Properties

Label 403.2.h.b.222.2
Level 403
Weight 2
Character 403.222
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 222.2
Character \(\chi\) \(=\) 403.222
Dual form 403.2.h.b.118.2

$q$-expansion

\(f(q)\) \(=\) \(q-2.00723 q^{2} +(0.235463 - 0.407833i) q^{3} +2.02898 q^{4} +(-0.859670 - 1.48899i) q^{5} +(-0.472628 + 0.818616i) q^{6} +(1.82223 - 3.15619i) q^{7} -0.0581753 q^{8} +(1.38911 + 2.40602i) q^{9} +O(q^{10})\) \(q-2.00723 q^{2} +(0.235463 - 0.407833i) q^{3} +2.02898 q^{4} +(-0.859670 - 1.48899i) q^{5} +(-0.472628 + 0.818616i) q^{6} +(1.82223 - 3.15619i) q^{7} -0.0581753 q^{8} +(1.38911 + 2.40602i) q^{9} +(1.72556 + 2.98875i) q^{10} +(0.222871 + 0.386024i) q^{11} +(0.477750 - 0.827487i) q^{12} +(-0.500000 - 0.866025i) q^{13} +(-3.65763 + 6.33520i) q^{14} -0.809681 q^{15} -3.94119 q^{16} +(0.176467 - 0.305651i) q^{17} +(-2.78828 - 4.82944i) q^{18} +(0.901237 - 1.56099i) q^{19} +(-1.74426 - 3.02114i) q^{20} +(-0.858132 - 1.48633i) q^{21} +(-0.447353 - 0.774839i) q^{22} +0.216337 q^{23} +(-0.0136981 + 0.0237258i) q^{24} +(1.02194 - 1.77004i) q^{25} +(1.00362 + 1.73831i) q^{26} +2.72111 q^{27} +(3.69727 - 6.40385i) q^{28} -8.89550 q^{29} +1.62522 q^{30} +(3.84206 - 4.02971i) q^{31} +8.02724 q^{32} +0.209911 q^{33} +(-0.354211 + 0.613512i) q^{34} -6.26605 q^{35} +(2.81849 + 4.88177i) q^{36} +(2.74617 - 4.75651i) q^{37} +(-1.80899 + 3.13327i) q^{38} -0.470925 q^{39} +(0.0500115 + 0.0866225i) q^{40} +(0.304476 + 0.527368i) q^{41} +(1.72247 + 2.98341i) q^{42} +(4.29525 - 7.43960i) q^{43} +(0.452201 + 0.783235i) q^{44} +(2.38836 - 4.13676i) q^{45} -0.434239 q^{46} -10.5394 q^{47} +(-0.928004 + 1.60735i) q^{48} +(-3.14102 - 5.44040i) q^{49} +(-2.05126 + 3.55289i) q^{50} +(-0.0831030 - 0.143939i) q^{51} +(-1.01449 - 1.75715i) q^{52} +(-3.42032 - 5.92417i) q^{53} -5.46191 q^{54} +(0.383191 - 0.663706i) q^{55} +(-0.106008 + 0.183612i) q^{56} +(-0.424415 - 0.735109i) q^{57} +17.8553 q^{58} +(3.69865 - 6.40624i) q^{59} -1.64283 q^{60} -4.81243 q^{61} +(-7.71191 + 8.08857i) q^{62} +10.1251 q^{63} -8.23016 q^{64} +(-0.859670 + 1.48899i) q^{65} -0.421340 q^{66} +(0.121090 + 0.209735i) q^{67} +(0.358049 - 0.620160i) q^{68} +(0.0509394 - 0.0882295i) q^{69} +12.5774 q^{70} +(-3.15749 - 5.46893i) q^{71} +(-0.0808121 - 0.139971i) q^{72} +(0.0149946 + 0.0259715i) q^{73} +(-5.51221 + 9.54743i) q^{74} +(-0.481255 - 0.833558i) q^{75} +(1.82859 - 3.16722i) q^{76} +1.62448 q^{77} +0.945257 q^{78} +(-7.18003 + 12.4362i) q^{79} +(3.38813 + 5.86841i) q^{80} +(-3.52662 + 6.10829i) q^{81} +(-0.611155 - 1.05855i) q^{82} +(7.97508 + 13.8132i) q^{83} +(-1.74114 - 3.01574i) q^{84} -0.606815 q^{85} +(-8.62158 + 14.9330i) q^{86} +(-2.09456 + 3.62788i) q^{87} +(-0.0129656 - 0.0224570i) q^{88} +8.87410 q^{89} +(-4.79399 + 8.30344i) q^{90} -3.64445 q^{91} +0.438945 q^{92} +(-0.738788 - 2.51577i) q^{93} +21.1550 q^{94} -3.09907 q^{95} +(1.89012 - 3.27378i) q^{96} +3.84994 q^{97} +(6.30475 + 10.9202i) q^{98} +(-0.619186 + 1.07246i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00723 −1.41933 −0.709664 0.704540i \(-0.751153\pi\)
−0.709664 + 0.704540i \(0.751153\pi\)
\(3\) 0.235463 0.407833i 0.135944 0.235463i −0.790013 0.613090i \(-0.789926\pi\)
0.925958 + 0.377627i \(0.123260\pi\)
\(4\) 2.02898 1.01449
\(5\) −0.859670 1.48899i −0.384456 0.665897i 0.607238 0.794520i \(-0.292278\pi\)
−0.991694 + 0.128623i \(0.958944\pi\)
\(6\) −0.472628 + 0.818616i −0.192950 + 0.334199i
\(7\) 1.82223 3.15619i 0.688737 1.19293i −0.283510 0.958969i \(-0.591499\pi\)
0.972247 0.233958i \(-0.0751678\pi\)
\(8\) −0.0581753 −0.0205681
\(9\) 1.38911 + 2.40602i 0.463038 + 0.802006i
\(10\) 1.72556 + 2.98875i 0.545669 + 0.945127i
\(11\) 0.222871 + 0.386024i 0.0671981 + 0.116390i 0.897667 0.440675i \(-0.145261\pi\)
−0.830469 + 0.557065i \(0.811927\pi\)
\(12\) 0.477750 0.827487i 0.137914 0.238875i
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) −3.65763 + 6.33520i −0.977543 + 1.69315i
\(15\) −0.809681 −0.209059
\(16\) −3.94119 −0.985299
\(17\) 0.176467 0.305651i 0.0427996 0.0741311i −0.843832 0.536607i \(-0.819706\pi\)
0.886632 + 0.462476i \(0.153039\pi\)
\(18\) −2.78828 4.82944i −0.657203 1.13831i
\(19\) 0.901237 1.56099i 0.206758 0.358115i −0.743933 0.668254i \(-0.767042\pi\)
0.950691 + 0.310138i \(0.100375\pi\)
\(20\) −1.74426 3.02114i −0.390027 0.675547i
\(21\) −0.858132 1.48633i −0.187260 0.324344i
\(22\) −0.447353 0.774839i −0.0953761 0.165196i
\(23\) 0.216337 0.0451094 0.0225547 0.999746i \(-0.492820\pi\)
0.0225547 + 0.999746i \(0.492820\pi\)
\(24\) −0.0136981 + 0.0237258i −0.00279611 + 0.00484301i
\(25\) 1.02194 1.77004i 0.204387 0.354009i
\(26\) 1.00362 + 1.73831i 0.196825 + 0.340912i
\(27\) 2.72111 0.523679
\(28\) 3.69727 6.40385i 0.698718 1.21021i
\(29\) −8.89550 −1.65185 −0.825926 0.563778i \(-0.809347\pi\)
−0.825926 + 0.563778i \(0.809347\pi\)
\(30\) 1.62522 0.296723
\(31\) 3.84206 4.02971i 0.690055 0.723757i
\(32\) 8.02724 1.41903
\(33\) 0.209911 0.0365408
\(34\) −0.354211 + 0.613512i −0.0607467 + 0.105216i
\(35\) −6.26605 −1.05916
\(36\) 2.81849 + 4.88177i 0.469748 + 0.813628i
\(37\) 2.74617 4.75651i 0.451468 0.781966i −0.547009 0.837127i \(-0.684234\pi\)
0.998477 + 0.0551606i \(0.0175671\pi\)
\(38\) −1.80899 + 3.13327i −0.293457 + 0.508283i
\(39\) −0.470925 −0.0754084
\(40\) 0.0500115 + 0.0866225i 0.00790752 + 0.0136962i
\(41\) 0.304476 + 0.527368i 0.0475512 + 0.0823611i 0.888821 0.458254i \(-0.151525\pi\)
−0.841270 + 0.540615i \(0.818192\pi\)
\(42\) 1.72247 + 2.98341i 0.265783 + 0.460350i
\(43\) 4.29525 7.43960i 0.655020 1.13453i −0.326869 0.945070i \(-0.605993\pi\)
0.981889 0.189458i \(-0.0606732\pi\)
