Properties

Label 403.2.l.c.25.12
Level 403
Weight 2
Character 403.25
Analytic conductor 3.218
Analytic rank 0
Dimension 68
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 403 = 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 403.l (of order \(6\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.12
Character \(\chi\) = 403.25
Dual form 403.2.l.c.129.23

$q$-expansion

\(f(q)\) \(=\) \(q-0.921357i q^{2} +(-0.264605 - 0.458309i) q^{3} +1.15110 q^{4} +(-2.89414 - 1.67093i) q^{5} +(-0.422266 + 0.243795i) q^{6} +(-0.336375 + 0.194206i) q^{7} -2.90329i q^{8} +(1.35997 - 2.35553i) q^{9} +O(q^{10})\) \(q-0.921357i q^{2} +(-0.264605 - 0.458309i) q^{3} +1.15110 q^{4} +(-2.89414 - 1.67093i) q^{5} +(-0.422266 + 0.243795i) q^{6} +(-0.336375 + 0.194206i) q^{7} -2.90329i q^{8} +(1.35997 - 2.35553i) q^{9} +(-1.53952 + 2.66653i) q^{10} +(1.48736 + 0.858726i) q^{11} +(-0.304587 - 0.527560i) q^{12} +(-2.58614 + 2.51235i) q^{13} +(0.178933 + 0.309921i) q^{14} +1.76854i q^{15} -0.372763 q^{16} +(-3.39637 - 5.88269i) q^{17} +(-2.17029 - 1.25302i) q^{18} +(-3.04784 + 1.75967i) q^{19} +(-3.33144 - 1.92341i) q^{20} +(0.178013 + 0.102776i) q^{21} +(0.791193 - 1.37039i) q^{22} -5.13958 q^{23} +(-1.33060 + 0.768224i) q^{24} +(3.08402 + 5.34167i) q^{25} +(2.31477 + 2.38276i) q^{26} -3.02705 q^{27} +(-0.387201 + 0.223551i) q^{28} +6.43390 q^{29} +1.62946 q^{30} +(1.53653 - 5.35155i) q^{31} -5.46313i q^{32} -0.908892i q^{33} +(-5.42006 + 3.12927i) q^{34} +1.29802 q^{35} +(1.56546 - 2.71146i) q^{36} +(8.23736 - 4.75584i) q^{37} +(1.62128 + 2.80815i) q^{38} +(1.83574 + 0.520472i) q^{39} +(-4.85119 + 8.40251i) q^{40} +(-2.23586 - 1.29088i) q^{41} +(0.0946930 - 0.164013i) q^{42} +(-0.0134584 - 0.0233107i) q^{43} +(1.71210 + 0.988481i) q^{44} +(-7.87187 + 4.54483i) q^{45} +4.73539i q^{46} +8.52072i q^{47} +(0.0986349 + 0.170841i) q^{48} +(-3.42457 + 5.93153i) q^{49} +(4.92159 - 2.84148i) q^{50} +(-1.79739 + 3.11317i) q^{51} +(-2.97691 + 2.89196i) q^{52} +(5.34839 - 9.26368i) q^{53} +2.78899i q^{54} +(-2.86974 - 4.97054i) q^{55} +(0.563836 + 0.976592i) q^{56} +(1.61294 + 0.931234i) q^{57} -5.92791i q^{58} +(2.19840 - 1.26924i) q^{59} +2.03577i q^{60} +9.90394 q^{61} +(-4.93069 - 1.41569i) q^{62} +1.05646i q^{63} -5.77902 q^{64} +(11.6826 - 2.94981i) q^{65} -0.837414 q^{66} +(-1.42755 - 0.824195i) q^{67} +(-3.90957 - 6.77157i) q^{68} +(1.35996 + 2.35551i) q^{69} -1.19594i q^{70} +(13.4306 + 7.75418i) q^{71} +(-6.83880 - 3.94838i) q^{72} +(0.522668 + 0.301763i) q^{73} +(-4.38183 - 7.58955i) q^{74} +(1.63209 - 2.82686i) q^{75} +(-3.50837 + 2.02556i) q^{76} -0.667079 q^{77} +(0.479541 - 1.69137i) q^{78} +(-1.05400 - 1.82557i) q^{79} +(1.07883 + 0.622861i) q^{80} +(-3.27894 - 5.67928i) q^{81} +(-1.18936 + 2.06003i) q^{82} +(14.4287 + 8.33039i) q^{83} +(0.204911 + 0.118305i) q^{84} +22.7004i q^{85} +(-0.0214775 + 0.0124000i) q^{86} +(-1.70244 - 2.94871i) q^{87} +(2.49313 - 4.31823i) q^{88} -12.7022i q^{89} +(4.18741 + 7.25280i) q^{90} +(0.381999 - 1.34733i) q^{91} -5.91617 q^{92} +(-2.85924 + 0.711841i) q^{93} +7.85063 q^{94} +11.7611 q^{95} +(-2.50380 + 1.44557i) q^{96} +1.89406i q^{97} +(5.46505 + 3.15525i) q^{98} +(4.04552 - 2.33568i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + O(q^{10}) \) \( 68q - 6q^{3} - 76q^{4} - 40q^{9} + 8q^{10} - 10q^{12} - 3q^{13} + 10q^{14} + 84q^{16} + 6q^{17} + 4q^{22} - 44q^{23} + 30q^{25} - 3q^{26} - 12q^{27} + 48q^{29} - 4q^{30} - 48q^{35} + 40q^{36} + 60q^{38} - 14q^{39} + 20q^{40} - 10q^{42} - 12q^{43} + 32q^{48} + 58q^{49} + 20q^{51} - 27q^{52} + 8q^{53} - 36q^{55} - 50q^{56} - 12q^{61} - 74q^{62} - 15q^{65} + 164q^{66} + 4q^{68} - 34q^{69} - 4q^{74} + 20q^{75} - 200q^{77} - 58q^{78} - 80q^{79} - 82q^{81} - 66q^{82} + 52q^{87} + 16q^{88} - 14q^{90} - 70q^{91} + 108q^{92} - 4q^{94} + 76q^{95} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.921357i 0.651498i −0.945456 0.325749i \(-0.894384\pi\)
0.945456 0.325749i \(-0.105616\pi\)
\(3\) −0.264605 0.458309i −0.152770 0.264605i 0.779475 0.626433i \(-0.215486\pi\)
−0.932245 + 0.361829i \(0.882153\pi\)
\(4\) 1.15110 0.575551
\(5\) −2.89414 1.67093i −1.29430 0.747263i −0.314884 0.949130i \(-0.601966\pi\)
−0.979413 + 0.201867i \(0.935299\pi\)
\(6\) −0.422266 + 0.243795i −0.172389 + 0.0995291i
\(7\) −0.336375 + 0.194206i −0.127138 + 0.0734029i −0.562220 0.826988i \(-0.690053\pi\)
0.435082 + 0.900391i \(0.356719\pi\)
\(8\) 2.90329i 1.02647i
\(9\) 1.35997 2.35553i 0.453323 0.785178i
\(10\) −1.53952 + 2.66653i −0.486840 + 0.843232i
\(11\) 1.48736 + 0.858726i 0.448455 + 0.258916i 0.707178 0.707036i \(-0.249968\pi\)
−0.258722 + 0.965952i \(0.583301\pi\)
\(12\) −0.304587 0.527560i −0.0879267 0.152293i
\(13\) −2.58614 + 2.51235i −0.717266 + 0.696799i
\(14\) 0.178933 + 0.309921i 0.0478218 + 0.0828299i
\(15\) 1.76854i 0.456636i
\(16\) −0.372763 −0.0931908
\(17\) −3.39637 5.88269i −0.823741 1.42676i −0.902878 0.429898i \(-0.858550\pi\)
0.0791365 0.996864i \(-0.474784\pi\)
\(18\) −2.17029 1.25302i −0.511542 0.295339i
\(19\) −3.04784 + 1.75967i −0.699222 + 0.403696i −0.807057 0.590473i \(-0.798941\pi\)
0.107836 + 0.994169i \(0.465608\pi\)
\(20\) −3.33144 1.92341i −0.744934 0.430088i
\(21\) 0.178013 + 0.102776i 0.0388455 + 0.0224275i
\(22\) 0.791193 1.37039i 0.168683 0.292167i
\(23\) −5.13958 −1.07168 −0.535838 0.844321i \(-0.680004\pi\)
−0.535838 + 0.844321i \(0.680004\pi\)
\(24\) −1.33060 + 0.768224i −0.271608 + 0.156813i
\(25\) 3.08402 + 5.34167i 0.616803 + 1.06833i
\(26\) 2.31477 + 2.38276i 0.453963 + 0.467297i
\(27\) −3.02705 −0.582555
\(28\) −0.387201 + 0.223551i −0.0731741 + 0.0422471i
\(29\) 6.43390 1.19474 0.597372 0.801964i \(-0.296212\pi\)
0.597372 + 0.801964i \(0.296212\pi\)
\(30\) 1.62946 0.297498
