 0.104275 + 0.0602031i
\(399\) 0.440680 0.0220616
\(400\) −1.93861 3.35778i −0.0969307 0.167889i
\(401\) 11.9218i 0.595347i 0.954668 + 0.297673i \(0.0962106\pi\)
−0.954668 + 0.297673i \(0.903789\pi\)
\(402\) −10.1578 −0.506625
\(403\) 19.3890 + 5.20272i 0.965833 + 0.259166i
\(404\) −7.52618 −0.374441
\(405\) 2.23952i 0.111283i
\(406\) 1.22772 + 2.12647i 0.0609306 + 0.105535i
\(407\) −10.3342 −0.512248
\(408\) 3.37998 + 1.95143i 0.167334 + 0.0966103i
\(409\) 14.5460 8.39813i 0.719253 0.415261i −0.0952249 0.995456i \(-0.530357\pi\)
0.814478 + 0.580195i \(0.197024\pi\)
\(410\) 0.441264 0.254764i 0.0217925 0.0125819i
\(411\) 14.5633i 0.718356i
\(412\) −7.94851 + 13.7672i −0.391595 + 0.678262i
\(413\) −6.35729 + 11.0111i −0.312822 + 0.541823i
\(414\) −2.67238 1.54290i −0.131340 0.0758294i
\(415\) 1.51898 + 2.63095i 0.0745637 + 0.129148i
\(416\) −20.5284 + 4.98335i −1.00649 + 0.244329i
\(417\) 5.62293 + 9.73919i 0.275356 + 0.476930i
\(418\) 0.324771i 0.0158851i
\(419\) 8.09045 0.395244 0.197622 0.980278i \(-0.436678\pi\)
0.197622 + 0.980278i \(0.436678\pi\)
\(420\) 0.412632 + 0.714700i 0.0201344 + 0.0348738i
\(421\) −10.4090 6.00965i −0.507305 0.292892i 0.224420 0.974492i \(-0.427951\pi\)
−0.731725 + 0.681600i \(0.761284\pi\)
\(422\) 4.35352 2.51351i 0.211926 0.122356i
\(423\) −7.82640 4.51857i −0.380533 0.219701i
\(424\) 5.48860 + 3.16884i 0.266550 + 0.153893i
\(425\) −2.48548 + 4.30497i −0.120563 + 0.208822i
\(426\) −10.5520 −0.511244
\(427\) 2.18303 1.26037i 0.105644 0.0609938i
\(428\) 13.8804 + 24.0415i 0.670933 + 1.16209i
\(429\) −6.95231 + 1.68770i −0.335661 + 0.0814828i
\(430\) 2.37902 0.114727
\(431\) −15.2654 + 8.81348i −0.735309 + 0.424531i −0.820361 0.571846i \(-0.806228\pi\)
0.0850525 + 0.996376i \(0.472894\pi\)
\(432\) −4.53508 −0.218194
\(433\) 26.4596 1.27157 0.635783 0.771867i \(-0.280677\pi\)
0.635783 + 0.771867i \(0.280677\pi\)
\(434\) −4.22840 + 0.0985123i −0.202970 + 0.00472874i
\(435\) 1.91649i 0.0918887i
\(436\) 7.90607i 0.378632i
\(437\) 1.18383 0.683483i 0.0566301 0.0326954i
\(438\) −4.22447 −0.201853
\(439\) 4.38412 7.59352i 0.209243 0.362419i −0.742234 0.670141i \(-0.766233\pi\)
0.951476 + 0.307722i \(0.0995668\pi\)
\(440\) 1.27447 0.735813i 0.0607578 0.0350785i
\(441\) 2.72485 + 4.71957i 0.129755 + 0.224742i
\(442\) 1.96831 + 2.06369i 0.0936229 + 0.0981599i
\(443\) −4.33949 + 7.51622i −0.206175 + 0.357106i −0.950507 0.310704i \(-0.899435\pi\)
0.744331 + 0.667811i \(0.232768\pi\)