\(44\) 0.452201 + 0.783235i 0.0681719 + 0.118077i
\(45\) 2.38836 4.13676i 0.356036 0.616672i
\(46\) −0.434239 −0.0640251
\(47\) −10.5394 −1.53733 −0.768665 0.639651i \(-0.779079\pi\)
−0.768665 + 0.639651i \(0.779079\pi\)
\(48\) −0.928004 + 1.60735i −0.133946 + 0.232001i
\(49\) −3.14102 5.44040i −0.448717 0.777200i
\(50\) −2.05126 + 3.55289i −0.290092 + 0.502454i
\(51\) −0.0831030 0.143939i −0.0116367 0.0201554i
\(52\) −1.01449 1.75715i −0.140685 0.243673i
\(53\) −3.42032 5.92417i −0.469817 0.813748i 0.529587 0.848256i \(-0.322347\pi\)
−0.999404 + 0.0345079i \(0.989014\pi\)
\(54\) −5.46191 −0.743272
\(55\) 0.383191 0.663706i 0.0516694 0.0894940i
\(56\) −0.106008 + 0.183612i −0.0141660 + 0.0245362i
\(57\) −0.424415 0.735109i −0.0562152 0.0973675i
\(58\) 17.8553 2.34452
\(59\) 3.69865 6.40624i 0.481523 0.834022i −0.518252 0.855228i \(-0.673417\pi\)
0.999775 + 0.0212059i \(0.00675056\pi\)
\(60\) −1.64283 −0.212088
\(61\) −4.81243 −0.616169 −0.308084 0.951359i \(-0.599688\pi\)
−0.308084 + 0.951359i \(0.599688\pi\)
\(62\) −7.71191 + 8.08857i −0.979414 + 1.02725i
\(63\) 10.1251 1.27565
\(64\) −8.23016 −1.02877
\(65\) −0.859670 + 1.48899i −0.106629 + 0.184687i
\(66\) −0.421340 −0.0518634
\(67\) 0.121090 + 0.209735i 0.0147935 + 0.0256232i 0.873327 0.487134i \(-0.161958\pi\)
−0.858534 + 0.512757i \(0.828624\pi\)
\(68\) 0.358049 0.620160i 0.0434199 0.0752054i
\(69\) 0.0509394 0.0882295i 0.00613238 0.0106216i
\(70\) 12.5774 1.50329
\(71\) −3.15749 5.46893i −0.374725 0.649043i 0.615561 0.788089i \(-0.288930\pi\)
−0.990286 + 0.139046i \(0.955596\pi\)
\(72\) −0.0808121 0.139971i −0.00952380 0.0164957i
\(73\) 0.0149946 + 0.0259715i 0.00175499 + 0.00303973i 0.866902 0.498479i \(-0.166108\pi\)
−0.865147 + 0.501519i \(0.832775\pi\)
\(74\) −5.51221 + 9.54743i −0.640781 + 1.10987i
\(75\) −0.481255 0.833558i −0.0555706 0.0962510i
\(76\) 1.82859 3.16722i 0.209754 0.363305i
\(77\) 1.62448 0.185127
\(78\) 0.945257 0.107029
\(79\) −7.18003 + 12.4362i −0.807817 + 1.39918i 0.106556 + 0.994307i \(0.466018\pi\)
−0.914373 + 0.404873i \(0.867316\pi\)
\(80\) 3.38813 + 5.86841i 0.378804 + 0.656108i
\(81\) −3.52662 + 6.10829i −0.391847 + 0.678699i
\(82\) −0.611155 1.05855i −0.0674907 0.116897i
\(83\) 7.97508 + 13.8132i 0.875379 + 1.51620i 0.856358 + 0.516382i \(0.172721\pi\)
0.0190207 + 0.999819i \(0.493945\pi\)
\(84\) −1.74114 3.01574i −0.189973 0.329044i
\(85\) −0.606815 −0.0658183
\(86\) −8.62158 + 14.9330i −0.929688 + 1.61027i
\(87\) −2.09456 + 3.62788i −0.224560 + 0.388949i
\(88\) −0.0129656 0.0224570i −0.00138213 0.00239393i
\(89\) 8.87410 0.940653 0.470326 0.882492i \(-0.344136\pi\)
0.470326 + 0.882492i \(0.344136\pi\)
\(90\) −4.79399 + 8.30344i −0.505331 + 0.875260i
\(91\) −3.64445 −0.382042
\(92\) 0.438945 0.0457631
\(93\) −0.738788 2.51577i −0.0766087 0.260873i
\(94\) 21.1550 2.18198
\(95\) −3.09907 −0.317957
\(96\) 1.89012 3.27378i 0.192909 0.334128i
\(97\) 3.84994 0.390902 0.195451 0.980713i \(-0.437383\pi\)
0.195451 + 0.980713i \(0.437383\pi\)
\(98\) 6.30475 + 10.9202i 0.636876 + 1.10310i
\(99\) −0.619186 + 1.07246i −0.0622305 + 0.107786i
\(100\) 2.07349 3.59139i 0.207349 0.359139i
\(101\) 2.77472 0.276095 0.138048 0.990426i \(-0.455917\pi\)
0.138048 + 0.990426i \(0.455917\pi\)
\(102\) 0.166807 + 0.288918i 0.0165164 + 0.0286072i
\(103\) 4.76129 + 8.24680i 0.469144 + 0.812581i 0.999378 0.0352701i \(-0.0112292\pi\)
−0.530234 + 0.847852i \(0.677896\pi\)
\(104\) 0.0290876 + 0.0503813i 0.00285228 + 0.00494029i
\(105\) −1.47542 + 2.55550i −0.143986 + 0.249392i
\(106\) 6.86538 + 11.8912i 0.666825 + 1.15497i
\(107\) 2.57420 4.45865i 0.248858 0.431034i −0.714352 0.699787i \(-0.753278\pi\)
0.963209 + 0.268753i \(0.0866116\pi\)
\(108\) 5.52109 0.531267
\(109\) −10.2902 −0.985622 −0.492811 0.870136i \(-0.664031\pi\)
−0.492811 + 0.870136i \(0.664031\pi\)
\(110\) −0.769153 + 1.33221i −0.0733358 + 0.127021i
\(111\) −1.29324 2.23996i −0.122749 0.212608i
\(112\) −7.18175 + 12.4392i −0.678611 + 1.17539i
\(113\) 8.82568 + 15.2865i 0.830250 + 1.43803i 0.897840 + 0.440322i \(0.145136\pi\)
−0.0675902 + 0.997713i \(0.521531\pi\)
\(114\) 0.851900 + 1.47553i 0.0797878 + 0.138196i
\(115\) −0.185979 0.322125i −0.0173426 0.0300383i
\(116\) −18.0488 −1.67579
\(117\) 1.38911 2.40602i 0.128424 0.222436i
\(118\) −7.42404 + 12.8588i −0.683439 + 1.18375i
\(119\) −0.643127 1.11393i −0.0589554 0.102114i
\(120\) 0.0471034 0.00429993
\(121\) 5.40066 9.35421i 0.490969 0.850383i
\(122\) 9.65967 0.874545
\(123\) 0.286771 0.0258573
\(124\) 7.79548 8.17621i 0.700054 0.734246i
\(125\) −12.1108 −1.08322
\(126\) −20.3235 −1.81056
\(127\) −3.58746 + 6.21366i −0.318336 + 0.551374i −0.980141 0.198302i \(-0.936457\pi\)
0.661805 + 0.749676i \(0.269791\pi\)
\(128\) 0.465353 0.0411318
\(129\) −2.02274 3.50350i −0.178093 0.308466i
\(130\) 1.72556 2.98875i 0.151341 0.262131i
\(131\) −0.804645 + 1.39369i −0.0703022 + 0.121767i −0.899034 0.437879i \(-0.855730\pi\)
0.828732 + 0.559646i \(0.189063\pi\)
\(132\) 0.425906 0.0370703
\(133\) −3.28452 5.68895i −0.284804 0.493294i
\(134\) −0.243057 0.420986i −0.0209969 0.0363677i
\(135\) −2.33926 4.05172i −0.201331 0.348716i
\(136\) −0.0102660 + 0.0177813i −0.000880305 + 0.00152473i
\(137\) 1.56184 + 2.70519i 0.133437 + 0.231120i 0.924999 0.379969i \(-0.124065\pi\)
−0.791562 + 0.611089i \(0.790732\pi\)
\(138\) −0.102247 + 0.177097i −0.00870385 + 0.0150755i
\(139\) −1.45923 −0.123770 −0.0618849 0.998083i \(-0.519711\pi\)
−0.0618849 + 0.998083i \(0.519711\pi\)
\(140\) −12.7137 −1.07450
\(141\) −2.48164 + 4.29832i −0.208991 + 0.361984i
\(142\) 6.33782 + 10.9774i 0.531858 + 0.921205i