\(31\) 1.53653 5.35155i 0.275969 0.961167i
\(32\) 5.46313i 0.965754i
\(33\) 0.908892i 0.158218i
\(34\) −5.42006 + 3.12927i −0.929532 + 0.536665i
\(35\) 1.29802 0.219405
\(36\) 1.56546 2.71146i 0.260910 0.451910i
\(37\) 8.23736 4.75584i 1.35421 0.781855i 0.365377 0.930860i \(-0.380940\pi\)
0.988837 + 0.149004i \(0.0476068\pi\)
\(38\) 1.62128 + 2.80815i 0.263007 + 0.455541i
\(39\) 1.83574 + 0.520472i 0.293953 + 0.0833423i
\(40\) −4.85119 + 8.40251i −0.767041 + 1.32855i
\(41\) −2.23586 1.29088i −0.349183 0.201601i 0.315142 0.949044i \(-0.397948\pi\)
−0.664326 + 0.747443i \(0.731281\pi\)
\(42\) 0.0946930 0.164013i 0.0146115 0.0253078i
\(43\) −0.0134584 0.0233107i −0.00205239 0.00355485i 0.864997 0.501776i \(-0.167320\pi\)
−0.867050 + 0.498222i \(0.833987\pi\)
\(44\) 1.71210 + 0.988481i 0.258109 + 0.149019i
\(45\) −7.87187 + 4.54483i −1.17347 + 0.677503i
\(46\) 4.73539i 0.698194i
\(47\) 8.52072i 1.24287i 0.783464 + 0.621437i \(0.213451\pi\)
−0.783464 + 0.621437i \(0.786549\pi\)
\(48\) 0.0986349 + 0.170841i 0.0142367 + 0.0246587i
\(49\) −3.42457 + 5.93153i −0.489224 + 0.847361i
\(50\) 4.92159 2.84148i 0.696018 0.401846i
\(51\) −1.79739 + 3.11317i −0.251685 + 0.435932i
\(52\) −2.97691 + 2.89196i −0.412823 + 0.401043i
\(53\) 5.34839 9.26368i 0.734658 1.27246i −0.220216 0.975451i \(-0.570676\pi\)
0.954873 0.297013i \(-0.0959905\pi\)
\(54\) 2.78899i 0.379533i
\(55\) −2.86974 4.97054i −0.386956 0.670228i
\(56\) 0.563836 + 0.976592i 0.0753457 + 0.130503i
\(57\) 1.61294 + 0.931234i 0.213640 + 0.123345i
\(58\) 5.92791i 0.778373i
\(59\) 2.19840 1.26924i 0.286207 0.165242i −0.350023 0.936741i \(-0.613826\pi\)
0.636230 + 0.771499i \(0.280493\pi\)
\(60\) 2.03577i 0.262817i
\(61\) 9.90394 1.26807 0.634035 0.773304i \(-0.281398\pi\)
0.634035 + 0.773304i \(0.281398\pi\)
\(62\) −4.93069 1.41569i −0.626198 0.179793i
\(63\) 1.05646i 0.133101i
\(64\) −5.77902 −0.722377
\(65\) 11.6826 2.94981i 1.44905 0.365879i
\(66\) −0.837414 −0.103079
\(67\) −1.42755 0.824195i −0.174403 0.100691i 0.410257 0.911970i \(-0.365439\pi\)
−0.584660 + 0.811278i \(0.698772\pi\)
\(68\) −3.90957 6.77157i −0.474105 0.821173i
\(69\) 1.35996 + 2.35551i 0.163720 + 0.283571i
\(70\) 1.19594i 0.142942i
\(71\) 13.4306 + 7.75418i 1.59392 + 0.920252i 0.992625 + 0.121226i \(0.0386827\pi\)
0.601298 + 0.799025i \(0.294651\pi\)
\(72\) −6.83880 3.94838i −0.805960 0.465321i
\(73\) 0.522668 + 0.301763i 0.0611737 + 0.0353187i 0.530275 0.847826i \(-0.322089\pi\)
−0.469101 + 0.883144i \(0.655422\pi\)
\(74\) −4.38183 7.58955i −0.509377 0.882267i
\(75\) 1.63209 2.82686i 0.188458 0.326418i
\(76\) −3.50837 + 2.02556i −0.402437 + 0.232347i
\(77\) −0.667079 −0.0760207
\(78\) 0.479541 1.69137i 0.0542973 0.191510i
\(79\) −1.05400 1.82557i −0.118584 0.205393i 0.800623 0.599169i \(-0.204502\pi\)
−0.919207 + 0.393775i \(0.871169\pi\)
\(80\) 1.07883 + 0.622861i 0.120617 + 0.0696380i
\(81\) −3.27894 5.67928i −0.364326 0.631031i
\(82\) −1.18936 + 2.06003i −0.131343 + 0.227492i
\(83\) 14.4287 + 8.33039i 1.58375 + 0.914379i 0.994305 + 0.106571i \(0.0339871\pi\)
0.589446 + 0.807808i \(0.299346\pi\)
\(84\) 0.204911 + 0.118305i 0.0223576 + 0.0129082i
\(85\) 22.7004i 2.46220i
\(86\) −0.0214775 + 0.0124000i −0.00231598 + 0.00133713i
\(87\) −1.70244 2.94871i −0.182521 0.316135i
\(88\) 2.49313 4.31823i 0.265769 0.460325i
\(89\) 12.7022i 1.34643i −0.739446 0.673216i \(-0.764912\pi\)
0.739446 0.673216i \(-0.235088\pi\)
\(90\) 4.18741 + 7.25280i 0.441391 + 0.764512i
\(91\) 0.381999 1.34733i 0.0400444 0.141239i
\(92\) −5.91617 −0.616804
\(93\) −2.85924 + 0.711841i −0.296489 + 0.0738145i
\(94\) 7.85063 0.809730
\(95\) 11.7611 1.20667
\(96\) −2.50380 + 1.44557i −0.255543 + 0.147538i
\(97\) 1.89406i 0.192313i 0.995366 + 0.0961564i \(0.0306549\pi\)
−0.995366 + 0.0961564i \(0.969345\pi\)
\(98\) 5.46505 + 3.15525i 0.552054 + 0.318728i
\(99\) 4.04552 2.33568i 0.406590 0.234745i
\(100\) 3.55002 + 6.14881i 0.355002 + 0.614881i
\(101\) 7.21921 0.718338 0.359169 0.933272i \(-0.383060\pi\)
0.359169 + 0.933272i \(0.383060\pi\)
\(102\) 2.86835 + 1.65604i 0.284009 + 0.163972i
\(103\) 5.75322 9.96487i 0.566882 0.981868i −0.429990 0.902834i \(-0.641483\pi\)
0.996872 0.0790344i \(-0.0251837\pi\)
\(104\) 7.29407 + 7.50831i 0.715242 + 0.736251i
\(105\) −0.343462 0.594893i −0.0335184 0.0580556i
\(106\) −8.53516 4.92777i −0.829008 0.478628i
\(107\) −5.39261 9.34028i −0.521324 0.902959i −0.999692 0.0247999i \(-0.992105\pi\)
0.478369 0.878159i \(-0.341228\pi\)
\(108\) −3.48444 −0.335290
\(109\) 5.01983i 0.480813i 0.970672 + 0.240406i \(0.0772807\pi\)
−0.970672 + 0.240406i \(0.922719\pi\)
\(110\) −4.57964 + 2.64406i −0.436652 + 0.252101i
\(111\) −4.35929 2.51684i −0.413765 0.238888i
\(112\) 0.125388 0.0723928i 0.0118481 0.00684048i
\(113\) −5.61711 + 9.72911i −0.528413 + 0.915238i 0.471038 + 0.882113i \(0.343879\pi\)
−0.999451 + 0.0331252i \(0.989454\pi\)
\(114\) 0.857999 1.48610i 0.0803589 0.139186i
\(115\) 14.8746 + 8.58787i 1.38707 + 0.800823i
\(116\) 7.40607 0.687636
\(117\) 2.40085 + 9.50845i 0.221958 + 0.879057i
\(118\) −1.16943 2.02551i −0.107655 0.186463i
\(119\) 2.28491 + 1.31919i 0.209457 + 0.120930i
\(120\) 5.13460 0.468722
\(121\) −4.02518 6.97181i −0.365925 0.633801i
\(122\) 9.12507i 0.826145i
\(123\) 1.36629i 0.123194i
\(124\) 1.76870 6.16018i 0.158834 0.553200i
\(125\) 3.90340i 0.349131i
\(126\) 0.973373 0.0867149
\(127\) 8.40593 + 14.5595i 0.745906 + 1.29195i 0.949770 + 0.312948i \(0.101316\pi\)
−0.203865 + 0.978999i \(0.565350\pi\)
\(128\) 5.60172i 0.495127i
\(129\) −0.00712234 + 0.0123362i −0.000627087 + 0.00108615i
\(130\) −2.71783 10.7638i −0.238369 0.944051i
\(131\) −4.51417 7.81877i −0.394405 0.683129i 0.598620 0.801033i \(-0.295716\pi\)
−0.993025 + 0.117904i \(0.962382\pi\)