\(444\) 13.3143 + 7.68704i 0.631871 + 0.364811i
\(445\) −2.18586 + 3.78601i −0.103619 + 0.179474i
\(446\) −1.72153 2.98178i −0.0815168 0.141191i
\(447\) −21.6007 12.4712i −1.02168 0.589866i
\(448\) 2.48140 1.43263i 0.117235 0.0676856i
\(449\) 22.5287i 1.06320i −0.846997 0.531598i \(-0.821592\pi\)
0.846997 0.531598i \(-0.178408\pi\)
\(450\) 3.36129i 0.158453i
\(451\) 1.10885 + 1.92059i 0.0522139 + 0.0904371i
\(452\) −0.614182 + 1.06379i −0.0288887 + 0.0500367i
\(453\) 2.82980 1.63379i 0.132956 0.0767619i
\(454\) 3.32196 5.75381i 0.155907 0.270039i
\(455\) 0.344206 + 1.41793i 0.0161366 + 0.0664734i
\(456\) −0.584534 + 1.01244i −0.0273733 + 0.0474120i
\(457\) 31.8776i 1.49117i −0.666410 0.745585i \(-0.732170\pi\)
0.666410 0.745585i \(-0.267830\pi\)
\(458\) 3.70059 + 6.40961i 0.172917 + 0.299501i
\(459\) 2.90719 + 5.03540i 0.135696 + 0.235032i
\(460\) 2.21696 + 1.27996i 0.103366 + 0.0596786i
\(461\) 7.24046i 0.337222i 0.985683 + 0.168611i \(0.0539282\pi\)
−0.985683 + 0.168611i \(0.946072\pi\)
\(462\) 1.30537 0.753657i 0.0607314 0.0350633i
\(463\) 12.0837i 0.561576i 0.959770 + 0.280788i \(0.0905958\pi\)
−0.959770 + 0.280788i \(0.909404\pi\)
\(464\) 2.59352 0.120401
\(465\) 2.89659 + 1.58356i 0.134326 + 0.0734360i
\(466\) 15.5896i 0.722175i
\(467\) 10.6866 0.494518 0.247259 0.968949i \(-0.420470\pi\)
0.247259 + 0.968949i \(0.420470\pi\)
\(468\) −4.40941 1.29401i −0.203825 0.0598157i
\(469\) −9.01698 −0.416365
\(470\) −2.72456 1.57302i −0.125674 0.0725582i
\(471\) −8.95775 15.5153i −0.412751 0.714906i
\(472\) −16.8651 29.2112i −0.776278 1.34455i
\(473\) 10.3547i 0.476107i
\(474\) −13.6903 7.90412i −0.628818 0.363048i
\(475\) −1.28951 0.744501i −0.0591669 0.0341601i
\(476\) 1.24001 + 0.715920i 0.0568358 + 0.0328142i
\(477\) 1.09378 + 1.89448i 0.0500807 + 0.0867424i
\(478\) −2.89665 + 5.01714i −0.132490 + 0.229479i
\(479\) −32.0732 + 18.5175i −1.46546 + 0.846086i −0.999255 0.0385892i \(-0.987714\pi\)
−0.466208 + 0.884675i \(0.654380\pi\)
\(480\) −3.47383 −0.158558
\(481\) 18.7607 + 19.6698i 0.855414 + 0.896868i
\(482\) 4.95382 + 8.58028i 0.225641 + 0.390821i
\(483\) 5.49433 + 3.17215i 0.250001 + 0.144338i
\(484\) −6.42487 11.1282i −0.292039 0.505827i
\(485\) 2.42052 4.19247i 0.109910 0.190370i
\(486\) 6.02085 + 3.47614i 0.273111 + 0.157681i
\(487\) −26.0934 15.0650i −1.18240 0.682661i −0.225834 0.974166i \(-0.572511\pi\)
−0.956569 + 0.291505i \(0.905844\pi\)
\(488\) 6.68723i 0.302716i