\(143\) 0.222871 0.386024i 0.0186374 0.0322809i
\(144\) −5.47477 9.48258i −0.456231 0.790215i
\(145\) 7.64719 + 13.2453i 0.635065 + 1.09996i
\(146\) −0.0300977 0.0521308i −0.00249091 0.00431438i
\(147\) −2.95837 −0.244002
\(148\) 5.57194 9.65088i 0.458011 0.793298i
\(149\) 10.3200 17.8748i 0.845448 1.46436i −0.0397839 0.999208i \(-0.512667\pi\)
0.885232 0.465150i \(-0.154000\pi\)
\(150\) 0.965991 + 1.67315i 0.0788728 + 0.136612i
\(151\) 1.97063 0.160368 0.0801839 0.996780i \(-0.474449\pi\)
0.0801839 + 0.996780i \(0.474449\pi\)
\(152\) −0.0524297 + 0.0908109i −0.00425261 + 0.00736574i
\(153\) 0.980534 0.0792715
\(154\) −3.26072 −0.262756
\(155\) −9.30311 2.25658i −0.747244 0.181253i
\(156\) −0.955499 −0.0765012
\(157\) 10.4868 0.836941 0.418471 0.908230i \(-0.362566\pi\)
0.418471 + 0.908230i \(0.362566\pi\)
\(158\) 14.4120 24.9623i 1.14656 1.98589i
\(159\) −3.22143 −0.255476
\(160\) −6.90078 11.9525i −0.545555 0.944928i
\(161\) 0.394216 0.682801i 0.0310685 0.0538123i
\(162\) 7.07875 12.2608i 0.556159 0.963296i
\(163\) 22.4603 1.75922 0.879612 0.475692i \(-0.157802\pi\)
0.879612 + 0.475692i \(0.157802\pi\)
\(164\) 0.617777 + 1.07002i 0.0482403 + 0.0835546i
\(165\) −0.180454 0.312556i −0.0140483 0.0243324i
\(166\) −16.0078 27.7264i −1.24245 2.15199i
\(167\) −1.04495 + 1.80991i −0.0808610 + 0.140055i −0.903620 0.428335i \(-0.859100\pi\)
0.822759 + 0.568390i \(0.192434\pi\)
\(168\) 0.0499221 + 0.0864676i 0.00385157 + 0.00667112i
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 1.21802 0.0934178
\(171\) 5.00769 0.382947
\(172\) 8.71500 15.0948i 0.664512 1.15097i
\(173\) 6.41005 + 11.1025i 0.487347 + 0.844110i 0.999894 0.0145489i \(-0.00463124\pi\)
−0.512547 + 0.858659i \(0.671298\pi\)
\(174\) 4.20426 7.28200i 0.318724 0.552047i
\(175\) −3.72439 6.45084i −0.281538 0.487638i
\(176\) −0.878377 1.52139i −0.0662102 0.114679i
\(177\) −1.74179 3.01686i −0.130921 0.226761i
\(178\) −17.8124 −1.33509
\(179\) 5.02894 8.71038i 0.375881 0.651044i −0.614578 0.788856i \(-0.710674\pi\)
0.990458 + 0.137812i \(0.0440069\pi\)
\(180\) 4.84594 8.39342i 0.361195 0.625608i
\(181\) −1.78299 3.08822i −0.132528 0.229546i 0.792122 0.610362i \(-0.208976\pi\)
−0.924651 + 0.380817i \(0.875643\pi\)
\(182\) 7.31526 0.542243
\(183\) −1.13315 + 1.96267i −0.0837647 + 0.145085i
\(184\) −0.0125855 −0.000927814
\(185\) −9.44321 −0.694279
\(186\) 1.48292 + 5.04973i 0.108733 + 0.370264i
\(187\) 0.157318 0.0115042
\(188\) −21.3843 −1.55961
\(189\) 4.95849 8.58835i 0.360677 0.624710i
\(190\) 6.22054 0.451286
\(191\) −1.43122 2.47894i −0.103559 0.179370i 0.809589 0.586997i \(-0.199690\pi\)
−0.913149 + 0.407627i \(0.866356\pi\)
\(192\) −1.93789 + 3.35653i −0.139855 + 0.242237i
\(193\) 9.75227 16.8914i 0.701984 1.21587i −0.265786 0.964032i \(-0.585631\pi\)
0.967769 0.251839i \(-0.0810353\pi\)
\(194\) −7.72773 −0.554819
\(195\) 0.404840 + 0.701204i 0.0289912 + 0.0502143i
\(196\) −6.37307 11.0385i −0.455219 0.788463i
\(197\) −7.09060 12.2813i −0.505184 0.875005i −0.999982 0.00599659i \(-0.998091\pi\)
0.494798 0.869008i \(-0.335242\pi\)
\(198\) 1.24285 2.15268i 0.0883255 0.152984i
\(199\) 11.8956 + 20.6038i 0.843258 + 1.46057i 0.887125 + 0.461529i \(0.152699\pi\)
−0.0438666 + 0.999037i \(0.513968\pi\)
\(200\) −0.0594514 + 0.102973i −0.00420385 + 0.00728127i
\(201\) 0.114049 0.00804440
\(202\) −5.56951 −0.391869
\(203\) −16.2096 + 28.0759i −1.13769 + 1.97054i
\(204\) −0.168614 0.292049i −0.0118054 0.0204475i
\(205\) 0.523498 0.906725i 0.0365627 0.0633285i
\(206\) −9.55702 16.5532i −0.665869 1.15332i
\(207\) 0.300517 + 0.520511i 0.0208874 + 0.0361780i
\(208\) 1.97060 + 3.41317i 0.136636 + 0.236661i
\(209\) 0.803438 0.0555749
\(210\) 2.96151 5.12949i 0.204364 0.353969i
\(211\) −8.64303 + 14.9702i −0.595011 + 1.03059i 0.398535 + 0.917153i \(0.369519\pi\)
−0.993545 + 0.113436i \(0.963814\pi\)
\(212\) −6.93978 12.0200i −0.476626 0.825540i
\(213\) −2.97388 −0.203767
\(214\) −5.16702 + 8.94955i −0.353210 + 0.611778i
\(215\) −14.7700 −1.00731
\(216\) −0.158302 −0.0107711
\(217\) −5.71742 19.4693i −0.388124 1.32166i
\(218\) 20.6548 1.39892
\(219\) 0.0141227 0.000954324
\(220\) 0.777487 1.34665i 0.0524182 0.0907909i
\(221\) −0.352935 −0.0237410
\(222\) 2.59584 + 4.49613i 0.174221 + 0.301760i
\(223\) −11.4542 + 19.8393i −0.767031 + 1.32854i 0.172135 + 0.985073i \(0.444933\pi\)
−0.939166 + 0.343463i \(0.888400\pi\)
\(224\) 14.6275 25.3355i 0.977338 1.69280i
\(225\) 5.67834 0.378556
\(226\) −17.7152 30.6836i −1.17840 2.04104i
\(227\) −1.44440 2.50177i −0.0958680 0.166048i 0.814103 0.580721i \(-0.197229\pi\)
−0.909971 + 0.414673i \(0.863896\pi\)
\(228\) −0.861131 1.49152i −0.0570298 0.0987785i
\(229\) −4.19496 + 7.26588i −0.277211 + 0.480143i −0.970690 0.240333i \(-0.922743\pi\)
0.693480 + 0.720476i \(0.256077\pi\)
\(230\) 0.373302 + 0.646579i 0.0246148 + 0.0426341i
\(231\) 0.382505 0.662519i 0.0251670 0.0435905i
\(232\) 0.517498 0.0339754
\(233\) 10.3316 0.676843 0.338422 0.940995i \(-0.390107\pi\)
0.338422 + 0.940995i \(0.390107\pi\)
\(234\) −2.78828 + 4.82944i −0.182275 + 0.315710i
\(235\) 9.06041 + 15.6931i 0.591036 + 1.02370i
\(236\) 7.50449 12.9982i 0.488501 0.846108i
\(237\) 3.38126 + 5.85651i 0.219636 + 0.380421i
\(238\) 1.29091 + 2.23591i 0.0836770 + 0.144933i
\(239\) 8.47112 + 14.6724i 0.547951 + 0.949079i 0.998415 + 0.0562842i \(0.0179253\pi\)
−0.450464 + 0.892795i \(0.648741\pi\)
\(240\) 3.19111 0.205985
\(241\) 8.32522 14.4197i 0.536275 0.928855i −0.462826 0.886449i \(-0.653164\pi\)
0.999100 0.0424056i \(-0.0135022\pi\)
\(242\) −10.8404 + 18.7761i −0.696846 + 1.20697i
\(243\) 5.74245 + 9.94621i 0.368378 + 0.638050i