\(132\) 1.04623i 0.0910624i
\(133\) 0.683476 1.18382i 0.0592649 0.102650i
\(134\) −0.759378 + 1.31528i −0.0656003 + 0.113623i
\(135\) 8.76068 + 5.05798i 0.753999 + 0.435322i
\(136\) −17.0791 + 9.86065i −1.46452 + 0.845544i
\(137\) −14.3387 8.27844i −1.22504 0.707274i −0.259048 0.965864i \(-0.583409\pi\)
−0.965987 + 0.258590i \(0.916742\pi\)
\(138\) 2.17027 1.25301i 0.184746 0.106663i
\(139\) 9.68159 0.821182 0.410591 0.911820i \(-0.365322\pi\)
0.410591 + 0.911820i \(0.365322\pi\)
\(140\) 1.49415 0.126279
\(141\) 3.90512 2.25462i 0.328871 0.189874i
\(142\) 7.14437 12.3744i 0.599542 1.03844i
\(143\) −6.00393 + 1.51597i −0.502074 + 0.126772i
\(144\) −0.506946 + 0.878056i −0.0422455 + 0.0731714i
\(145\) −18.6206 10.7506i −1.54635 0.892788i
\(146\) 0.278031 0.481564i 0.0230100 0.0398545i
\(147\) 3.62463 0.298954
\(148\) 9.48203 5.47445i 0.779418 0.449997i
\(149\) −10.0003 + 5.77366i −0.819255 + 0.472997i −0.850159 0.526525i \(-0.823495\pi\)
0.0309046 + 0.999522i \(0.490161\pi\)
\(150\) −2.60455 1.50374i −0.212661 0.122780i
\(151\) 2.65833i 0.216332i −0.994133 0.108166i \(-0.965502\pi\)
0.994133 0.108166i \(-0.0344977\pi\)
\(152\) 5.10883 + 8.84875i 0.414381 + 0.717728i
\(153\) −18.4758 −1.49368
\(154\) 0.614618i 0.0495273i
\(155\) −13.3890 + 12.9207i −1.07543 + 1.03781i
\(156\) 2.11312 + 0.599116i 0.169185 + 0.0479677i
\(157\) 1.35432 0.108087 0.0540434 0.998539i \(-0.482789\pi\)
0.0540434 + 0.998539i \(0.482789\pi\)
\(158\) −1.68201 + 0.971107i −0.133813 + 0.0772571i
\(159\) −5.66084 −0.448934
\(160\) −9.12851 + 15.8110i −0.721672 + 1.24997i
\(161\) 1.72882 0.998136i 0.136250 0.0786642i
\(162\) −5.23265 + 3.02107i −0.411116 + 0.237358i
\(163\) 4.10278i 0.321355i −0.987007 0.160677i \(-0.948632\pi\)
0.987007 0.160677i \(-0.0513679\pi\)
\(164\) −2.57371 1.48593i −0.200973 0.116032i
\(165\) −1.51870 + 2.63046i −0.118230 + 0.204781i
\(166\) 7.67526 13.2939i 0.595716 1.03181i
\(167\) 14.3558 8.28830i 1.11088 0.641368i 0.171824 0.985128i \(-0.445034\pi\)
0.939058 + 0.343759i \(0.111700\pi\)
\(168\) 0.298387 0.516822i 0.0230211 0.0398737i
\(169\) 0.376239 12.9946i 0.0289415 0.999581i
\(170\) 20.9152 1.60412
\(171\) 9.57238i 0.732018i
\(172\) −0.0154920 0.0268330i −0.00118126 0.00204600i
\(173\) −8.61739 + 14.9257i −0.655168 + 1.13478i 0.326684 + 0.945134i \(0.394069\pi\)
−0.981852 + 0.189650i \(0.939265\pi\)
\(174\) −2.71682 + 1.56855i −0.205961 + 0.118912i
\(175\) −2.07477 1.19787i −0.156838 0.0905503i
\(176\) −0.554432 0.320101i −0.0417919 0.0241286i
\(177\) −1.16341 0.671697i −0.0874474 0.0504878i
\(178\) −11.7033 −0.877198
\(179\) −6.46323 11.1946i −0.483084 0.836726i 0.516727 0.856150i \(-0.327150\pi\)
−0.999811 + 0.0194238i \(0.993817\pi\)
\(180\) −9.06132 + 5.23155i −0.675391 + 0.389937i
\(181\) −0.617119 + 1.06888i −0.0458701 + 0.0794493i −0.888049 0.459749i \(-0.847939\pi\)
0.842179 + 0.539198i \(0.181273\pi\)
\(182\) −1.24137 0.351958i −0.0920168 0.0260888i
\(183\) −2.62063 4.53906i −0.193723 0.335537i
\(184\) 14.9217i 1.10004i
\(185\) −31.7867 −2.33701
\(186\) 0.655860 + 2.63438i 0.0480900 + 0.193162i
\(187\) 11.6662i 0.853118i
\(188\) 9.80821i 0.715337i
\(189\) 1.01822 0.587870i 0.0740647 0.0427613i
\(190\) 10.8362i 0.786141i
\(191\) −12.0037 + 20.7911i −0.868559 + 1.50439i −0.00509028 + 0.999987i \(0.501620\pi\)
−0.863469 + 0.504402i \(0.831713\pi\)
\(192\) 1.52916 + 2.64858i 0.110357 + 0.191145i
\(193\) −1.07300 + 0.619496i −0.0772361 + 0.0445923i −0.538121 0.842868i \(-0.680866\pi\)
0.460885 + 0.887460i \(0.347532\pi\)
\(194\) 1.74511 0.125291
\(195\) −4.44320 4.57370i −0.318184 0.327530i
\(196\) −3.94202 + 6.82779i −0.281573 + 0.487699i
\(197\) −1.23210 0.711351i −0.0877832 0.0506816i 0.455466 0.890253i \(-0.349473\pi\)
−0.543249 + 0.839572i \(0.682806\pi\)
\(198\) −2.15200 3.72737i −0.152936 0.264892i
\(199\) 1.53028 2.65052i 0.108479 0.187890i −0.806675 0.590995i \(-0.798735\pi\)
0.915154 + 0.403104i \(0.132069\pi\)
\(200\) 15.5084 8.95379i 1.09661 0.633129i
\(201\) 0.872344i 0.0615304i
\(202\) 6.65147i 0.467996i
\(203\) −2.16420 + 1.24950i −0.151897 + 0.0876977i
\(204\) −2.06898 + 3.58358i −0.144858 + 0.250901i
\(205\) 4.31393 + 7.47195i 0.301298 + 0.521863i
\(206\) −9.18120 5.30077i −0.639685 0.369322i
\(207\) −6.98966 + 12.1065i −0.485815 + 0.841457i
\(208\) 0.964018 0.936510i 0.0668426 0.0649353i
\(209\) −6.04430 −0.418093
\(210\) −0.548109 + 0.316451i −0.0378231 + 0.0218372i
\(211\) 12.5242 + 21.6926i 0.862203 + 1.49338i 0.869798 + 0.493408i \(0.164249\pi\)
−0.00759518 + 0.999971i \(0.502418\pi\)
\(212\) 6.15654 10.6634i 0.422833 0.732368i
\(213\) 8.20717i 0.562346i
\(214\) −8.60573 + 4.96852i −0.588276 + 0.339641i
\(215\) 0.0899525i 0.00613471i
\(216\) 8.78839i 0.597974i
\(217\) 0.522454 + 2.09853i 0.0354665 + 0.142457i
\(218\) 4.62506 0.313248
\(219\) 0.319391i 0.0215825i
\(220\) −3.30337 5.72160i −0.222713 0.385750i
\(221\) 23.5628 + 6.68060i 1.58501 + 0.449385i
\(222\) −2.31890 + 4.01646i −0.155635 + 0.269567i
\(223\) −18.5559 + 10.7133i −1.24260 + 0.717414i −0.969622 0.244607i \(-0.921341\pi\)
−0.272976 + 0.962021i \(0.588008\pi\)
\(224\) 1.06097 + 1.83766i 0.0708892 + 0.122784i
\(225\) 16.7767 1.11844
\(226\) 8.96399 + 5.17536i 0.596275 + 0.344260i
\(227\) −17.2233 9.94388i −1.14315 0.659998i −0.195942 0.980616i \(-0.562776\pi\)
−0.947209 + 0.320617i \(0.896110\pi\)
\(228\) 1.85666 + 1.07194i 0.122960 + 0.0709913i
\(229\) 8.91245 5.14561i 0.588951 0.340031i −0.175731 0.984438i \(-0.556229\pi\)
0.764683 + 0.644407i \(0.222896\pi\)
\(230\) 7.91250 13.7048i 0.521735 0.903671i
\(231\) 0.176512 + 0.305728i 0.0116137 + 0.0201154i
\(232\) 18.6795i 1.22637i
\(233\) −8.82706 −0.578280 −0.289140 0.957287i \(-0.593369\pi\)
−0.289140 + 0.957287i \(0.593369\pi\)
