Properties

Label 403.2.h.b.118.9
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.9
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.9

$q$-expansion

\(f(q)\) \(=\) \(q-0.272181 q^{2} +(0.850363 + 1.47287i) q^{3} -1.92592 q^{4} +(1.58639 - 2.74770i) q^{5} +(-0.231453 - 0.400888i) q^{6} +(1.18195 + 2.04720i) q^{7} +1.06856 q^{8} +(0.0537640 - 0.0931220i) q^{9} +O(q^{10})\) \(q-0.272181 q^{2} +(0.850363 + 1.47287i) q^{3} -1.92592 q^{4} +(1.58639 - 2.74770i) q^{5} +(-0.231453 - 0.400888i) q^{6} +(1.18195 + 2.04720i) q^{7} +1.06856 q^{8} +(0.0537640 - 0.0931220i) q^{9} +(-0.431784 + 0.747872i) q^{10} +(1.18016 - 2.04409i) q^{11} +(-1.63773 - 2.83663i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-0.321705 - 0.557209i) q^{14} +5.39602 q^{15} +3.56099 q^{16} +(2.76821 + 4.79469i) q^{17} +(-0.0146335 + 0.0253460i) q^{18} +(-3.29341 - 5.70435i) q^{19} +(-3.05525 + 5.29184i) q^{20} +(-2.01018 + 3.48173i) q^{21} +(-0.321216 + 0.556362i) q^{22} +6.73494 q^{23} +(0.908664 + 1.57385i) q^{24} +(-2.53324 - 4.38770i) q^{25} +(0.136090 - 0.235716i) q^{26} +5.28506 q^{27} +(-2.27634 - 3.94274i) q^{28} +3.62955 q^{29} -1.46869 q^{30} +(-3.67362 + 4.18384i) q^{31} -3.10635 q^{32} +4.01424 q^{33} +(-0.753455 - 1.30502i) q^{34} +7.50013 q^{35} +(-0.103545 + 0.179345i) q^{36} +(2.79917 + 4.84830i) q^{37} +(0.896402 + 1.55261i) q^{38} -1.70073 q^{39} +(1.69515 - 2.93608i) q^{40} +(-3.02769 + 5.24411i) q^{41} +(0.547132 - 0.947661i) q^{42} +(0.343866 + 0.595593i) q^{43} +(-2.27288 + 3.93675i) q^{44} +(-0.170581 - 0.295455i) q^{45} -1.83312 q^{46} -9.64305 q^{47} +(3.02814 + 5.24489i) q^{48} +(0.705976 - 1.22279i) q^{49} +(0.689499 + 1.19425i) q^{50} +(-4.70798 + 8.15445i) q^{51} +(0.962959 - 1.66789i) q^{52} +(-1.25298 + 2.17023i) q^{53} -1.43849 q^{54} +(-3.74436 - 6.48543i) q^{55} +(1.26299 + 2.18756i) q^{56} +(5.60118 - 9.70154i) q^{57} -0.987894 q^{58} +(-5.82305 - 10.0858i) q^{59} -10.3923 q^{60} -5.03387 q^{61} +(0.999890 - 1.13876i) q^{62} +0.254186 q^{63} -6.27650 q^{64} +(1.58639 + 2.74770i) q^{65} -1.09260 q^{66} +(7.51547 - 13.0172i) q^{67} +(-5.33135 - 9.23417i) q^{68} +(5.72715 + 9.91971i) q^{69} -2.04139 q^{70} +(6.77864 - 11.7409i) q^{71} +(0.0574501 - 0.0995064i) q^{72} +(-7.59801 + 13.1601i) q^{73} +(-0.761879 - 1.31961i) q^{74} +(4.30835 - 7.46228i) q^{75} +(6.34283 + 10.9861i) q^{76} +5.57955 q^{77} +0.462905 q^{78} +(-8.81193 - 