\(244\) −9.76434 −0.625098
\(245\) −5.40048 + 9.35390i −0.345024 + 0.597599i
\(246\) −0.575616 −0.0367000
\(247\) −1.80247 −0.114689
\(248\) −0.223513 + 0.234429i −0.0141931 + 0.0148863i
\(249\) 7.51134 0.476012
\(250\) 24.3092 1.53745
\(251\) −8.63178 + 14.9507i −0.544833 + 0.943678i 0.453785 + 0.891111i \(0.350074\pi\)
−0.998617 + 0.0525667i \(0.983260\pi\)
\(252\) 20.5437 1.29413
\(253\) 0.0482153 + 0.0835113i 0.00303127 + 0.00525031i
\(254\) 7.20087 12.4723i 0.451823 0.782580i
\(255\) −0.142882 + 0.247479i −0.00894763 + 0.0154978i
\(256\) 15.5262 0.970390
\(257\) −2.13247 3.69355i −0.133020 0.230397i 0.791819 0.610755i \(-0.209134\pi\)
−0.924839 + 0.380358i \(0.875801\pi\)
\(258\) 4.06012 + 7.03233i 0.252772 + 0.437814i
\(259\) −10.0083 17.3349i −0.621886 1.07714i
\(260\) −1.74426 + 3.02114i −0.108174 + 0.187363i
\(261\) −12.3569 21.4027i −0.764871 1.32479i
\(262\) 1.61511 2.79745i 0.0997819 0.172827i
\(263\) 20.8920 1.28825 0.644127 0.764919i \(-0.277221\pi\)
0.644127 + 0.764919i \(0.277221\pi\)
\(264\) −0.0122116 −0.000751573
\(265\) −5.88070 + 10.1857i −0.361248 + 0.625701i
\(266\) 6.59279 + 11.4190i 0.404230 + 0.700146i
\(267\) 2.08952 3.61915i 0.127877 0.221489i
\(268\) 0.245690 + 0.425548i 0.0150079 + 0.0259945i
\(269\) 2.48179 + 4.29858i 0.151317 + 0.262089i 0.931712 0.363198i \(-0.118315\pi\)
−0.780395 + 0.625287i \(0.784982\pi\)
\(270\) 4.69544 + 8.13274i 0.285755 + 0.494943i
\(271\) −21.3745 −1.29841 −0.649205 0.760614i \(-0.724898\pi\)
−0.649205 + 0.760614i \(0.724898\pi\)
\(272\) −0.695492 + 1.20463i −0.0421704 + 0.0730413i
\(273\) −0.858132 + 1.48633i −0.0519365 + 0.0899567i
\(274\) −3.13498 5.42995i −0.189391 0.328035i
\(275\) 0.911038 0.0549377
\(276\) 0.103355 0.179016i 0.00622124 0.0107755i
\(277\) −22.5893 −1.35726 −0.678630 0.734480i \(-0.737426\pi\)
−0.678630 + 0.734480i \(0.737426\pi\)
\(278\) 2.92900 0.175670
\(279\) 15.0326 + 3.64634i 0.899979 + 0.218300i
\(280\) 0.364529 0.0217848
\(281\) −19.1394 −1.14176 −0.570880 0.821033i \(-0.693398\pi\)
−0.570880 + 0.821033i \(0.693398\pi\)
\(282\) 4.98122 8.62773i 0.296627 0.513774i
\(283\) 24.4535 1.45361 0.726804 0.686845i \(-0.241005\pi\)
0.726804 + 0.686845i \(0.241005\pi\)
\(284\) −6.40649 11.0964i −0.380155 0.658449i
\(285\) −0.729714 + 1.26390i −0.0432245 + 0.0748671i
\(286\) −0.447353 + 0.774839i −0.0264526 + 0.0458172i
\(287\) 2.21930 0.131001
\(288\) 11.1508 + 19.3137i 0.657065 + 1.13807i
\(289\) 8.43772 + 14.6146i 0.496336 + 0.859680i
\(290\) −15.3497 26.5864i −0.901365 1.56121i
\(291\) 0.906518 1.57013i 0.0531410 0.0920429i
\(292\) 0.0304239 + 0.0526957i 0.00178042 + 0.00308378i
\(293\) −5.70491 + 9.88119i −0.333284 + 0.577265i −0.983154 0.182781i \(-0.941490\pi\)
0.649870 + 0.760046i \(0.274823\pi\)
\(294\) 5.93813 0.346319
\(295\) −12.7185 −0.740497
\(296\) −0.159759 + 0.276711i −0.00928583 + 0.0160835i
\(297\) 0.606457 + 1.05041i 0.0351902 + 0.0609512i
\(298\) −20.7147 + 35.8788i −1.19997 + 2.07840i
\(299\) −0.108169 0.187354i −0.00625556 0.0108349i
\(300\) −0.976458 1.69128i −0.0563759 0.0976458i
\(301\) −15.6539 27.1133i −0.902273 1.56278i
\(302\) −3.95552 −0.227614
\(303\) 0.653343 1.13162i 0.0375336 0.0650101i
\(304\) −3.55195 + 6.15216i −0.203718 + 0.352850i
\(305\) 4.13710 + 7.16567i 0.236890 + 0.410305i
\(306\) −1.96816 −0.112512
\(307\) −7.01132 + 12.1440i −0.400157 + 0.693093i −0.993745 0.111677i \(-0.964378\pi\)
0.593587 + 0.804770i \(0.297711\pi\)
\(308\) 3.29605 0.187810
\(309\) 4.48443 0.255110
\(310\) 18.6735 + 4.52948i 1.06058 + 0.257257i
\(311\) 23.9609 1.35870 0.679349 0.733815i \(-0.262262\pi\)
0.679349 + 0.733815i \(0.262262\pi\)
\(312\) 0.0273962 0.00155100
\(313\) 0.187183 0.324210i 0.0105802 0.0183254i −0.860687 0.509135i \(-0.829965\pi\)
0.871267 + 0.490809i \(0.163299\pi\)
\(314\) −21.0495 −1.18789
\(315\) −8.70427 15.0762i −0.490430 0.849449i
\(316\) −14.5682 + 25.2328i −0.819523 + 1.41946i
\(317\) 13.3143 23.0611i 0.747807 1.29524i −0.201065 0.979578i \(-0.564440\pi\)
0.948872 0.315661i \(-0.102226\pi\)
\(318\) 6.46617 0.362605
\(319\) −1.98255 3.43387i −0.111001 0.192260i
\(320\) 7.07522 + 12.2546i 0.395517 + 0.685055i
\(321\) −1.21226 2.09969i −0.0676616 0.117193i
\(322\) −0.791282 + 1.37054i −0.0440964 + 0.0763773i
\(323\) −0.318078 0.550927i −0.0176983 0.0306544i
\(324\) −7.15546 + 12.3936i −0.397525 + 0.688534i
\(325\) −2.04387 −0.113374
\(326\) −45.0830 −2.49692
\(327\) −2.42296 + 4.19669i −0.133990 + 0.232077i
\(328\) −0.0177130 0.0306798i −0.000978036 0.00169401i
\(329\) −19.2052 + 33.2644i −1.05882 + 1.83392i
\(330\) 0.362213 + 0.627372i 0.0199392 + 0.0345357i
\(331\) 4.48442 + 7.76725i 0.246486 + 0.426926i 0.962548 0.271110i \(-0.0873907\pi\)
−0.716062 + 0.698036i \(0.754057\pi\)
\(332\) 16.1813 + 28.0268i 0.888065 + 1.53817i
\(333\) 15.2590 0.836188
\(334\) 2.09747 3.63292i 0.114768 0.198784i
\(335\) 0.208196 0.360605i 0.0113749 0.0197020i
\(336\) 3.38207 + 5.85791i 0.184507 + 0.319575i
\(337\) 0.362985 0.0197730 0.00988651 0.999951i \(-0.496853\pi\)
0.00988651 + 0.999951i \(0.496853\pi\)
\(338\) 1.00362 1.73831i 0.0545895 0.0945518i
\(339\) 8.31247 0.451471
\(340\) −1.23122 −0.0667721
\(341\) 2.41185 + 0.585021i 0.130609 + 0.0316807i
\(342\) −10.0516 −0.543528
\(343\) 2.61659 0.141283
\(344\) −0.249878 + 0.432801i −0.0134725 + 0.0233350i
\(345\) −0.175164 −0.00943052
\(346\) −12.8665 22.2854i −0.691706 1.19807i
\(347\) 13.2075 22.8760i 0.709014 1.22805i −0.256209 0.966621i \(-0.582473\pi\)
0.965223 0.261427i \(-0.0841932\pi\)
\(348\) −4.24982 + 7.36090i −0.227814 + 0.394586i
\(349\) −5.68665 −0.304399 −0.152200 0.988350i \(-0.548636\pi\)