\(234\) 8.76068 2.21204i 0.572704 0.144605i
\(235\) 14.2375 24.6601i 0.928754 1.60865i
\(236\) 2.53058 1.46103i 0.164727 0.0951049i
\(237\) −0.557785 + 0.966112i −0.0362320 + 0.0627557i
\(238\) 1.21545 2.10521i 0.0787856 0.136461i
\(239\) −8.56756 4.94648i −0.554190 0.319961i 0.196621 0.980480i \(-0.437003\pi\)
−0.750810 + 0.660518i \(0.770337\pi\)
\(240\) 0.659248i 0.0425543i
\(241\) −3.89676 + 2.24979i −0.251012 + 0.144922i −0.620228 0.784422i \(-0.712960\pi\)
0.369215 + 0.929344i \(0.379626\pi\)
\(242\) −6.42353 + 3.70863i −0.412920 + 0.238400i
\(243\) −6.27581 + 10.8700i −0.402594 + 0.697312i
\(244\) 11.4004 0.729838
\(245\) 19.8223 11.4444i 1.26640 0.731158i
\(246\) 1.25884 0.0802607
\(247\) 3.46123 12.2080i 0.220233 0.776774i
\(248\) −15.5371 4.46099i −0.986607 0.283273i
\(249\) 8.81704i 0.558757i
\(250\) −3.59643 −0.227458
\(251\) −0.203866 0.353106i −0.0128679 0.0222879i 0.859520 0.511103i \(-0.170763\pi\)
−0.872388 + 0.488815i \(0.837429\pi\)
\(252\) 1.21609i 0.0766063i
\(253\) −7.64439 4.41349i −0.480599 0.277474i
\(254\) 13.4145 7.74486i 0.841700 0.485956i
\(255\) 10.4038 6.00663i 0.651511 0.376150i
\(256\) −16.7192 −1.04495
\(257\) 4.56174 7.90116i 0.284553 0.492861i −0.687948 0.725760i \(-0.741488\pi\)
0.972501 + 0.232900i \(0.0748214\pi\)
\(258\) 0.0113661 + 0.00656221i 0.000707622 + 0.000408546i
\(259\) −1.84722 + 3.19949i −0.114781 + 0.198806i
\(260\) 13.4479 3.39553i 0.834000 0.210582i
\(261\) 8.74990 15.1553i 0.541605 0.938087i
\(262\) −7.20387 + 4.15916i −0.445057 + 0.256954i
\(263\) 14.8123 0.913367 0.456684 0.889629i \(-0.349037\pi\)
0.456684 + 0.889629i \(0.349037\pi\)
\(264\) −2.63878 −0.162405
\(265\) −30.9579 + 17.8736i −1.90173 + 1.09796i
\(266\) −1.09072 0.629726i −0.0668761 0.0386110i
\(267\) −5.82154 + 3.36107i −0.356272 + 0.205694i
\(268\) −1.64325 0.948732i −0.100378 0.0579530i
\(269\) 5.59402 9.68913i 0.341074 0.590757i −0.643559 0.765397i \(-0.722543\pi\)
0.984632 + 0.174640i \(0.0558761\pi\)
\(270\) 4.66021 8.07172i 0.283611 0.491229i
\(271\) 21.4231i 1.30136i 0.759352 + 0.650680i \(0.225516\pi\)
−0.759352 + 0.650680i \(0.774484\pi\)
\(272\) 1.26604 + 2.19285i 0.0767651 + 0.132961i
\(273\) −0.718573 + 0.181437i −0.0434900 + 0.0109811i
\(274\) −7.62739 + 13.2110i −0.460788 + 0.798108i
\(275\) 10.5933i 0.638800i
\(276\) 1.56545 + 2.71144i 0.0942289 + 0.163209i
\(277\) −7.73496 −0.464749 −0.232374 0.972626i \(-0.574649\pi\)
−0.232374 + 0.972626i \(0.574649\pi\)
\(278\) 8.92020i 0.534998i
\(279\) −10.5161 10.8973i −0.629584 0.652403i
\(280\) 3.76852i 0.225212i
\(281\) 22.6650i 1.35208i 0.736866 + 0.676039i \(0.236305\pi\)
−0.736866 + 0.676039i \(0.763695\pi\)
\(282\) −2.07731 3.59801i −0.123702 0.214258i
\(283\) 13.8479 0.823175 0.411587 0.911370i \(-0.364975\pi\)
0.411587 + 0.911370i \(0.364975\pi\)
\(284\) 15.4600 + 8.92584i 0.917383 + 0.529651i
\(285\) −3.11205 5.39023i −0.184342 0.319290i
\(286\) 1.39675 + 5.53176i 0.0825915 + 0.327100i
\(287\) 1.00278 0.0591925
\(288\) −12.8686 7.42969i −0.758289 0.437798i
\(289\) −14.5707 + 25.2372i −0.857099 + 1.48454i
\(290\) −9.90513 + 17.1562i −0.581649 + 1.00745i
\(291\) 0.868065 0.501178i 0.0508869 0.0293795i
\(292\) 0.601644 + 0.347359i 0.0352086 + 0.0203277i
\(293\) −24.8644 + 14.3555i −1.45260 + 0.838656i −0.998628 0.0523623i \(-0.983325\pi\)
−0.453967 + 0.891018i \(0.649992\pi\)
\(294\) 3.33958i 0.194768i
\(295\) −8.48328 −0.493916
\(296\) −13.8076 23.9154i −0.802549 1.39006i
\(297\) −4.50230 2.59940i −0.261250 0.150833i
\(298\) 5.31961 + 9.21383i 0.308156 + 0.533743i
\(299\) 13.2917 12.9124i 0.768677 0.746743i
\(300\) 1.87870 3.25401i 0.108467 0.187870i
\(301\) 0.00905415 + 0.00522742i 0.000521873 + 0.000301303i
\(302\) −2.44927 −0.140940
\(303\) −1.91024 3.30863i −0.109740 0.190076i
\(304\) 1.13612 0.655940i 0.0651610 0.0376207i
\(305\) −28.6634 16.5488i −1.64126 0.947581i
\(306\) 17.0228i 0.973131i
\(307\) 12.9627 7.48403i 0.739821 0.427136i −0.0821829 0.996617i \(-0.526189\pi\)
0.822004 + 0.569481i \(0.192856\pi\)
\(308\) −0.767875 −0.0437538
\(309\) −6.08932 −0.346409
\(310\) 11.9046 + 12.3360i 0.676134 + 0.700640i
\(311\) 23.3031 1.32140 0.660698 0.750651i \(-0.270260\pi\)
0.660698 + 0.750651i \(0.270260\pi\)
\(312\) 1.51108 5.32967i 0.0855482 0.301733i
\(313\) 5.37275 + 9.30588i 0.303686 + 0.526000i 0.976968 0.213386i \(-0.0684493\pi\)
−0.673282 + 0.739386i \(0.735116\pi\)
\(314\) 1.24782i 0.0704183i
\(315\) 1.76526 3.05753i 0.0994614 0.172272i
\(316\) −1.21326 2.10142i −0.0682510 0.118214i
\(317\) 9.81125 5.66453i 0.551055 0.318152i −0.198492 0.980102i \(-0.563605\pi\)
0.749547 + 0.661951i \(0.230271\pi\)
\(318\) 5.21565i 0.292479i
\(319\) 9.56950 + 5.52495i 0.535789 + 0.309338i
\(320\) 16.7253 + 9.65634i 0.934971 + 0.539806i
\(321\) −2.85382 + 4.94297i −0.159285 + 0.275889i
\(322\) −0.919640 1.59286i −0.0512495 0.0887668i
\(323\) 20.7032 + 11.9530i 1.15196 + 0.665082i
\(324\) −3.77439 6.53743i −0.209688 0.363191i
\(325\) −21.3958 6.06620i −1.18683 0.336492i
\(326\) −3.78013 −0.209362
\(327\) 2.30063 1.32827i 0.127225 0.0734536i
\(328\) −3.74779 + 6.49136i −0.206937 + 0.358425i
\(329\) −1.65477 2.86615i −0.0912307 0.158016i
\(330\) 2.42359 + 1.39926i 0.133414 + 0.0770268i
\(331\) 1.52114 + 0.878228i 0.0836092 + 0.0482718i 0.541222 0.840880i \(-0.317962\pi\)
−0.457613 + 0.889152i \(0.651295\pi\)
\(332\) 16.6088 + 9.58912i 0.911529 + 0.526271i
\(333\) 25.8712i 1.41773i
\(334\) −7.63649 13.2268i −0.417850 0.723737i
\(335\) 2.75435 + 4.77067i 0.150486 + 0.260649i
\(336\) −0.0663565 0.0383110i −0.00362005 0.00209003i
\(337\) 3.68645 0.200814 0.100407 0.994946i \(-0.467986\pi\)
0.100407 + 0.994946i \(0.467986\pi\)
\(338\) −11.9726 0.346651i −0.651225 0.0188553i