\(489\) −26.7551 + 15.4471i −1.20991 + 0.698540i
\(490\) 0.948584 + 1.64300i 0.0428527 + 0.0742230i
\(491\) −0.301927 + 0.522953i −0.0136258 + 0.0236005i −0.872758 0.488153i \(-0.837671\pi\)
0.859132 + 0.511754i \(0.171004\pi\)
\(492\) 3.29926i 0.148742i
\(493\) −1.66256 2.87964i −0.0748781 0.129693i
\(494\) −0.618160 + 0.589589i −0.0278124 + 0.0265269i
\(495\) 0.507957 0.0228310
\(496\) −2.14298 + 3.91986i −0.0962228 + 0.176007i
\(497\) −9.36687 −0.420161
\(498\) −8.25476 −0.369904
\(499\) 31.7952 18.3570i 1.42335 0.821770i 0.426765 0.904363i \(-0.359653\pi\)
0.996583 + 0.0825924i \(0.0263200\pi\)
\(500\) 5.67375i 0.253738i
\(501\) 21.7581 + 12.5620i 0.972079 + 0.561230i
\(502\) −10.1236 + 5.84486i −0.451838 + 0.260869i
\(503\) −11.2292 19.4496i −0.500686 0.867213i −1.00000 0.000792110i \(-0.999748\pi\)
0.499314 0.866421i \(-0.333585\pi\)
\(504\) 2.34267 0.104351
\(505\) −1.89504 1.09410i −0.0843281 0.0486869i
\(506\) 2.33781 4.04920i 0.103928 0.180009i
\(507\) 15.8335 + 10.1690i 0.703192 + 0.451621i
\(508\) −4.55701 7.89297i −0.202185 0.350194i
\(509\) −16.6693 9.62404i −0.738855 0.426578i 0.0827980 0.996566i \(-0.473614\pi\)
−0.821653 + 0.569988i \(0.806948\pi\)
\(510\) 0.234486 + 0.406141i 0.0103832 + 0.0179842i
\(511\) −3.75002 −0.165891
\(512\) 8.90703i 0.393639i
\(513\) −1.50831 + 0.870821i −0.0665934 + 0.0384477i
\(514\) −17.4816 10.0930i −0.771081 0.445184i
\(515\) −4.00276 + 2.31099i −0.176383 + 0.101835i
\(516\) 7.70225 13.3407i 0.339072 0.587291i
\(517\) 6.84655 11.8586i 0.301111 0.521540i
\(518\) −4.95969 2.86348i −0.217916 0.125814i
\(519\) 21.0347 0.923321
\(520\) −3.71419 1.08999i −0.162878 0.0477992i
\(521\) −12.2705 21.2532i −0.537582 0.931120i −0.999034 0.0439543i \(-0.986004\pi\)
0.461451 0.887166i \(-0.347329\pi\)
\(522\) −1.94717 1.12420i −0.0852255 0.0492050i
\(523\) 6.53866 0.285916 0.142958 0.989729i \(-0.454339\pi\)
0.142958 + 0.989729i \(0.454339\pi\)
\(524\) −0.531382 0.920381i −0.0232135 0.0402070i
\(525\) 6.91070i 0.301607i
\(526\) 22.8846i 0.997815i
\(527\) 5.72605 0.133404i 0.249431 0.00581118i
\(528\) 1.59208i 0.0692864i
\(529\) −3.32029 −0.144360
\(530\) 0.380771 + 0.659514i 0.0165396 + 0.0286475i
\(531\) 11.6425i 0.505243i
\(532\) −0.214447 + 0.371434i −0.00929747 + 0.0161037i
\(533\) 1.64259 5.59720i 0.0711484 0.242442i
\(534\) −5.93942 10.2874i −0.257024 0.445179i
\(535\) 8.07131i 0.348953i
\(536\) 11.9605 20.7161i 0.516613 0.894800i
\(537\) −1.87945 + 3.25531i −0.0811044 + 0.140477i