15.2627i) q^{79} +(5.64911 - 9.78454i) q^{80} +(4.33293 + 7.50485i) q^{81} +(0.824078 - 1.42735i) q^{82} +(0.394589 - 0.683448i) q^{83} +(3.87144 - 6.70553i) q^{84} +17.5658 q^{85} +(-0.0935937 - 0.162109i) q^{86} +(3.08644 + 5.34586i) q^{87} +(1.26107 - 2.18423i) q^{88} -12.7700 q^{89} +(0.0464289 + 0.0804172i) q^{90} -2.36391 q^{91} -12.9709 q^{92} +(-9.28617 - 1.85300i) q^{93} +2.62465 q^{94} -20.8984 q^{95} +(-2.64153 - 4.57526i) q^{96} -2.61661 q^{97} +(-0.192153 + 0.332819i) q^{98} +(-0.126900 - 0.219797i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.272181 −0.192461 −0.0962305 0.995359i \(-0.530679\pi\)
−0.0962305 + 0.995359i \(0.530679\pi\)
\(3\) 0.850363 + 1.47287i 0.490958 + 0.850363i 0.999946 0.0104100i \(-0.00331367\pi\)
−0.508988 + 0.860773i \(0.669980\pi\)
\(4\) −1.92592 −0.962959
\(5\) 1.58639 2.74770i 0.709453 1.22881i −0.255607 0.966781i \(-0.582275\pi\)
0.965060 0.262028i \(-0.0843914\pi\)
\(6\) −0.231453 0.400888i −0.0944901 0.163662i
\(7\) 1.18195 + 2.04720i 0.446736 + 0.773770i 0.998171 0.0604481i \(-0.0192530\pi\)
−0.551435 + 0.834218i \(0.685920\pi\)
\(8\) 1.06856 0.377793
\(9\) 0.0537640 0.0931220i 0.0179213 0.0310407i
\(10\) −0.431784 + 0.747872i −0.136542 + 0.236498i
\(11\) 1.18016 2.04409i 0.355830 0.616316i −0.631430 0.775433i \(-0.717531\pi\)
0.987260 + 0.159117i \(0.0508648\pi\)
\(12\) −1.63773 2.83663i −0.472772 0.818865i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) −0.321705 0.557209i −0.0859792 0.148920i
\(15\) 5.39602 1.39325
\(16\) 3.56099 0.890248
\(17\) 2.76821 + 4.79469i 0.671390 + 1.16288i 0.977510 + 0.210889i \(0.0676359\pi\)
−0.306120 + 0.951993i \(0.599031\pi\)
\(18\) −0.0146335 + 0.0253460i −0.00344916 + 0.00597412i
\(19\) −3.29341 5.70435i −0.755559 1.30867i −0.945096 0.326793i \(-0.894032\pi\)
0.189537 0.981874i \(-0.439301\pi\)
\(20\) −3.05525 + 5.29184i −0.683174 + 1.18329i
\(21\) −2.01018 + 3.48173i −0.438657 + 0.759776i
\(22\) −0.321216 + 0.556362i −0.0684834 + 0.118617i
\(23\) 6.73494 1.40433 0.702166 0.712013i \(-0.252216\pi\)
0.702166 + 0.712013i \(0.252216\pi\)
\(24\) 0.908664 + 1.57385i 0.185480 + 0.321261i
\(25\) −2.53324 4.38770i −0.506648 0.877540i
\(26\) 0.136090 0.235716i 0.0266895 0.0462276i
\(27\) 5.28506 1.01711
\(28\) −2.27634 3.94274i −0.430188 0.745108i
\(29\) 3.62955 0.673990 0.336995 0.941506i \(-0.390589\pi\)
0.336995 + 0.941506i \(0.390589\pi\)
\(30\) −1.46869 −0.268145