\(339\) 5.94525 0.322902
\(340\) 26.1305i 1.41712i
\(341\) 6.88088 6.64021i 0.372621 0.359587i
\(342\) 8.81958 0.476908
\(343\) 5.37917i 0.290448i
\(344\) −0.0676777 + 0.0390737i −0.00364894 + 0.00210672i
\(345\) 9.08957i 0.489366i
\(346\) 13.7519 + 7.93969i 0.739309 + 0.426840i
\(347\) 5.42934 + 9.40389i 0.291462 + 0.504827i 0.974156 0.225877i \(-0.0725249\pi\)
−0.682693 + 0.730705i \(0.739192\pi\)
\(348\) −1.95968 3.39427i −0.105050 0.181952i
\(349\) 24.3630i 1.30412i −0.758166 0.652061i \(-0.773904\pi\)
0.758166 0.652061i \(-0.226096\pi\)
\(350\) −1.10366 + 1.91160i −0.0589933 + 0.102179i
\(351\) 7.82836 7.60498i 0.417847 0.405924i
\(352\) 4.69133 8.12563i 0.250049 0.433097i
\(353\) 4.53924 2.62073i 0.241599 0.139487i −0.374312 0.927303i \(-0.622121\pi\)
0.615912 + 0.787815i \(0.288788\pi\)
\(354\) −0.618872 + 1.07192i −0.0328927 + 0.0569718i
\(355\) −25.9134 44.8833i −1.37534 2.38216i
\(356\) 14.6215i 0.774940i
\(357\) 1.39626i 0.0738978i
\(358\) −10.3143 + 5.95494i −0.545125 + 0.314728i
\(359\) −3.34965 1.93392i −0.176788 0.102069i 0.408995 0.912537i \(-0.365879\pi\)
−0.585783 + 0.810468i \(0.699213\pi\)
\(360\) 13.1949 + 22.8543i 0.695435 + 1.20453i
\(361\) −3.30713 + 5.72812i −0.174059 + 0.301480i
\(362\) 0.984822 + 0.568587i 0.0517611 + 0.0298843i
\(363\) −2.13016 + 3.68955i −0.111805 + 0.193651i
\(364\) 0.439720 1.55092i 0.0230476 0.0812901i
\(365\) −1.00845 1.74668i −0.0527846 0.0914257i
\(366\) −4.18210 + 2.41454i −0.218602 + 0.126210i
\(367\) 10.5358 18.2485i 0.549963 0.952564i −0.448313 0.893876i \(-0.647975\pi\)
0.998276 0.0586874i \(-0.0186915\pi\)
\(368\) 1.91584 0.0998703
\(369\) −6.08141 + 3.51110i −0.316586 + 0.182781i
\(370\) 29.2869i 1.52255i
\(371\) 4.15475i 0.215704i
\(372\) −3.29127 + 0.819401i −0.170644 + 0.0424840i
\(373\) 7.00707 0.362812 0.181406 0.983408i \(-0.441935\pi\)
0.181406 + 0.983408i \(0.441935\pi\)
\(374\) −10.7487 −0.555804
\(375\) −1.78896 + 1.03286i −0.0923817 + 0.0533366i
\(376\) 24.7381 1.27577
\(377\) −16.6390 + 16.1642i −0.856950 + 0.832497i
\(378\) −0.541638 0.938145i −0.0278589 0.0482530i
\(379\) 28.1273 16.2393i 1.44480 0.834157i 0.446638 0.894715i \(-0.352621\pi\)
0.998165 + 0.0605577i \(0.0192879\pi\)
\(380\) 13.5383 0.694498
\(381\) 4.44850 7.70503i 0.227904 0.394740i
\(382\) 19.1560 + 11.0597i 0.980106 + 0.565864i
\(383\) 12.4776 + 7.20397i 0.637578 + 0.368106i 0.783681 0.621164i \(-0.213340\pi\)
−0.146103 + 0.989269i \(0.546673\pi\)
\(384\) −2.56732 + 1.48224i −0.131013 + 0.0756404i
\(385\) 1.93062 + 1.11464i 0.0983933 + 0.0568074i
\(386\) 0.570777 + 0.988614i 0.0290518 + 0.0503191i
\(387\) −0.0732122 −0.00372159
\(388\) 2.18026i 0.110686i
\(389\) 7.09412 + 12.2874i 0.359686 + 0.622995i 0.987908 0.155039i \(-0.0495504\pi\)
−0.628222 + 0.778034i \(0.716217\pi\)
\(390\) −4.21401 + 4.09377i −0.213385 + 0.207296i
\(391\) 17.4559 + 30.2345i 0.882783 + 1.52903i
\(392\) 17.2209 + 9.94251i 0.869789 + 0.502173i
\(393\) −2.38894 + 4.13777i −0.120506 + 0.208723i
\(394\) −0.655408 + 1.13520i −0.0330190 + 0.0571905i
\(395\) 7.04462i 0.354453i
\(396\) 4.65680 2.68861i 0.234013 0.135108i
\(397\) 18.6860 10.7883i 0.937822 0.541452i 0.0485448 0.998821i \(-0.484542\pi\)
0.889277 + 0.457369i \(0.151208\pi\)
\(398\) −2.44208 1.40993i −0.122410 0.0706736i
\(399\) −0.723404 −0.0362155
\(400\) −1.14961 1.99118i −0.0574804 0.0995589i
\(401\) 18.3217i 0.914940i −0.889225 0.457470i \(-0.848756\pi\)
0.889225 0.457470i \(-0.151244\pi\)
\(402\) 0.803740 0.0400869
\(403\) 9.47126 + 17.7001i 0.471797 + 0.881707i
\(404\) 8.31004 0.413440
\(405\) 21.9155i 1.08899i
\(406\) 1.15124 + 1.99400i 0.0571349 + 0.0989605i
\(407\) 16.3359 0.809738
\(408\) 9.03845 + 5.21835i 0.447470 + 0.258347i
\(409\) −31.1134 + 17.9633i −1.53846 + 0.888229i −0.539528 + 0.841968i \(0.681397\pi\)
−0.998929 + 0.0462613i \(0.985269\pi\)
\(410\) 6.88433 3.97467i 0.339993 0.196295i
\(411\) 8.76205i 0.432200i
\(412\) 6.62254 11.4706i 0.326269 0.565115i
\(413\) −0.492990 + 0.853883i −0.0242584 + 0.0420169i
\(414\) 11.1544 + 6.43998i 0.548207 + 0.316508i
\(415\) −27.8390 48.2186i −1.36656 2.36696i
\(416\) 13.7253 + 14.1284i 0.672937 + 0.692703i
\(417\) −2.56180 4.43716i −0.125452 0.217289i
\(418\) 5.56895i 0.272386i
\(419\) 19.8072 0.967647 0.483824 0.875165i \(-0.339248\pi\)
0.483824 + 0.875165i \(0.339248\pi\)
\(420\) −0.395359 0.684782i −0.0192916 0.0334140i
\(421\) 2.64724 + 1.52839i 0.129019 + 0.0744889i 0.563120 0.826375i \(-0.309601\pi\)
−0.434102 + 0.900864i \(0.642934\pi\)
\(422\) 19.9866 11.5393i 0.972933 0.561723i
\(423\) 20.0709 + 11.5879i 0.975878 + 0.563424i
\(424\) −26.8951 15.5279i −1.30614 0.754102i
\(425\) 20.9489 36.2846i 1.01617 1.76006i
\(426\) −7.56173 −0.366367
\(427\) −3.33143 + 1.92340i −0.161219 + 0.0930800i
\(428\) −6.20744 10.7516i −0.300048 0.519699i
\(429\) 2.28345 + 2.35052i 0.110246 + 0.113484i
\(430\) 0.0828783 0.00399675
\(431\) −24.6899 + 14.2547i −1.18927 + 0.686625i −0.958141 0.286298i \(-0.907575\pi\)
−0.231129 + 0.972923i \(0.574242\pi\)
\(432\) 1.12837 0.0542888
\(433\) −9.48475 −0.455808 −0.227904 0.973684i \(-0.573187\pi\)
−0.227904 + 0.973684i \(0.573187\pi\)
\(434\) 1.93349 0.481366i 0.0928106 0.0231063i
\(435\) 11.3786i 0.545564i
\(436\) 5.77834i 0.276732i
\(437\) 15.6646 9.04395i 0.749339 0.432631i
\(438\) −0.294274 −0.0140609
\(439\) −6.64973 + 11.5177i −0.317374 + 0.549709i −0.979939 0.199296i \(-0.936135\pi\)
0.662565 + 0.749004i \(0.269468\pi\)
\(440\) −14.4309 + 8.33169i −0.687967 + 0.397198i
\(441\) 9.31461 + 16.1334i 0.443553 + 0.768256i
\(442\) 6.15521 21.7098i 0.292774 1.03263i
\(443\) −20.4933 + 35.4955i −0.973668 + 1.68644i −0.289406 + 0.957207i \(0.593458\pi\)
−0.684262 + 0.729236i \(0.739876\pi\)
\(444\) −5.01798 2.89713i −0.238143 0.137492i