\(538\) −0.932821 0.538564i −0.0402168 0.0232192i
\(539\) −7.15111 + 4.12870i −0.308020 + 0.177835i
\(540\) −2.82462 1.63079i −0.121552 0.0701782i
\(541\) 8.02611 4.63387i 0.345069 0.199226i −0.317442 0.948278i \(-0.602824\pi\)
0.662511 + 0.749052i \(0.269491\pi\)
\(542\) 9.23368 0.396621
\(543\) 5.40282 0.231857
\(544\) −5.21964 + 3.01356i −0.223790 + 0.129205i
\(545\) −1.14933 + 1.99069i −0.0492318 + 0.0852719i
\(546\) −3.80426 1.11642i −0.162807 0.0477785i
\(547\) 0.907659 1.57211i 0.0388087 0.0672186i −0.845969 0.533233i \(-0.820977\pi\)
0.884777 + 0.466014i \(0.154310\pi\)
\(548\) −12.2749 7.08693i −0.524358 0.302738i
\(549\) −1.15410 + 1.99897i −0.0492560 + 0.0853138i
\(550\) −5.09303 −0.217167
\(551\) 0.862571 0.498005i 0.0367467 0.0212157i
\(552\) −14.5758 + 8.41532i −0.620386 + 0.358180i
\(553\) −12.1528 7.01640i −0.516788 0.298368i
\(554\) 8.77755i 0.372922i
\(555\) 2.23497 + 3.87109i 0.0948693 + 0.164318i
\(556\) −10.9451 −0.464176
\(557\) 21.3312i 0.903833i 0.892060 + 0.451917i \(0.149260\pi\)
−0.892060 + 0.451917i \(0.850740\pi\)
\(558\) 3.30804 2.01406i 0.140041 0.0852619i
\(559\) 19.7088 18.7978i 0.833592 0.795063i
\(560\) −0.324705 −0.0137213
\(561\) −1.76772 + 1.02059i −0.0746333 + 0.0430896i
\(562\) 2.37229 0.100069
\(563\) 7.06219 12.2321i 0.297636 0.515520i −0.677959 0.735100i \(-0.737135\pi\)
0.975595 + 0.219580i \(0.0704685\pi\)
\(564\) −17.6419 + 10.1855i −0.742857 + 0.428889i
\(565\) −0.309293 + 0.178571i −0.0130121 + 0.00751252i
\(566\) 17.1041i 0.718938i
\(567\) −4.67811 2.70091i −0.196462 0.113427i
\(568\) 12.4246 21.5200i 0.521323 0.902958i
\(569\) 21.1174 36.5764i 0.885288 1.53336i 0.0399054 0.999203i \(-0.487294\pi\)
0.845383 0.534161i \(-0.179372\pi\)
\(570\) −0.121656 + 0.0702380i −0.00509560 + 0.00294195i
\(571\) −12.6496 + 21.9097i −0.529368 + 0.916893i 0.470045 + 0.882643i \(0.344238\pi\)
−0.999413 + 0.0342505i \(0.989096\pi\)
\(572\) 1.96069 6.68114i 0.0819806 0.279353i
\(573\) −9.18521 −0.383718
\(574\) 1.22900i 0.0512974i
\(575\) −10.7183 18.5647i −0.446985 0.774200i
\(576\) −1.31184 + 2.27217i −0.0546600 + 0.0946739i
\(577\) 9.75219 5.63043i 0.405989 0.234398i −0.283076 0.959098i \(-0.591355\pi\)
0.689065 + 0.724700i \(0.258022\pi\)
\(578\) −10.6152 6.12872i −0.441536 0.254921i
\(579\) 28.6404 + 16.5355i 1.19025 + 0.687194i
\(580\) 1.61534 + 0.932619i 0.0670735 + 0.0387249i
\(581\) −7.32766 −0.304003
\(582\) 6.57707 + 11.3918i 0.272628 + 0.472206i