−0.152200 + 0.988350i \(0.548636\pi\)
\(350\) 7.47573 + 12.9483i 0.399594 + 0.692118i
\(351\) −1.36056 2.35655i −0.0726212 0.125784i
\(352\) 1.78904 + 3.09871i 0.0953561 + 0.165162i
\(353\) 13.3736 23.1637i 0.711804 1.23288i −0.252375 0.967629i \(-0.581212\pi\)
0.964179 0.265251i \(-0.0854550\pi\)
\(354\) 3.49617 + 6.05554i 0.185819 + 0.321848i
\(355\) −5.42880 + 9.40295i −0.288131 + 0.499057i
\(356\) 18.0054 0.954284
\(357\) −0.605730 −0.0320586
\(358\) −10.0943 + 17.4838i −0.533498 + 0.924045i
\(359\) −2.69195 4.66260i −0.142076 0.246082i 0.786202 0.617969i \(-0.212044\pi\)
−0.928278 + 0.371887i \(0.878711\pi\)
\(360\) −0.138943 + 0.240657i −0.00732296 + 0.0126837i
\(361\) 7.87554 + 13.6408i 0.414502 + 0.717939i
\(362\) 3.57887 + 6.19878i 0.188101 + 0.325801i
\(363\) −2.54331 4.40513i −0.133489 0.231210i
\(364\) −7.39453 −0.387579
\(365\) 0.0257809 0.0446538i 0.00134943 0.00233729i
\(366\) 2.27449 3.93953i 0.118890 0.205923i
\(367\) 11.9921 + 20.7709i 0.625981 + 1.08423i 0.988350 + 0.152196i \(0.0486345\pi\)
−0.362370 + 0.932034i \(0.618032\pi\)
\(368\) −0.852627 −0.0444463
\(369\) −0.845905 + 1.46515i −0.0440361 + 0.0762727i
\(370\) 18.9547 0.985409
\(371\) −24.9304 −1.29432
\(372\) −1.49899 5.10445i −0.0777189 0.264653i
\(373\) 16.3367 0.845881 0.422941 0.906157i \(-0.360998\pi\)
0.422941 + 0.906157i \(0.360998\pi\)
\(374\) −0.315773 −0.0163282
\(375\) −2.85164 + 4.93919i −0.147258 + 0.255059i
\(376\) 0.613133 0.0316199
\(377\) 4.44775 + 7.70373i 0.229071 + 0.396762i
\(378\) −9.95283 + 17.2388i −0.511919 + 0.886669i
\(379\) −7.44173 + 12.8895i −0.382256 + 0.662087i −0.991384 0.130985i \(-0.958186\pi\)
0.609128 + 0.793072i \(0.291519\pi\)
\(380\) −6.28795 −0.322565
\(381\) 1.68943 + 2.92617i 0.0865519 + 0.149912i
\(382\) 2.87279 + 4.97581i 0.146985 + 0.254585i
\(383\) 9.59419 + 16.6176i 0.490240 + 0.849121i 0.999937 0.0112331i \(-0.00357567\pi\)
−0.509697 + 0.860354i \(0.670242\pi\)
\(384\) 0.109573 0.189786i 0.00559164 0.00968500i
\(385\) −1.39652 2.41884i −0.0711732 0.123276i
\(386\) −19.5751 + 33.9050i −0.996345 + 1.72572i
\(387\) 23.8664 1.21320
\(388\) 7.81147 0.396567
\(389\) 1.02000 1.76669i 0.0517159 0.0895745i −0.839009 0.544118i \(-0.816864\pi\)
0.890724 + 0.454544i \(0.150198\pi\)
\(390\) −0.812609 1.40748i −0.0411480 0.0712705i
\(391\) 0.0381765 0.0661236i 0.00193067 0.00334401i
\(392\) 0.182729 + 0.316497i 0.00922923 + 0.0159855i
\(393\) 0.378928 + 0.656322i 0.0191144 + 0.0331071i
\(394\) 14.2325 + 24.6514i 0.717022 + 1.24192i
\(395\) 24.6898 1.24228
\(396\) −1.25632 + 2.17601i −0.0631324 + 0.109348i
\(397\) −9.21047 + 15.9530i −0.462260 + 0.800658i −0.999073 0.0430431i \(-0.986295\pi\)
0.536813 + 0.843701i \(0.319628\pi\)
\(398\) −23.8773 41.3567i −1.19686 2.07302i
\(399\) −3.09352 −0.154870
\(400\) −4.02765 + 6.97609i −0.201382 + 0.348804i
\(401\) −6.42109 −0.320654 −0.160327 0.987064i \(-0.551255\pi\)
−0.160327 + 0.987064i \(0.551255\pi\)
\(402\) −0.228923 −0.0114176
\(403\) −5.41086 1.31247i −0.269534 0.0653787i
\(404\) 5.62986 0.280096
\(405\) 12.1269 0.602592
\(406\) 32.5365 56.3548i 1.61476 2.79684i
\(407\) 2.44817 0.121351
\(408\) 0.00483454 + 0.00837366i 0.000239345 + 0.000414558i
\(409\) 1.42257 2.46396i 0.0703416 0.121835i −0.828709 0.559679i \(-0.810924\pi\)
0.899051 + 0.437844i \(0.144258\pi\)
\(410\) −1.05078 + 1.82001i −0.0518945 + 0.0898838i
\(411\) 1.47102 0.0725602
\(412\) 9.66058 + 16.7326i 0.475943 + 0.824357i
\(413\) −13.4795 23.3472i −0.663285 1.14884i
\(414\) −0.603208 1.04479i −0.0296461 0.0513485i
\(415\) 13.7119 23.7497i 0.673090 1.16583i
\(416\) −4.01362 6.95180i −0.196784 0.340840i
\(417\) −0.343593 + 0.595121i −0.0168258 + 0.0291432i
\(418\) −1.61269 −0.0788791
\(419\) 0.515869 0.0252019 0.0126009 0.999921i \(-0.495989\pi\)
0.0126009 + 0.999921i \(0.495989\pi\)
\(420\) −2.99360 + 5.18507i −0.146073 + 0.253006i
\(421\) −14.7094 25.4774i −0.716892 1.24169i −0.962225 0.272254i \(-0.912231\pi\)
0.245334 0.969439i \(-0.421102\pi\)
\(422\) 17.3486 30.0486i 0.844515 1.46274i
\(423\) −14.6404 25.3580i −0.711843 1.23295i
\(424\) 0.198978 + 0.344640i 0.00966323 + 0.0167372i
\(425\) −0.360677 0.624710i −0.0174954 0.0303029i
\(426\) 5.96928 0.289212
\(427\) −8.76934 + 15.1889i −0.424378 + 0.735044i
\(428\) 5.22301 9.04652i 0.252464 0.437280i
\(429\) −0.104955 0.181788i −0.00506730 0.00877682i
\(430\) 29.6468 1.42970
\(431\) −15.8951 + 27.5311i −0.765638 + 1.32612i 0.174270 + 0.984698i \(0.444243\pi\)
−0.939908 + 0.341427i \(0.889090\pi\)
\(432\) −10.7244 −0.515980
\(433\) −18.8132 −0.904103 −0.452052 0.891992i \(-0.649308\pi\)
−0.452052 + 0.891992i \(0.649308\pi\)
\(434\) 11.4762 + 39.0794i 0.550875 + 1.87587i
\(435\) 7.20251 0.345334
\(436\) −20.8786 −0.999905
\(437\) 0.194971 0.337700i 0.00932674 0.0161544i
\(438\) −0.0283476 −0.00135450
\(439\) 8.84877 + 15.3265i 0.422329 + 0.731495i 0.996167 0.0874741i \(-0.0278795\pi\)
−0.573838 + 0.818969i \(0.694546\pi\)
\(440\) −0.0222922 + 0.0386112i −0.00106274 + 0.00184072i
\(441\) 8.72647 15.1147i 0.415546 0.719747i
\(442\) 0.708422 0.0336962
\(443\) −5.65530 9.79526i −0.268691 0.465387i 0.699833 0.714307i \(-0.253258\pi\)
−0.968524 + 0.248920i \(0.919924\pi\)
\(444\) −2.62397 4.54485i −0.124528 0.215689i
\(445\) −7.62880 13.2135i −0.361640 0.626378i
\(446\) 22.9913 39.8220i 1.08867 1.88563i
\(447\) −4.85995 8.41768i −0.229868 0.398143i
\(448\) −14.9972 + 25.9759i −0.708552 + 1.22725i
\(449\) 37.3937 1.76472 0.882358 0.470578i \(-0.155955\pi\)
0.882358 + 0.470578i \(0.155955\pi\)
\(450\) −11.3978 −0.537295
\(451\) −0.135718 + 0.235070i −0.00639070 + 0.0110690i
\(452\) 17.9071 + 31.0161i 0.842281 + 1.45887i