\(445\) −21.2245 + 36.7619i −1.00614 + 1.74268i
\(446\) 9.87076 + 17.0967i 0.467394 + 0.809550i
\(447\) 5.29224 + 3.05548i 0.250315 + 0.144519i
\(448\) 1.94391 1.12232i 0.0918413 0.0530246i
\(449\) 15.5080i 0.731869i −0.930641 0.365935i \(-0.880749\pi\)
0.930641 0.365935i \(-0.119251\pi\)
\(450\) 15.4573i 0.728664i
\(451\) −2.21702 3.83999i −0.104395 0.180818i
\(452\) −6.46586 + 11.1992i −0.304128 + 0.526766i
\(453\) −1.21834 + 0.703406i −0.0572424 + 0.0330489i
\(454\) −9.16186 + 15.8688i −0.429987 + 0.744760i
\(455\) −3.35686 + 3.26107i −0.157372 + 0.152881i
\(456\) 2.70364 4.68284i 0.126610 0.219294i
\(457\) 21.1888i 0.991170i −0.868559 0.495585i \(-0.834954\pi\)
0.868559 0.495585i \(-0.165046\pi\)
\(458\) −4.74094 8.21155i −0.221530 0.383701i
\(459\) 10.2810 + 17.8072i 0.479875 + 0.831167i
\(460\) 17.1222 + 9.88551i 0.798327 + 0.460914i
\(461\) 21.1258i 0.983926i 0.870616 + 0.491963i \(0.163720\pi\)
−0.870616 + 0.491963i \(0.836280\pi\)
\(462\) 0.281685 0.162631i 0.0131052 0.00756627i
\(463\) 5.56614i 0.258681i −0.991600 0.129340i \(-0.958714\pi\)
0.991600 0.129340i \(-0.0412860\pi\)
\(464\) −2.39832 −0.111339
\(465\) 9.46445 + 2.71742i 0.438904 + 0.126017i
\(466\) 8.13287i 0.376748i
\(467\) −16.1924 −0.749294 −0.374647 0.927167i \(-0.622236\pi\)
−0.374647 + 0.927167i \(0.622236\pi\)
\(468\) 2.76362 + 10.9452i 0.127748 + 0.505942i
\(469\) 0.640254 0.0295642
\(470\) −22.7208 13.1178i −1.04803 0.605081i
\(471\) −0.358361 0.620699i −0.0165124 0.0286003i
\(472\) −3.68499 6.38258i −0.169615 0.293782i
\(473\) 0.0462285i 0.00212559i
\(474\) 0.890134 + 0.513919i 0.0408852 + 0.0236051i
\(475\) −18.7992 10.8537i −0.862564 0.498002i
\(476\) 2.63016 + 1.51852i 0.120553 + 0.0696014i
\(477\) −14.5473 25.1966i −0.666074 1.15367i
\(478\) −4.55748 + 7.89378i −0.208454 + 0.361053i
\(479\) 14.9827 8.65028i 0.684578 0.395241i −0.117000 0.993132i \(-0.537328\pi\)
0.801578 + 0.597891i \(0.203994\pi\)
\(480\) 9.66179 0.440998
\(481\) −9.35464 + 32.9944i −0.426535 + 1.50441i
\(482\) 2.07286 + 3.59031i 0.0944164 + 0.163534i
\(483\) −0.914909 0.528223i −0.0416298 0.0240350i
\(484\) −4.63339 8.02526i −0.210609 0.364785i
\(485\) 3.16484 5.48167i 0.143708 0.248910i
\(486\) 10.0152 + 5.78226i 0.454298 + 0.262289i
\(487\) −18.3177 10.5757i −0.830054 0.479232i 0.0238175 0.999716i \(-0.492418\pi\)
−0.853871 + 0.520485i \(0.825751\pi\)
\(488\) 28.7540i 1.30163i
\(489\) −1.88034 + 1.08562i −0.0850320 + 0.0490933i
\(490\) −10.5444 18.2634i −0.476348 0.825058i
\(491\) −6.82944 + 11.8289i −0.308208 + 0.533833i −0.977971 0.208743i \(-0.933063\pi\)
0.669762 + 0.742576i \(0.266396\pi\)
\(492\) 1.57274i 0.0709045i
\(493\) −21.8519 37.8486i −0.984160 1.70462i
\(494\) −11.2479 3.18903i −0.506067 0.143481i
\(495\) −15.6110 −0.701664
\(496\) −0.572761 + 1.99486i −0.0257177 + 0.0895719i
\(497\) −6.02363 −0.270197
\(498\) −8.12364 −0.364029
\(499\) 23.8353 13.7613i 1.06701 0.616041i 0.139650 0.990201i \(-0.455402\pi\)
0.927364 + 0.374160i \(0.122069\pi\)
\(500\) 4.49321i 0.200943i
\(501\) −7.59721 4.38625i −0.339418 0.195963i
\(502\) −0.325337 + 0.187833i −0.0145205 + 0.00838342i
\(503\) 0.838225 + 1.45185i 0.0373746 + 0.0647347i 0.884108 0.467283i \(-0.154767\pi\)
−0.846733 + 0.532018i \(0.821434\pi\)
\(504\) 3.06720 0.136624
\(505\) −20.8934 12.0628i −0.929743 0.536787i
\(506\) −4.06640 + 7.04321i −0.180773 + 0.313109i
\(507\) −6.05508 + 3.26599i −0.268915 + 0.145048i
\(508\) 9.67608 + 16.7595i 0.429307 + 0.743581i
\(509\) −8.24747 4.76168i −0.365563 0.211058i 0.305956 0.952046i \(-0.401024\pi\)
−0.671518 + 0.740988i \(0.734357\pi\)
\(510\) −5.53426 9.58561i −0.245061 0.424458i
\(511\) −0.234416 −0.0103700
\(512\) 4.20093i 0.185657i
\(513\) 9.22594 5.32660i 0.407335 0.235175i
\(514\) −7.27979 4.20299i −0.321098 0.185386i
\(515\) −33.3012 + 19.2265i −1.46743 + 0.847219i
\(516\) −0.00819853 + 0.0142003i −0.000360920 + 0.000625132i
\(517\) −7.31697 + 12.6734i −0.321800 + 0.557374i
\(518\) 2.94787 + 1.70195i 0.129522 + 0.0747795i
\(519\) 9.12081 0.400359
\(520\) −8.56415 33.9180i −0.375563 1.48740i
\(521\) −9.95759 17.2471i −0.436250 0.755607i 0.561147 0.827716i \(-0.310360\pi\)
−0.997397 + 0.0721092i \(0.977027\pi\)
\(522\) −13.9634 8.06178i −0.611162 0.352854i
\(523\) 39.1926 1.71377 0.856886 0.515505i \(-0.172396\pi\)
0.856886 + 0.515505i \(0.172396\pi\)
\(524\) −5.19626 9.00019i −0.227000 0.393175i
\(525\) 1.26785i 0.0553334i
\(526\) 13.6474i 0.595057i
\(527\) −36.7001 + 9.13693i −1.59868 + 0.398011i
\(528\) 0.338802i 0.0147444i
\(529\) 3.41525 0.148489
\(530\) 16.4679 + 28.5233i 0.715321 + 1.23897i
\(531\) 6.90453i 0.299631i
\(532\) 0.786750 1.36269i 0.0341100 0.0590802i
\(533\) 9.02539 2.27888i 0.390933 0.0987091i
\(534\) 3.09674 + 5.36372i 0.134009 + 0.232111i
\(535\) 36.0427i 1.55826i
\(536\) −2.39288 + 4.14458i −0.103357 + 0.179019i
\(537\) −3.42040 + 5.92431i −0.147601 + 0.255653i
\(538\) −8.92715 5.15409i −0.384877 0.222209i
\(539\) −10.1871 + 5.88153i −0.438790 + 0.253336i
\(540\) 10.0844 + 5.82225i 0.433965 + 0.250550i
\(541\) 16.0461 9.26419i 0.689874 0.398299i −0.113691 0.993516i \(-0.536267\pi\)
0.803565 + 0.595217i \(0.202934\pi\)
\(542\) 19.7383 0.847833
\(543\) 0.653171 0.0280302
\(544\) −32.1379 + 18.5548i −1.37790 + 0.795531i
\(545\) 8.38779 14.5281i 0.359294 0.622315i
\(546\) 0.167168 + 0.662063i 0.00715414 + 0.0283337i
\(547\) −19.0486 + 32.9932i −0.814460 + 1.41069i 0.0952552 + 0.995453i \(0.469633\pi\)
−0.909715 + 0.415233i \(0.863700\pi\)
\(548\) −16.5053 9.52932i −0.705070 0.407072i
\(549\) 13.4690 23.3291i 0.574845 0.995661i
\(550\) 9.76021 0.416177
\(551\) −19.6095 + 11.3215i −0.835391 + 0.482313i
\(552\) 6.83874 3.94835i 0.291076 0.168053i