\(583\) −2.87052 + 1.65730i −0.118885 + 0.0686382i
\(584\) 4.97417 8.61551i 0.205832 0.356512i
\(585\) −0.922144 0.966831i −0.0381259 0.0399735i
\(586\) 8.43491 + 14.6097i 0.348443 + 0.603521i
\(587\) 1.88917i 0.0779744i 0.999240 + 0.0389872i \(0.0124132\pi\)
−0.999240 + 0.0389872i \(0.987587\pi\)
\(588\) 12.2844 0.506601
\(589\) 0.0399600 + 1.71519i 0.00164652 + 0.0706730i
\(590\) 4.05304i 0.166861i
\(591\) 5.24733i 0.215846i
\(592\) −5.23861 + 3.02451i −0.215306 + 0.124307i
\(593\) 40.8014i 1.67551i −0.546045 0.837756i \(-0.683867\pi\)
0.546045 0.837756i \(-0.316133\pi\)
\(594\) −2.97858 + 5.15906i −0.122213 + 0.211679i
\(595\) 0.208151 + 0.360527i 0.00853334 + 0.0147802i
\(596\) 21.0230 12.1376i 0.861136 0.497177i
\(597\) 4.52223 0.185082
\(598\) −11.9512 + 2.90119i −0.488720 + 0.118639i
\(599\) 18.2936 31.6854i 0.747455 1.29463i −0.201584 0.979471i \(-0.564609\pi\)
0.949039 0.315158i \(-0.102058\pi\)
\(600\) 15.8770 + 9.16660i 0.648177 + 0.374225i
\(601\) −1.36499 2.36424i −0.0556792 0.0964393i 0.836842 0.547444i \(-0.184399\pi\)
−0.892522 + 0.451005i \(0.851066\pi\)
\(602\) −2.86915 + 4.96951i −0.116938 + 0.202542i
\(603\) 7.15051 4.12835i 0.291191 0.168119i
\(604\) 3.18019i 0.129400i
\(605\) 3.73600i 0.151890i
\(606\) 5.14921 2.97290i 0.209172 0.120766i
\(607\) −8.24022 + 14.2725i −0.334460 + 0.579302i −0.983381 0.181554i \(-0.941887\pi\)
0.648921 + 0.760856i \(0.275221\pi\)
\(608\) −0.902685 1.56350i −0.0366087 0.0634081i
\(609\) 4.00333 + 2.31132i 0.162223 + 0.0936595i
\(610\) −0.401771 + 0.695888i −0.0162672 + 0.0281757i
\(611\) −35.0005 + 8.49650i −1.41597 + 0.343732i
\(612\) −1.31111 −0.0529986
\(613\) −10.5290 + 6.07891i −0.425262 + 0.245525i −0.697326 0.716754i \(-0.745627\pi\)
0.272064 + 0.962279i \(0.412294\pi\)
\(614\) 7.36501 + 12.7566i 0.297228 + 0.514813i
\(615\) 0.479622 0.830730i 0.0193402 0.0334983i
\(616\) 3.54962i 0.143018i
\(617\) −18.7421 + 10.8208i −0.754529 + 0.435627i −0.827328 0.561719i \(-0.810140\pi\)
0.0727991 + 0.997347i \(0.476807\pi\)
\(618\) 12.5589i 0.505193i
\(619\) 14.6930i 0.590560i −0.955411 0.295280i \(-0.904587\pi\)
0.955411 0.295280i \(-0.0954129\pi\)
\(620\) −2.74429 + 1.67083i −0.110213 + 0.0671021i
\(621\) −25.0738 −1.00618
\(622\) 11.4378i 0.458616i
\(623\) −5.27236 9.13200i −0.211233 0.365866i
\(624\) −3.03032 + 2.89026i −0.121310 + 0.115703i
\(625\) −11.2558 + 19.4955i −0.450230 + 0.779821i
\(626\) −14.7964 + 8.54270i −0.591383 + 0.341435i