\(453\) 0.464010 0.803689i 0.0218011 0.0377606i
\(454\) 2.89924 + 5.02163i 0.136068 + 0.235677i
\(455\) 3.13303 + 5.42656i 0.146879 + 0.254401i
\(456\) 0.0246905 + 0.0427651i 0.00115624 + 0.00200266i
\(457\) −39.5060 −1.84801 −0.924007 0.382376i \(-0.875106\pi\)
−0.924007 + 0.382376i \(0.875106\pi\)
\(458\) 8.42026 14.5843i 0.393453 0.681480i
\(459\) 0.480188 0.831710i 0.0224133 0.0388209i
\(460\) −0.377348 0.653585i −0.0175939 0.0304736i
\(461\) −18.7601 −0.873744 −0.436872 0.899524i \(-0.643914\pi\)
−0.436872 + 0.899524i \(0.643914\pi\)
\(462\) −0.767777 + 1.32983i −0.0357202 + 0.0618692i
\(463\) 18.5138 0.860410 0.430205 0.902731i \(-0.358441\pi\)
0.430205 + 0.902731i \(0.358441\pi\)
\(464\) 35.0589 1.62757
\(465\) −3.11084 + 3.26278i −0.144262 + 0.151308i
\(466\) −20.7379 −0.960662
\(467\) 10.2725 0.475354 0.237677 0.971344i \(-0.423614\pi\)
0.237677 + 0.971344i \(0.423614\pi\)
\(468\) 2.81849 4.88177i 0.130285 0.225660i
\(469\) 0.882616 0.0407554
\(470\) −18.1864 31.4997i −0.838874 1.45297i
\(471\) 2.46926 4.27688i 0.113778 0.197068i
\(472\) −0.215170 + 0.372685i −0.00990399 + 0.0171542i
\(473\) 3.82915 0.176064
\(474\) −6.78697 11.7554i −0.311736 0.539942i
\(475\) −1.84201 3.19046i −0.0845173 0.146388i
\(476\) −1.30489 2.26014i −0.0598097 0.103593i
\(477\) 9.50244 16.4587i 0.435087 0.753593i
\(478\) −17.0035 29.4509i −0.777722 1.34705i
\(479\) −1.18279 + 2.04865i −0.0540429 + 0.0936050i −0.891781 0.452467i \(-0.850544\pi\)
0.837738 + 0.546072i \(0.183877\pi\)
\(480\) −6.49950 −0.296660
\(481\) −5.49235 −0.250430
\(482\) −16.7107 + 28.9437i −0.761149 + 1.31835i
\(483\) −0.185646 0.321548i −0.00844719 0.0146310i
\(484\) 10.9578 18.9795i 0.498084 0.862706i
\(485\) −3.30968 5.73253i −0.150285 0.260301i
\(486\) −11.5264 19.9644i −0.522849 0.905602i
\(487\) −7.28324 12.6149i −0.330035 0.571637i 0.652483 0.757803i \(-0.273727\pi\)
−0.982518 + 0.186166i \(0.940394\pi\)
\(488\) 0.279964 0.0126734
\(489\) 5.28855 9.16004i 0.239157 0.414231i
\(490\) 10.8400 18.7755i 0.489702 0.848188i
\(491\) 5.40094 + 9.35470i 0.243741 + 0.422172i 0.961777 0.273834i \(-0.0882920\pi\)
−0.718036 + 0.696006i \(0.754959\pi\)
\(492\) 0.581854 0.0262320
\(493\) −1.56977 + 2.71891i −0.0706987 + 0.122454i
\(494\) 3.61798 0.162781
\(495\) 2.12918 0.0956996
\(496\) −15.1423 + 15.8819i −0.679910 + 0.713117i
\(497\) −23.0146 −1.03235
\(498\) −15.0770 −0.675616
\(499\) −11.0495 + 19.1383i −0.494645 + 0.856749i −0.999981 0.00617295i \(-0.998035\pi\)
0.505336 + 0.862922i \(0.331368\pi\)
\(500\) −24.5726 −1.09892
\(501\) 0.492095 + 0.852334i 0.0219852 + 0.0380795i
\(502\) 17.3260 30.0095i 0.773296 1.33939i
\(503\) 3.87267 6.70767i 0.172674 0.299080i −0.766680 0.642030i \(-0.778093\pi\)
0.939354 + 0.342950i \(0.111426\pi\)
\(504\) −0.589032 −0.0262376
\(505\) −2.38534 4.13154i −0.106146 0.183851i
\(506\) −0.0967793 0.167627i −0.00430236 0.00745191i
\(507\) 0.235463 + 0.407833i 0.0104573 + 0.0181125i
\(508\) −7.27890 + 12.6074i −0.322949 + 0.559364i
\(509\) 11.5266 + 19.9647i 0.510907 + 0.884918i 0.999920 + 0.0126410i \(0.00402385\pi\)
−0.489013 + 0.872277i \(0.662643\pi\)
\(510\) 0.286798 0.496748i 0.0126996 0.0219964i
\(511\) 0.109295 0.00483490
\(512\) −32.0955 −1.41843
\(513\) 2.45237 4.24763i 0.108275 0.187537i
\(514\) 4.28036 + 7.41381i 0.188799 + 0.327009i
\(515\) 8.18628 14.1791i 0.360731 0.624804i
\(516\) −4.10411 7.10853i −0.180673 0.312936i
\(517\) −2.34893 4.06846i −0.103306 0.178931i
\(518\) 20.0890 + 34.7952i 0.882660 + 1.52881i
\(519\) 6.03731 0.265009
\(520\) 0.0500115 0.0866225i 0.00219315 0.00379865i
\(521\) −21.6428 + 37.4865i −0.948190 + 1.64231i −0.198955 + 0.980009i \(0.563755\pi\)
−0.749235 + 0.662305i \(0.769578\pi\)
\(522\) 24.8031 + 42.9602i 1.08560 + 1.88032i
\(523\) −26.4266 −1.15555 −0.577777 0.816195i \(-0.696080\pi\)
−0.577777 + 0.816195i \(0.696080\pi\)
\(524\) −1.63261 + 2.82777i −0.0713210 + 0.123532i
\(525\) −3.50782 −0.153094
\(526\) −41.9350 −1.82845
\(527\) −0.553685 1.88544i −0.0241189 0.0821311i
\(528\) −0.827300 −0.0360036
\(529\) −22.9532 −0.997965
\(530\) 11.8039 20.4450i 0.512730 0.888074i
\(531\) 20.5514 0.891854
\(532\) −6.66423 11.5428i −0.288931 0.500443i
\(533\) 0.304476 0.527368i 0.0131883 0.0228429i
\(534\) −4.19415 + 7.26448i −0.181499 + 0.314365i
\(535\) −8.85186 −0.382699
\(536\) −0.00704447 0.0122014i −0.000304275 0.000527019i
\(537\) −2.36826 4.10194i −0.102198 0.177012i
\(538\) −4.98152 8.62825i −0.214769 0.371990i
\(539\) 1.40008 2.42501i 0.0603058 0.104453i
\(540\) −4.74632 8.22086i −0.204249 0.353770i
\(541\) 3.34753 5.79809i 0.143922 0.249279i −0.785049 0.619434i \(-0.787362\pi\)
0.928970 + 0.370155i \(0.120695\pi\)
\(542\) 42.9036 1.84287
\(543\) −1.67931 −0.0720659
\(544\) 1.41655 2.45353i 0.0607340 0.105194i
\(545\) 8.84618 + 15.3220i 0.378929 + 0.656323i
\(546\) 1.72247 2.98341i 0.0737150 0.127678i
\(547\) −13.1634 22.7997i −0.562827 0.974845i −0.997248 0.0741349i \(-0.976380\pi\)
0.434421 0.900710i \(-0.356953\pi\)
\(548\) 3.16895 + 5.48879i 0.135371 + 0.234469i
\(549\) −6.68502 11.5788i −0.285310 0.494171i
\(550\) −1.82867 −0.0779746
\(551\) −8.01695 + 13.8858i −0.341534 + 0.591553i
\(552\) −0.00296341 + 0.00513278i −0.000126131 + 0.000218465i
\(553\) 26.1673 + 45.3231i 1.11275 + 1.92733i
\(554\) 45.3420 1.92640
\(555\) −2.22352 + 3.85126i −0.0943833 + 0.163477i
\(556\) −2.96074 −0.125563
\(557\) 7.64301 0.323845 0.161922 0.986804i \(-0.448231\pi\)
0.161922 + 0.986804i \(0.448231\pi\)
\(558\) −30.1740 7.31904i −1.27737 0.309840i
\(559\) −8.59051 −0.363340
\(560\) 24.6957 1.04359
\(561\) 0.0370424 0.0641594i 0.00156393 0.00270881i