\(553\) 0.709075 + 0.409385i 0.0301529 + 0.0174088i
\(554\) 7.12666i 0.302783i
\(555\) 8.41092 + 14.5681i 0.357024 + 0.618383i
\(556\) 11.1445 0.472632
\(557\) 4.65769i 0.197353i 0.995120 + 0.0986763i \(0.0314608\pi\)
−0.995120 + 0.0986763i \(0.968539\pi\)
\(558\) −10.0403 + 9.68911i −0.425039 + 0.410173i
\(559\) 0.0933700 + 0.0264725i 0.00394913 + 0.00111967i
\(560\) −0.483853 −0.0204465
\(561\) −5.34673 + 3.08694i −0.225739 + 0.130331i
\(562\) 20.8825 0.880876
\(563\) 10.9845 19.0258i 0.462943 0.801840i −0.536163 0.844114i \(-0.680127\pi\)
0.999106 + 0.0422741i \(0.0134603\pi\)
\(564\) 4.49519 2.59530i 0.189282 0.109282i
\(565\) 32.5133 18.7716i 1.36785 0.789727i
\(566\) 12.7589i 0.536296i
\(567\) 2.20590 + 1.27358i 0.0926391 + 0.0534852i
\(568\) 22.5126 38.9930i 0.944609 1.63611i
\(569\) −6.14942 + 10.6511i −0.257797 + 0.446518i −0.965652 0.259841i \(-0.916330\pi\)
0.707854 + 0.706358i \(0.249663\pi\)
\(570\) −4.96633 + 2.86731i −0.208017 + 0.120098i
\(571\) 11.4470 19.8267i 0.479040 0.829722i −0.520671 0.853758i \(-0.674318\pi\)
0.999711 + 0.0240353i \(0.00765139\pi\)
\(572\) −6.91113 + 1.74503i −0.288969 + 0.0729636i
\(573\) 12.7050 0.530758
\(574\) 0.923922i 0.0385638i
\(575\) −15.8505 27.4539i −0.661013 1.14491i
\(576\) −7.85929 + 13.6127i −0.327470 + 0.567195i
\(577\) −13.5289 + 7.81090i −0.563214 + 0.325172i −0.754435 0.656375i \(-0.772089\pi\)
0.191220 + 0.981547i \(0.438756\pi\)
\(578\) 23.2524 + 13.4248i 0.967174 + 0.558398i
\(579\) 0.567841 + 0.327843i 0.0235987 + 0.0136247i
\(580\) −21.4342 12.3750i −0.890005 0.513845i
\(581\) −6.47124 −0.268472
\(582\) −0.461763 0.799798i −0.0191407 0.0331527i
\(583\) 15.9099 9.18560i 0.658922 0.380429i
\(584\) 0.876104 1.51746i 0.0362535 0.0627928i
\(585\) 8.93958 31.5304i 0.369606 1.30362i
\(586\) 13.2265 + 22.9090i 0.546383 + 0.946363i
\(587\) 15.9702i 0.659159i −0.944128 0.329580i \(-0.893093\pi\)
0.944128 0.329580i \(-0.106907\pi\)
\(588\) 4.17231 0.172063
\(589\) 4.73387 + 19.0144i 0.195056 + 0.783476i
\(590\) 7.81613i 0.321785i
\(591\) 0.752907i 0.0309705i
\(592\) −3.07058 + 1.77280i −0.126200 + 0.0728617i
\(593\) 9.00794i 0.369912i 0.982747 + 0.184956i \(0.0592142\pi\)
−0.982747 + 0.184956i \(0.940786\pi\)
\(594\) −2.39498 + 4.14822i −0.0982671 + 0.170204i
\(595\) −4.40855 7.63584i −0.180733 0.313039i
\(596\) −11.5113 + 6.64607i −0.471523 + 0.272234i
\(597\) −1.61968 −0.0662890
\(598\) −11.8969 12.2464i −0.486501 0.500791i
\(599\) −8.82768 + 15.2900i −0.360689 + 0.624732i −0.988074 0.153977i \(-0.950792\pi\)
0.627385 + 0.778709i \(0.284125\pi\)
\(600\) −8.20721 4.73843i −0.335058 0.193446i
\(601\) 12.1027 + 20.9626i 0.493681 + 0.855080i 0.999973 0.00728131i \(-0.00231773\pi\)
−0.506293 + 0.862362i \(0.668984\pi\)
\(602\) 0.00481632 0.00834211i 0.000196298 0.000339999i
\(603\) −3.88284 + 2.24176i −0.158121 + 0.0912915i
\(604\) 3.06000i 0.124510i
\(605\) 26.9032i 1.09377i
\(606\) −3.04843 + 1.76001i −0.123834 + 0.0714956i
\(607\) 4.10722 7.11392i 0.166707 0.288745i −0.770553 0.637376i \(-0.780020\pi\)
0.937260 + 0.348631i \(0.113353\pi\)
\(608\) 9.61330 + 16.6507i 0.389871 + 0.675276i
\(609\) 1.14531 + 0.661248i 0.0464105 + 0.0267951i
\(610\) −15.2473 + 26.4092i −0.617347 + 1.06928i
\(611\) −21.4070 22.0358i −0.866034 0.891472i
\(612\) −21.2676 −0.859690
\(613\) 28.3749 16.3822i 1.14605 0.661672i 0.198129 0.980176i \(-0.436514\pi\)
0.947922 + 0.318504i \(0.103180\pi\)
\(614\) −6.89546 11.9433i −0.278278 0.481992i
\(615\) 2.28297 3.95423i 0.0920584 0.159450i
\(616\) 1.93672i 0.0780328i
\(617\) 19.1584 11.0611i 0.771288 0.445303i −0.0620459 0.998073i \(-0.519763\pi\)
0.833334 + 0.552770i \(0.186429\pi\)
\(618\) 5.61044i 0.225685i
\(619\) 19.7208i 0.792645i −0.918111 0.396323i \(-0.870286\pi\)
0.918111 0.396323i \(-0.129714\pi\)
\(620\) −15.4121 + 14.8730i −0.618964 + 0.597315i
\(621\) 15.5577 0.624310
\(622\) 21.4705i 0.860887i
\(623\) 2.46685 + 4.27270i 0.0988321 + 0.171182i
\(624\) −0.684294 0.194013i −0.0273937 0.00776673i
\(625\) 8.89777 15.4114i 0.355911 0.616455i
\(626\) 8.57404 4.95023i 0.342688 0.197851i
\(627\) 1.59935 + 2.77015i 0.0638719 + 0.110629i
\(628\) 1.55896 0.0622094
\(629\) −55.9543 32.3052i −2.23104 1.28809i
\(630\) −2.81707 1.62644i −0.112235 0.0647989i
\(631\) −17.9143 10.3428i −0.713156 0.411741i 0.0990727 0.995080i \(-0.468412\pi\)
−0.812228 + 0.583340i \(0.801746\pi\)
\(632\) −5.30017 + 3.06006i −0.210830 + 0.121722i
\(633\) 6.62794 11.4799i 0.263437 0.456286i
\(634\) −5.21905 9.03967i −0.207275 0.359011i
\(635\) 56.1829i 2.22955i
\(636\) −6.51620 −0.258384
\(637\) −6.04563 23.9435i −0.239537 0.948674i
\(638\) 5.09046 8.81693i 0.201533 0.349066i
\(639\) 36.5305 21.0909i 1.44512 0.834342i
\(640\) −9.36009 + 16.2121i −0.369990 + 0.640841i
\(641\) −13.7787 + 23.8653i −0.544224 + 0.942624i 0.454431 + 0.890782i \(0.349843\pi\)
−0.998655 + 0.0518422i \(0.983491\pi\)
\(642\) 4.55424 + 2.62939i 0.179741 + 0.103774i
\(643\) 1.24221i 0.0489881i 0.999700 + 0.0244940i \(0.00779748\pi\)
−0.999700 + 0.0244940i \(0.992203\pi\)
\(644\) 1.99005 1.14896i 0.0784190 0.0452752i
\(645\) 0.0412260 0.0238019i 0.00162327 0.000937197i
\(646\) 11.0130 19.0750i 0.433299 0.750496i
\(647\) −25.4546 −1.00072 −0.500362 0.865816i \(-0.666800\pi\)
−0.500362 + 0.865816i \(0.666800\pi\)
\(648\) −16.4886 + 9.51970i −0.647733 + 0.373969i
\(649\) 4.35974 0.171135
\(650\) −5.58913 + 19.7132i −0.219224 + 0.773215i
\(651\) 0.823530 0.794726i 0.0322767 0.0311478i
\(652\) 4.72272i 0.184956i
\(653\) 43.7442 1.71184 0.855921 0.517107i \(-0.172991\pi\)
0.855921 + 0.517107i \(0.172991\pi\)
\(654\) −1.22381 2.11971i −0.0478549 0.0828870i
\(655\) 30.1714i 1.17890i
\(656\) 0.833448 + 0.481191i 0.0325407 + 0.0187874i
\(657\) 1.42163 0.820776i 0.0554629 0.0320215i