\(627\) −0.305710 0.529505i −0.0122089 0.0211464i
\(628\) 17.4364 0.695788
\(629\) 6.71637 + 3.87770i 0.267799 + 0.154614i
\(630\) 0.243784 + 0.140748i 0.00971257 + 0.00560755i
\(631\) −10.1198 5.84267i −0.402863 0.232593i 0.284856 0.958570i \(-0.408054\pi\)
−0.687718 + 0.725978i \(0.741388\pi\)
\(632\) 32.2398 18.6136i 1.28243 0.740410i
\(633\) 4.73197 8.19601i 0.188079 0.325762i
\(634\) −5.62222 9.73797i −0.223287 0.386744i
\(635\) 2.64986i 0.105157i
\(636\) 4.93108 0.195530
\(637\) 20.8406 + 6.11600i 0.825733 + 0.242325i
\(638\) 1.70339 2.95036i 0.0674380 0.116806i
\(639\) 7.42798 4.28854i 0.293846 0.169652i
\(640\) 1.94316 3.36566i 0.0768103 0.133039i
\(641\) 11.0342 19.1118i 0.435825 0.754871i −0.561538 0.827451i \(-0.689790\pi\)
0.997363 + 0.0725803i \(0.0231234\pi\)
\(642\) −18.9932 10.9657i −0.749600 0.432782i
\(643\) 32.5200i 1.28246i 0.767347 + 0.641232i \(0.221576\pi\)
−0.767347 + 0.641232i \(0.778424\pi\)
\(644\) −5.34740 + 3.08732i −0.210717 + 0.121657i
\(645\) 3.87874 2.23939i 0.152725 0.0881760i
\(646\) −0.121864 + 0.211074i −0.00479466 + 0.00830459i
\(647\) −37.5850 −1.47762 −0.738810 0.673914i \(-0.764612\pi\)
−0.738810 + 0.673914i \(0.764612\pi\)
\(648\) 12.4104 7.16516i 0.487527 0.281474i
\(649\) 17.6408 0.692462
\(650\) 9.24587 + 9.69393i 0.362653 + 0.380227i
\(651\) −6.80122 + 4.14084i −0.266561 + 0.162292i
\(652\) 30.0679i 1.17755i
\(653\) 8.78391 0.343741 0.171870 0.985120i \(-0.445019\pi\)
0.171870 + 0.985120i \(0.445019\pi\)
\(654\) −3.12296 5.40913i −0.122117 0.211514i
\(655\) 0.308994i 0.0120734i
\(656\) 1.12420 + 0.649057i 0.0438926 + 0.0253414i
\(657\) 2.97379 1.71692i 0.116019 0.0669833i
\(658\) 6.57173 3.79419i 0.256193 0.147913i
\(659\) 8.22232 0.320296 0.160148 0.987093i \(-0.448803\pi\)
0.160148 + 0.987093i \(0.448803\pi\)
\(660\) 0.572505 0.991608i 0.0222847 0.0385983i
\(661\) 9.75493 + 5.63201i 0.379423 + 0.219060i 0.677567 0.735461i \(-0.263034\pi\)
−0.298144 + 0.954521i \(0.596368\pi\)
\(662\) 9.12889 15.8117i 0.354804 0.614539i
\(663\) 5.15169 + 1.51185i 0.200075 + 0.0587153i
\(664\) 9.71968 16.8350i 0.377197 0.653324i
\(665\) −0.107993 + 0.0623496i −0.00418778 + 0.00241781i
\(666\) 5.24409 0.203204
\(667\) 14.3392 0.555216
\(668\) −21.1762 + 12.2261i −0.819332 + 0.473042i
\(669\) −5.61354 3.24098i −0.217032 0.125304i
\(670\) 2.48926 1.43718i 0.0961687 0.0555230i
\(671\) −3.02884 1.74870i −0.116927 0.0675079i
\(672\) 4.18950 7.25643i 0.161614 0.279923i