\(562\) 38.4172 1.62053
\(563\) −6.17330 10.6925i −0.260174 0.450634i 0.706114 0.708098i \(-0.250447\pi\)
−0.966288 + 0.257464i \(0.917113\pi\)
\(564\) −5.03520 + 8.72122i −0.212020 + 0.367230i
\(565\) 15.1743 26.2827i 0.638389 1.10572i
\(566\) −49.0838 −2.06315
\(567\) 12.8526 + 22.2614i 0.539759 + 0.934890i
\(568\) 0.183688 + 0.318157i 0.00770737 + 0.0133496i
\(569\) −11.0423 19.1259i −0.462919 0.801800i 0.536186 0.844100i \(-0.319865\pi\)
−0.999105 + 0.0423003i \(0.986531\pi\)
\(570\) 1.46471 2.53694i 0.0613498 0.106261i
\(571\) 14.2827 + 24.7383i 0.597711 + 1.03527i 0.993158 + 0.116777i \(0.0372562\pi\)
−0.395447 + 0.918489i \(0.629410\pi\)
\(572\) 0.452201 0.783235i 0.0189075 0.0327487i
\(573\) −1.34799 −0.0563132
\(574\) −4.45465 −0.185933
\(575\) 0.221083 0.382927i 0.00921979 0.0159691i
\(576\) −11.4326 19.8019i −0.476360 0.825079i
\(577\) 19.8553 34.3904i 0.826587 1.43169i −0.0741139 0.997250i \(-0.523613\pi\)
0.900701 0.434440i \(-0.143054\pi\)
\(578\) −16.9365 29.3348i −0.704464 1.22017i
\(579\) −4.59259 7.95460i −0.190861 0.330582i
\(580\) 15.5160 + 26.8745i 0.644268 + 1.11590i
\(581\) 58.1296 2.41162
\(582\) −1.81959 + 3.15163i −0.0754245 + 0.130639i
\(583\) 1.52458 2.64065i 0.0631417 0.109365i
\(584\) −0.000872317 0.00151090i −3.60967e−5 6.25214e-5i
\(585\) −4.77672 −0.197493
\(586\) 11.4511 19.8338i 0.473039 0.819328i
\(587\) −29.3827 −1.21276 −0.606378 0.795177i \(-0.707378\pi\)
−0.606378 + 0.795177i \(0.707378\pi\)
\(588\) −6.00248 −0.247538
\(589\) −2.82772 9.62914i −0.116514 0.396762i
\(590\) 25.5289 1.05101
\(591\) −6.67828 −0.274708
\(592\) −10.8232 + 18.7463i −0.444831 + 0.770470i
\(593\) 23.5849 0.968518 0.484259 0.874925i \(-0.339089\pi\)
0.484259 + 0.874925i \(0.339089\pi\)
\(594\) −1.21730 2.10843i −0.0499464 0.0865097i
\(595\) −1.10575 + 1.91522i −0.0453315 + 0.0785165i
\(596\) 20.9391 36.2676i 0.857700 1.48558i
\(597\) 11.2039 0.458545
\(598\) 0.217120 + 0.376062i 0.00887868 + 0.0153783i
\(599\) −2.76860 4.79536i −0.113122 0.195933i 0.803905 0.594757i \(-0.202752\pi\)
−0.917027 + 0.398824i \(0.869418\pi\)
\(600\) 0.0279971 + 0.0484925i 0.00114298 + 0.00197970i
\(601\) −19.7320 + 34.1768i −0.804885 + 1.39410i 0.111484 + 0.993766i \(0.464440\pi\)
−0.916369 + 0.400336i \(0.868894\pi\)
\(602\) 31.4209 + 54.4226i 1.28062 + 2.21810i
\(603\) −0.336417 + 0.582691i −0.0137000 + 0.0237290i
\(604\) 3.99838 0.162692
\(605\) −18.5711 −0.755024
\(606\) −1.31141 + 2.27143i −0.0532725 + 0.0922706i
\(607\) −0.712082 1.23336i −0.0289025 0.0500607i 0.851212 0.524821i \(-0.175868\pi\)
−0.880115 + 0.474761i \(0.842535\pi\)
\(608\) 7.23445 12.5304i 0.293396 0.508176i
\(609\) 7.63351 + 13.2216i 0.309326 + 0.535768i
\(610\) −8.30413 14.3832i −0.336224 0.582357i
\(611\) 5.26970 + 9.12739i 0.213189 + 0.369255i
\(612\) 1.98949 0.0804202
\(613\) −9.82573 + 17.0187i −0.396858 + 0.687377i −0.993336 0.115251i \(-0.963233\pi\)
0.596479 + 0.802629i \(0.296566\pi\)
\(614\) 14.0734 24.3758i 0.567954 0.983726i
\(615\) −0.246529 0.427000i −0.00994099 0.0172183i
\(616\) −0.0945048 −0.00380771
\(617\) −14.9320 + 25.8630i −0.601140 + 1.04121i 0.391509 + 0.920174i \(0.371953\pi\)
−0.992649 + 0.121031i \(0.961380\pi\)
\(618\) −9.00129 −0.362085
\(619\) 28.9314 1.16285 0.581426 0.813599i \(-0.302495\pi\)
0.581426 + 0.813599i \(0.302495\pi\)
\(620\) −18.8759 4.57856i −0.758072 0.183879i
\(621\) 0.588679 0.0236229
\(622\) −48.0951 −1.92844
\(623\) 16.1706 28.0083i 0.647862 1.12213i
\(624\) 1.85601 0.0742998
\(625\) 5.30162 + 9.18267i 0.212065 + 0.367307i
\(626\) −0.375719 + 0.650765i −0.0150168 + 0.0260098i
\(627\) 0.189180 0.327669i 0.00755510 0.0130858i
\(628\) 21.2776 0.849070
\(629\) −0.969221 1.67874i −0.0386454 0.0669357i
\(630\) 17.4715 + 30.2615i 0.696081 + 1.20565i
\(631\) 12.0906 + 20.9416i 0.481320 + 0.833670i 0.999770 0.0214374i \(-0.00682425\pi\)
−0.518450 + 0.855108i \(0.673491\pi\)
\(632\) 0.417700 0.723478i 0.0166152 0.0287784i
\(633\) 4.07022 + 7.04983i 0.161777 + 0.280206i
\(634\) −26.7249 + 46.2889i −1.06138 + 1.83837i
\(635\) 12.3361 0.489544
\(636\) −6.53623 −0.259178
\(637\) −3.14102 + 5.44040i −0.124452 + 0.215557i
\(638\) 3.97943 + 6.89258i 0.157547 + 0.272880i
\(639\) 8.77223 15.1940i 0.347024 0.601063i
\(640\) −0.400050 0.692907i −0.0158134 0.0273896i
\(641\) 0.899094 + 1.55728i 0.0355121 + 0.0615087i 0.883235 0.468930i \(-0.155360\pi\)
−0.847723 + 0.530439i \(0.822027\pi\)
\(642\) 2.43328 + 4.21457i 0.0960340 + 0.166336i
\(643\) −21.2900 −0.839594 −0.419797 0.907618i \(-0.637899\pi\)
−0.419797 + 0.907618i \(0.637899\pi\)
\(644\) 0.799857 1.38539i 0.0315188 0.0545921i
\(645\) −3.47778 + 6.02370i −0.136938 + 0.237183i
\(646\) 0.638456 + 1.10584i 0.0251197 + 0.0435086i
\(647\) −16.7900 −0.660084 −0.330042 0.943966i \(-0.607063\pi\)
−0.330042 + 0.943966i \(0.607063\pi\)
\(648\) 0.205162 0.355351i 0.00805953 0.0139595i
\(649\) 3.29728 0.129430
\(650\) 4.10252 0.160914
\(651\) −9.28647 2.25254i −0.363966 0.0882841i
\(652\) 45.5715 1.78472
\(653\) 2.77823 0.108721 0.0543604 0.998521i \(-0.482688\pi\)
0.0543604 + 0.998521i \(0.482688\pi\)
\(654\) 4.86344 8.42372i 0.190176 0.329394i
\(655\) 2.76692 0.108112
\(656\) −1.20000 2.07846i −0.0468521 0.0811503i
\(657\) −0.0416586 + 0.0721547i −0.00162525 + 0.00281502i
\(658\) 38.5493 66.7693i 1.50281 2.60294i
\(659\) −40.3945 −1.57354 −0.786772 0.617243i \(-0.788249\pi\)
−0.786772 + 0.617243i \(0.788249\pi\)
\(660\) −0.366138 0.634170i −0.0142519 0.0246850i
\(661\) −10.8765 18.8386i −0.423045 0.732735i 0.573191 0.819422i \(-0.305705\pi\)
−0.996236 + 0.0866866i \(0.972372\pi\)
\(662\) −9.00128 15.5907i −0.349845 0.605949i