\(658\) −2.64075 + 1.52464i −0.102947 + 0.0594366i
\(659\) −20.2139 −0.787420 −0.393710 0.919235i \(-0.628809\pi\)
−0.393710 + 0.919235i \(0.628809\pi\)
\(660\) −1.74817 + 3.02792i −0.0680475 + 0.117862i
\(661\) 14.7989 + 8.54414i 0.575610 + 0.332328i 0.759387 0.650640i \(-0.225499\pi\)
−0.183777 + 0.982968i \(0.558832\pi\)
\(662\) 0.809162 1.40151i 0.0314490 0.0544712i
\(663\) −3.17306 12.5668i −0.123232 0.488053i
\(664\) 24.1855 41.8906i 0.938580 1.62567i
\(665\) −3.95615 + 2.28408i −0.153413 + 0.0885729i
\(666\) −23.8366 −0.923649
\(667\) −33.0675 −1.28038
\(668\) 16.5249 9.54068i 0.639369 0.369140i
\(669\) 9.81998 + 5.66957i 0.379663 + 0.219198i
\(670\) 4.39549 2.53774i 0.169812 0.0980413i
\(671\) 14.7307 + 8.50477i 0.568672 + 0.328323i
\(672\) 0.561477 0.972506i 0.0216594 0.0375152i
\(673\) 11.1009 19.2272i 0.427907 0.741156i −0.568780 0.822489i \(-0.692585\pi\)
0.996687 + 0.0813336i \(0.0259179\pi\)
\(674\) 3.39653i 0.130830i
\(675\) −9.33546 16.1695i −0.359322 0.622364i
\(676\) 0.433089 14.9580i 0.0166573 0.575310i
\(677\) 2.21818 3.84200i 0.0852515 0.147660i −0.820247 0.572010i \(-0.806164\pi\)
0.905498 + 0.424350i \(0.139497\pi\)
\(678\) 5.47770i 0.210370i
\(679\) −0.367838 0.637114i −0.0141163 0.0244502i
\(680\) 65.9058 2.52737
\(681\) 10.5248i 0.403311i
\(682\) −6.11800 6.33975i −0.234270 0.242762i
\(683\) 43.5287i 1.66558i 0.553590 + 0.832789i \(0.313257\pi\)
−0.553590 + 0.832789i \(0.686743\pi\)
\(684\) 11.0188i 0.421314i
\(685\) 27.6654 + 47.9178i 1.05704 + 1.83085i
\(686\) −4.95613 −0.189226
\(687\) −4.71656 2.72310i −0.179948 0.103893i
\(688\) 0.00501681 + 0.00868937i 0.000191264 + 0.000331279i
\(689\) 9.44189 + 37.3942i 0.359707 + 1.42460i
\(690\) −8.37474 −0.318821
\(691\) 23.4368 + 13.5312i 0.891577 + 0.514752i 0.874458 0.485101i \(-0.161217\pi\)
0.0171191 + 0.999853i \(0.494551\pi\)
\(692\) −9.91948 + 17.1811i −0.377082 + 0.653126i
\(693\) −0.907206 + 1.57133i −0.0344619 + 0.0596898i
\(694\) 8.66434 5.00236i 0.328894 0.189887i
\(695\) −28.0199 16.1773i −1.06285 0.613639i
\(696\) −8.56096 + 4.94267i −0.324502 + 0.187352i
\(697\) 17.5372i 0.664269i
\(698\) −22.4470 −0.849633
\(699\) 2.33568 + 4.04552i 0.0883436 + 0.153016i
\(700\) −2.38827 1.37887i −0.0902681 0.0521163i
\(701\) −15.3204 26.5358i −0.578644 1.00224i −0.995635 0.0933308i \(-0.970249\pi\)
0.416991 0.908911i \(-0.363085\pi\)
\(702\) −7.00691 7.21272i −0.264459 0.272226i
\(703\) −16.7374 + 28.9900i −0.631263 + 1.09338i
\(704\) −8.59547 4.96260i −0.323954 0.187035i
\(705\) −15.0693 −0.567542
\(706\) −2.41463 4.18226i −0.0908757 0.157401i
\(707\) −2.42836 + 1.40201i −0.0913278 + 0.0527281i
\(708\) −1.33921 0.773191i −0.0503304 0.0290583i
\(709\) 4.56728i 0.171528i −0.996315 0.0857638i \(-0.972667\pi\)
0.996315 0.0857638i \(-0.0273331\pi\)
\(710\) −41.3535 + 23.8755i −1.55197 + 0.896031i
\(711\) −5.73361 −0.215027
\(712\) −36.8782 −1.38207
\(713\) −7.89711 + 27.5047i −0.295749 + 1.03006i
\(714\) −1.28645 −0.0481442
\(715\) 19.9093 + 5.64473i 0.744565 + 0.211101i
\(716\) −7.43983 12.8862i −0.278039 0.481578i
\(717\) 5.23545i 0.195522i
\(718\) −1.78183 + 3.08623i −0.0664974 + 0.115177i
\(719\) −10.1438 17.5695i −0.378299 0.655233i 0.612516 0.790458i \(-0.290157\pi\)
−0.990815 + 0.135225i \(0.956824\pi\)
\(720\) 2.93434 1.69414i 0.109356 0.0631370i
\(721\) 4.46924i 0.166443i
\(722\) 5.27764 + 3.04705i 0.196413 + 0.113399i
\(723\) 2.06220 + 1.19061i 0.0766941 + 0.0442794i
\(724\) −0.710367 + 1.23039i −0.0264006 + 0.0457271i
\(725\) 19.8422 + 34.3678i 0.736922 + 1.27639i
\(726\) 3.39939 + 1.96264i 0.126163 + 0.0728404i
\(727\) 4.81063 + 8.33226i 0.178417 + 0.309026i 0.941338 0.337464i \(-0.109569\pi\)
−0.762922 + 0.646491i \(0.776236\pi\)
\(728\) −3.91170 1.10905i −0.144977 0.0411043i
\(729\) −13.0312 −0.482636
\(730\) −1.60932 + 0.929142i −0.0595636 + 0.0343891i
\(731\) −0.0914197 + 0.158344i −0.00338128 + 0.00585655i
\(732\) −3.01661 5.22492i −0.111497 0.193119i
\(733\) −40.9888 23.6649i −1.51396 0.874083i −0.999866 0.0163462i \(-0.994797\pi\)
−0.514089 0.857737i \(-0.671870\pi\)
\(734\) −16.8134 9.70721i −0.620593 0.358300i
\(735\) −10.4902 6.05650i −0.386936 0.223397i
\(736\) 28.0782i 1.03498i
\(737\) −1.41552 2.45175i −0.0521412 0.0903112i
\(738\) 3.23498 + 5.60315i 0.119081 + 0.206255i
\(739\) 8.17341 + 4.71892i 0.300664 + 0.173588i 0.642741 0.766083i \(-0.277797\pi\)
−0.342077 + 0.939672i \(0.611130\pi\)
\(740\) −36.5897 −1.34507
\(741\) −6.51088 + 1.64397i −0.239183 + 0.0603928i
\(742\) 3.82801 0.140531
\(743\) 10.0321i 0.368044i −0.982922 0.184022i \(-0.941088\pi\)
0.982922 0.184022i \(-0.0589117\pi\)
\(744\) 2.06668 + 8.30119i 0.0757682 + 0.304336i
\(745\) 38.5896 1.41381
\(746\) 6.45601i 0.236371i
\(747\) 39.2450 22.6581i 1.43590 0.829018i
\(748\) 13.4290i 0.491013i
\(749\) 3.62787 + 2.09455i 0.132560 + 0.0765334i
\(750\) 0.951632 + 1.64827i 0.0347487 + 0.0601865i
\(751\) −2.93092 5.07650i −0.106951 0.185244i 0.807583 0.589754i \(-0.200775\pi\)
−0.914534 + 0.404510i \(0.867442\pi\)
\(752\) 3.17621i 0.115824i
\(753\) −0.107888 + 0.186867i −0.00393165 + 0.00680982i
\(754\) 14.8930 + 15.3304i 0.542370 + 0.558301i
\(755\) −4.44188 + 7.69356i −0.161657 + 0.279997i
\(756\) 1.17208 0.676698i 0.0426280 0.0246113i
\(757\) 8.29928 14.3748i 0.301642 0.522460i −0.674866 0.737941i \(-0.735798\pi\)
0.976508 + 0.215481i \(0.0691318\pi\)
\(758\) −14.9622 25.9153i −0.543451 0.941286i
\(759\) 4.67132i 0.169558i
\(760\) 34.1460i 1.23861i
\(761\) 14.5945 8.42614i 0.529050 0.305447i −0.211580 0.977361i \(-0.567861\pi\)
0.740630 + 0.671914i \(0.234527\pi\)
\(762\) −7.09908 4.09866i −0.257173 0.148479i
\(763\) −0.974881 1.68854i −0.0352931 0.0611294i
\(764\) −13.8175 + 23.9326i −0.499900 + 0.865852i