\(31\) −3.67362 + 4.18384i −0.659802 + 0.751439i
\(32\) −3.10635 −0.549131
\(33\) 4.01424 0.698790
\(34\) −0.753455 1.30502i −0.129216 0.223809i
\(35\) 7.50013 1.26775
\(36\) −0.103545 + 0.179345i −0.0172575 + 0.0298909i
\(37\) 2.79917 + 4.84830i 0.460180 + 0.797055i 0.998970 0.0453851i \(-0.0144515\pi\)
−0.538789 + 0.842440i \(0.681118\pi\)
\(38\) 0.896402 + 1.55261i 0.145416 + 0.251867i
\(39\) −1.70073 −0.272334
\(40\) 1.69515 2.93608i 0.268026 0.464235i
\(41\) −3.02769 + 5.24411i −0.472845 + 0.818992i −0.999517 0.0310769i \(-0.990106\pi\)
0.526672 + 0.850069i \(0.323440\pi\)
\(42\) 0.547132 0.947661i 0.0844243 0.146227i
\(43\) 0.343866 + 0.595593i 0.0524391 + 0.0908271i 0.891053 0.453898i \(-0.149967\pi\)
−0.838614 + 0.544726i \(0.816634\pi\)
\(44\) −2.27288 + 3.93675i −0.342650 + 0.593487i
\(45\) −0.170581 0.295455i −0.0254287 0.0440438i
\(46\) −1.83312 −0.270279
\(47\) −9.64305 −1.40658 −0.703292 0.710901i \(-0.748287\pi\)
−0.703292 + 0.710901i \(0.748287\pi\)
\(48\) 3.02814 + 5.24489i 0.437074 + 0.757035i
\(49\) 0.705976 1.22279i 0.100854 0.174684i
\(50\) 0.689499 + 1.19425i 0.0975099 + 0.168892i
\(51\) −4.70798 + 8.15445i −0.659248 + 1.14185i
\(52\) 0.962959 1.66789i 0.133538 0.231295i
\(53\) −1.25298 + 2.17023i −0.172110 + 0.298103i −0.939157 0.343487i \(-0.888392\pi\)
0.767047 + 0.641591i \(0.221725\pi\)
\(54\) −1.43849 −0.195754
\(55\) −3.74436 6.48543i −0.504890 0.874495i
\(56\) 1.26299 + 2.18756i 0.168774 + 0.292325i
\(57\) 5.60118 9.70154i 0.741895 1.28500i
\(58\) −0.987894 −0.129717
\(59\) −5.82305 10.0858i −0.758096 1.31306i −0.943820 0.330459i \(-0.892796\pi\)
0.185724 0.982602i \(-0.440537\pi\)
\(60\) −10.3923 −1.34164
\(61\) −5.03387 −0.644521 −0.322260 0.946651i \(-0.604443\pi\)
−0.322260 + 0.946651i \(0.604443\pi\)
\(62\) 0.999890 1.13876i 0.126986 0.144623i
\(63\) 0.254186 0.0320244
\(64\) −6.27650 −0.784562
\(65\) 1.58639 + 2.74770i 0.196767 + 0.340810i
\(66\) −1.09260 −0.134490
\(67\) 7.51547 13.0172i 0.918161 1.59030i 0.115954 0.993255i \(-0.463008\pi\)
0.802207 0.597046i \(-0.203659\pi\)
\(68\) −5.33135 9.23417i −0.646521 1.11981i
\(69\) 5.72715 + 9.91971i 0.689468 + 1.19419i
\(70\) −2.04139 −0.243993
\(71\) 6.77864 11.7409i 0.804476 1.39339i −0.112168 0.993689i \(-0.535779\pi\)
0.916644 0.399705i \(-0.130887\pi\)
\(72\) 0.0574501 0.0995064i 0.00677055 0.0117269i
\(73\) −7.59801 + 13.1601i −0.889280 + 1.54028i −0.0485514 + 0.998821i \(0.515460\pi\)