\(663\) −0.0831030 + 0.143939i −0.00322745 + 0.00559011i
\(664\) −0.463953 0.803589i −0.0180048 0.0311853i
\(665\) −5.64720 + 9.78123i −0.218989 + 0.379300i
\(666\) −30.6284 −1.18683
\(667\) −1.92443 −0.0745141
\(668\) −2.12019 + 3.67228i −0.0820328 + 0.142085i
\(669\) 5.39408 + 9.34282i 0.208547 + 0.361214i
\(670\) −0.417897 + 0.723819i −0.0161448 + 0.0279636i
\(671\) −1.07255 1.85771i −0.0414053 0.0717162i
\(672\) −6.88844 11.9311i −0.265727 0.460253i
\(673\) −10.2675 17.7839i −0.395784 0.685518i 0.597417 0.801931i \(-0.296194\pi\)
−0.993201 + 0.116413i \(0.962860\pi\)
\(674\) −0.728594 −0.0280644
\(675\) 2.78080 4.81649i 0.107033 0.185387i
\(676\) −1.01449 + 1.75715i −0.0390189 + 0.0675827i
\(677\) −8.55005 14.8091i −0.328605 0.569161i 0.653630 0.756814i \(-0.273245\pi\)
−0.982235 + 0.187653i \(0.939912\pi\)
\(678\) −16.6851 −0.640786
\(679\) 7.01547 12.1511i 0.269229 0.466318i
\(680\) 0.0353016 0.00135376
\(681\) −1.36041 −0.0521309
\(682\) −4.84114 1.17427i −0.185377 0.0449653i
\(683\) −48.9591 −1.87337 −0.936683 0.350178i \(-0.886121\pi\)
−0.936683 + 0.350178i \(0.886121\pi\)
\(684\) 10.1605 0.388497
\(685\) 2.68534 4.65114i 0.102602 0.177711i
\(686\) −5.25211 −0.200526
\(687\) 1.97551 + 3.42169i 0.0753705 + 0.130546i
\(688\) −16.9284 + 29.3209i −0.645390 + 1.11785i
\(689\) −3.42032 + 5.92417i −0.130304 + 0.225693i
\(690\) 0.351595 0.0133850
\(691\) 11.9291 + 20.6619i 0.453806 + 0.786015i 0.998619 0.0525428i \(-0.0167326\pi\)
−0.544813 + 0.838558i \(0.683399\pi\)
\(692\) 13.0059 + 22.5269i 0.494410 + 0.856343i
\(693\) 2.25659 + 3.90854i 0.0857209 + 0.148473i
\(694\) −26.5105 + 45.9175i −1.00632 + 1.74300i
\(695\) 1.25445 + 2.17277i 0.0475841 + 0.0824180i
\(696\) 0.121851 0.211053i 0.00461876 0.00799994i
\(697\) 0.214921 0.00814070
\(698\) 11.4144 0.432042
\(699\) 2.43270 4.21356i 0.0920131 0.159371i
\(700\) −7.55673 13.0886i −0.285618 0.494704i
\(701\) 18.9854 32.8836i 0.717067 1.24200i −0.245089 0.969500i \(-0.578817\pi\)
0.962157 0.272497i \(-0.0878493\pi\)
\(702\) 2.73095 + 4.73015i 0.103073 + 0.178528i
\(703\) −4.94991 8.57349i −0.186689 0.323355i
\(704\) −1.83426 3.17703i −0.0691313 0.119739i
\(705\) 8.53355 0.321392
\(706\) −26.8439 + 46.4950i −1.01028 + 1.74986i
\(707\) 5.05617 8.75754i 0.190157 0.329361i
\(708\) −3.53405 6.12116i −0.132818 0.230047i
\(709\) 44.6884 1.67831 0.839153 0.543895i \(-0.183051\pi\)
0.839153 + 0.543895i \(0.183051\pi\)
\(710\) 10.8969 18.8739i 0.408952 0.708326i
\(711\) −39.8955 −1.49620
\(712\) −0.516253 −0.0193474
\(713\) 0.831181 0.871777i 0.0311280 0.0326483i
\(714\) 1.21584 0.0455017
\(715\) −0.766381 −0.0286610
\(716\) 10.2036 17.6732i 0.381328 0.660479i
\(717\) 7.97852 0.297963
\(718\) 5.40337 + 9.35892i 0.201652 + 0.349272i
\(719\) 23.0223 39.8757i 0.858585 1.48711i −0.0146936 0.999892i \(-0.504677\pi\)
0.873279 0.487221i \(-0.161989\pi\)
\(720\) −9.41299 + 16.3038i −0.350801 + 0.607606i
\(721\) 34.7046 1.29247
\(722\) −15.8080 27.3803i −0.588315 1.01899i
\(723\) −3.92056 6.79060i −0.145807 0.252545i
\(724\) −3.61765 6.26595i −0.134449 0.232872i
\(725\) −9.09062 + 15.7454i −0.337617 + 0.584770i
\(726\) 5.10501 + 8.84213i 0.189465 + 0.328162i
\(727\) 18.2093 31.5395i 0.675346 1.16973i −0.301021 0.953617i \(-0.597328\pi\)
0.976368 0.216116i \(-0.0693391\pi\)
\(728\) 0.212017 0.00785787
\(729\) −15.7512 −0.583378
\(730\) −0.0517482 + 0.0896306i −0.00191529 + 0.00331738i
\(731\) −1.51595 2.62569i −0.0560693 0.0971148i
\(732\) −2.29914 + 3.98222i −0.0849786 + 0.147187i
\(733\) −7.00023 12.1248i −0.258560 0.447838i 0.707297 0.706917i \(-0.249914\pi\)
−0.965856 + 0.259079i \(0.916581\pi\)
\(734\) −24.0709 41.6920i −0.888472 1.53888i
\(735\) 2.54322 + 4.40499i 0.0938081 + 0.162480i
\(736\) 1.73659 0.0640116
\(737\) −0.0539750 + 0.0934875i −0.00198820 + 0.00344366i
\(738\) 1.69793 2.94090i 0.0625016 0.108256i
\(739\) −15.5995 27.0191i −0.573837 0.993914i −0.996167 0.0874722i \(-0.972121\pi\)
0.422330 0.906442i \(-0.361212\pi\)
\(740\) −19.1601 −0.704340
\(741\) −0.424415 + 0.735109i −0.0155913 + 0.0270049i
\(742\) 50.0411 1.83707
\(743\) 12.3296 0.452330 0.226165 0.974089i \(-0.427381\pi\)
0.226165 + 0.974089i \(0.427381\pi\)
\(744\) 0.0429792 + 0.146355i 0.00157569 + 0.00536565i
\(745\) −35.4872 −1.30015
\(746\) −32.7915 −1.20058
\(747\) −22.1566 + 38.3764i −0.810668 + 1.40412i
\(748\) 0.319195 0.0116709
\(749\) −9.38156 16.2493i −0.342795 0.593738i
\(750\) 5.72391 9.91410i 0.209008 0.362012i
\(751\) 3.59880 6.23331i 0.131322 0.227457i −0.792864 0.609398i \(-0.791411\pi\)
0.924187 + 0.381941i \(0.124744\pi\)
\(752\) 41.5379 1.51473
\(753\) 4.06492 + 7.04065i 0.148134 + 0.256576i
\(754\) −8.92766 15.4632i −0.325126 0.563135i
\(755\) −1.69409 2.93425i −0.0616543 0.106788i
\(756\) 10.0607 17.4256i 0.365903 0.633763i
\(757\) 26.8370 + 46.4831i 0.975408 + 1.68946i 0.678581 + 0.734526i \(0.262595\pi\)
0.296827 + 0.954931i \(0.404071\pi\)
\(758\) 14.9373 25.8722i 0.542547 0.939719i
\(759\) 0.0454116 0.00164834
\(760\) 0.180289 0.00653977
\(761\) 10.3426 17.9139i 0.374918 0.649377i −0.615397 0.788217i \(-0.711004\pi\)
0.990315 + 0.138841i \(0.0443376\pi\)
\(762\) −3.39107 5.87351i −0.122846 0.212775i
\(763\) −18.7511 + 32.4778i −0.678834 + 1.17578i
\(764\) −2.90392 5.02973i −0.105060 0.181969i
\(765\) −0.842935 1.46001i −0.0304764 0.0527867i
\(766\) −19.2578 33.3554i −0.695812 1.20518i
\(767\) −7.39729 −0.267101
\(768\) 3.65585 6.33212i 0.131919 0.228491i
\(769\) 0.347788 0.602387i 0.0125416 0.0217226i −0.859687 0.510822i \(-0.829341\pi\)
0.872228 + 0.489099i \(0.162674\pi\)
\(770\) 2.80314 + 4.85518i 0.101018 + 0.174969i