\(673\) −2.96767 + 5.14015i −0.114395 + 0.198138i −0.917538 0.397649i \(-0.869826\pi\)
0.803143 + 0.595787i \(0.203160\pi\)
\(674\) 0.0684798i 0.00263774i
\(675\) 13.6561 + 23.6531i 0.525625 + 0.910409i
\(676\) −16.2761 + 8.39701i −0.626005 + 0.322962i
\(677\) 0.854614 1.48023i 0.0328455 0.0568900i −0.849135 0.528175i \(-0.822876\pi\)
0.881981 + 0.471285i \(0.156210\pi\)
\(678\) 0.970427i 0.0372690i
\(679\) 5.83840 + 10.1124i 0.224057 + 0.388078i
\(680\) −1.10439 −0.0423516
\(681\) 12.5080i 0.479306i
\(682\) 3.05171 + 5.01235i 0.116856 + 0.191933i
\(683\) 20.1006i 0.769128i 0.923098 + 0.384564i \(0.125648\pi\)
−0.923098 + 0.384564i \(0.874352\pi\)
\(684\) 0.392732i 0.0150165i
\(685\) −2.06049 3.56888i −0.0787274 0.136360i
\(686\) −9.89358 −0.377739
\(687\) 12.0668 + 6.96679i 0.460379 + 0.265800i
\(688\) 3.03050 + 5.24897i 0.115537 + 0.200115i
\(689\) 8.36560 + 2.45502i 0.318704 + 0.0935288i
\(690\) −2.02238 −0.0769908
\(691\) −12.2320 7.06214i −0.465327 0.268657i 0.248955 0.968515i \(-0.419913\pi\)
−0.714281 + 0.699859i \(0.753246\pi\)
\(692\) −10.2361 + 17.7294i −0.389118 + 0.673972i
\(693\) −0.612605 + 1.06106i −0.0232709 + 0.0403065i
\(694\) 8.91281 5.14581i 0.338326 0.195332i
\(695\) −2.75590 1.59112i −0.104537 0.0603546i
\(696\) −10.6203 + 6.13165i −0.402562 + 0.232419i
\(697\) 1.66430i 0.0630397i
\(698\) −5.05800 −0.191448
\(699\) −14.6746 25.4172i −0.555046 0.961367i
\(700\) 5.82479 + 3.36294i 0.220156 + 0.127107i
\(701\) −6.15837 10.6666i −0.232599 0.402872i 0.725974 0.687723i \(-0.241389\pi\)
−0.958572 + 0.284850i \(0.908056\pi\)
\(702\) 15.2269 3.69639i 0.574703 0.139511i
\(703\) −1.16153 + 2.01183i −0.0438079 + 0.0758774i
\(704\) −3.44280 1.98770i −0.129756 0.0749144i
\(705\) −5.92280 −0.223066
\(706\) −4.57759 7.92861i −0.172280 0.298397i
\(707\) 4.57090 2.63901i 0.171906 0.0992503i
\(708\) −22.7280 13.1220i −0.854169 0.493155i
\(709\) 33.6428i 1.26348i −0.775180 0.631740i \(-0.782341\pi\)
0.775180 0.631740i \(-0.217659\pi\)
\(710\) 2.58586 1.49294i 0.0970454 0.0560292i
\(711\) 12.8496 0.481898
\(712\) 27.9738 1.04836
\(713\) −11.8482 + 21.6723i −0.443720 + 0.811635i
\(714\) −1.13118 −0.0423332
\(715\) 1.46494 1.39723i 0.0547858 0.0522536i
\(716\) −1.82919 3.16825i −0.0683601 0.118403i
\(717\) 10.9065i 0.407313i
\(718\) 2.34891 4.06843i 0.0876605 0.151832i
\(719\) −4.51085 7.81302i −0.168226 0.291377i 0.769570 0.638562i \(-0.220471\pi\)
−0.937796 + 0.347186i \(0.887137\pi\)
\(720\) 0.257493 0.148664i 0.00959620 0.00554037i
\(721\) 11.1484i 0.415188i
\(722\) 12.5884 + 7.26794i 0.468493 + 0.270485i
\(723\) 16.1534 + 9.32615i 0.600750 + 0.346843i
\(724\) −2.62917 + 4.55385i −0.0977123 + 0.169243i
\(725\) −7.80967 13.5267i −0.290044 0.502371i
\(726\) 8.79145 + 5.07575i 0.326281 + 0.188379i
\(727\) 11.9416 + 20.6835i 0.442890 + 0.767109i 0.997903 0.0647335i \(-0.0206197\pi\)
−0.555012 + 0.831842i \(0.687286\pi\)
\(728\) 6.75625 6.44397i 0.250403 0.238829i
\(729\) 29.4910 1.09226
\(730\) 1.03525 0.597700i 0.0383162 0.0221219i
\(731\) 3.88537 6.72965i 0.143705 0.248905i
\(732\) 2.60152 + 4.50597i 0.0961550 + 0.166545i
\(733\) 42.3885 + 24.4730i 1.56566 + 0.903932i 0.996666 + 0.0815877i \(0.0259991\pi\)
0.568990 + 0.822344i \(0.307334\pi\)
\(734\) −4.52354 2.61167i −0.166967 0.0963984i
\(735\) 3.09313 + 1.78582i 0.114092 + 0.0658710i
\(736\) 25.9912i 0.958050i
\(737\) 6.25529 + 10.8345i 0.230417 + 0.399093i
\(738\) −0.562687 0.974603i −0.0207128 0.0358756i
\(739\) −39.2840 22.6806i −1.44509 0.834321i −0.446903 0.894582i \(-0.647473\pi\)
−0.998183 + 0.0602614i \(0.980807\pi\)
\(740\) −4.35040 −0.159924
\(741\) −0.452860 + 1.54314i −0.0166362 + 0.0566887i
\(742\) −1.83687 −0.0674335
\(743\) 51.5272i 1.89035i 0.326564 + 0.945175i \(0.394109\pi\)
−0.326564 + 0.945175i \(0.605891\pi\)
\(744\) −0.492004 21.1181i −0.0180377 0.774226i
\(745\) 7.05793 0.258583
\(746\) 12.2462i 0.448365i
\(747\) 5.81088 3.35491i 0.212609 0.122750i
\(748\) 1.98660i 0.0726374i
\(749\) −16.8600 9.73415i −0.616052 0.355678i
\(750\) 2.24118 + 3.88183i 0.0818362 + 0.141744i
\(751\) 12.8428 + 22.2445i 0.468642 + 0.811712i 0.999358 0.0358383i \(-0.0114101\pi\)
−0.530716 + 0.847550i \(0.678077\pi\)
\(752\) 8.01513i 0.292282i
\(753\) −11.0036 + 19.0588i −0.400994 + 0.694542i
\(754\) −8.70798 + 2.11389i −0.317126 + 0.0769834i
\(755\) −0.462312 + 0.800749i −0.0168253 + 0.0291422i
\(756\) 6.81308 3.93353i 0.247789 0.143061i
\(757\) −20.4731 + 35.4605i −0.744109 + 1.28883i 0.206501 + 0.978446i \(0.433792\pi\)
−0.950610 + 0.310388i \(0.899541\pi\)
\(758\) −5.73467 9.93274i −0.208292 0.360773i
\(759\) 8.80239i 0.319506i
\(760\) 0.330811i 0.0119998i
\(761\) −12.2274 + 7.05950i −0.443244 + 0.255907i −0.704973 0.709235i \(-0.749041\pi\)
0.261729 + 0.965141i \(0.415707\pi\)
\(762\) 6.23557 + 3.60011i 0.225891 + 0.130418i
\(763\) −2.77222 4.80163i −0.100361 0.173830i
\(764\) 4.46978 7.74189i 0.161711 0.280092i