−0.840728 + 0.541457i \(0.817873\pi\)
\(74\) −0.761879 1.31961i −0.0885667 0.153402i
\(75\) 4.30835 7.46228i 0.497485 0.861670i
\(76\) 6.34283 + 10.9861i 0.727572 + 1.26019i
\(77\) 5.57955 0.635849
\(78\) 0.462905 0.0524137
\(79\) −8.81193 15.2627i −0.991420 1.71719i −0.608914 0.793237i \(-0.708394\pi\)
−0.382506 0.923953i \(-0.624939\pi\)
\(80\) 5.64911 9.78454i 0.631590 1.09395i
\(81\) 4.33293 + 7.50485i 0.481436 + 0.833872i
\(82\) 0.824078 1.42735i 0.0910042 0.157624i
\(83\) 0.394589 0.683448i 0.0433118 0.0750182i −0.843557 0.537040i \(-0.819542\pi\)
0.886869 + 0.462022i \(0.152876\pi\)
\(84\) 3.87144 6.70553i 0.422409 0.731633i
\(85\) 17.5658 1.90528
\(86\) −0.0935937 0.162109i −0.0100925 0.0174807i
\(87\) 3.08644 + 5.34586i 0.330901 + 0.573137i
\(88\) 1.26107 2.18423i 0.134430 0.232840i
\(89\) −12.7700 −1.35362 −0.676808 0.736160i \(-0.736637\pi\)
−0.676808 + 0.736160i \(0.736637\pi\)
\(90\) 0.0464289 + 0.0804172i 0.00489403 + 0.00847671i
\(91\) −2.36391 −0.247805
\(92\) −12.9709 −1.35231
\(93\) −9.28617 1.85300i −0.962931 0.192147i
\(94\) 2.62465 0.270712
\(95\) −20.8984 −2.14414
\(96\) −2.64153 4.57526i −0.269600 0.466961i
\(97\) −2.61661 −0.265677 −0.132838 0.991138i \(-0.542409\pi\)
−0.132838 + 0.991138i \(0.542409\pi\)
\(98\) −0.192153 + 0.332819i −0.0194104 + 0.0336198i
\(99\) −0.126900 0.219797i −0.0127539 0.0220904i
\(100\) 4.87881 + 8.45035i 0.487881 + 0.845035i
\(101\) −11.2898 −1.12338 −0.561689 0.827349i \(-0.689848\pi\)
−0.561689 + 0.827349i \(0.689848\pi\)
\(102\) 1.28142 2.21949i 0.126880 0.219762i
\(103\) −1.40770 + 2.43821i −0.138705 + 0.240244i −0.927007 0.375045i \(-0.877627\pi\)
0.788302 + 0.615289i \(0.210961\pi\)
\(104\) −0.534280 + 0.925400i −0.0523904 + 0.0907429i
\(105\) 6.37784 + 11.0467i 0.622413 + 1.07805i
\(106\) 0.341037 0.590694i 0.0331245 0.0573733i
\(107\) −0.0859323 0.148839i −0.00830739 0.0143888i 0.861842 0.507177i \(-0.169311\pi\)
−0.870149 + 0.492788i \(0.835978\pi\)
\(108\) −10.1786 −0.979435
\(109\) 5.19146 0.497252 0.248626 0.968600i \(-0.420021\pi\)
0.248626 + 0.968600i \(0.420021\pi\)
\(110\) 1.01914 + 1.76521i 0.0971715 + 0.168306i
\(111\) −4.76062 + 8.24563i −0.451858 + 0.782641i
\(112\) 4.20893 + 7.29007i 0.397706 + 0.688847i
\(113\) −7.54587 + 13.0698i −0.709855 + 1.22951i 0.255055 + 0.966926i \(0.417906\pi\)
−0.964911 + 0.262579i \(0.915427\pi\)
\(114\) −1.52454 + 2.64057i −0.142786 + 0.247312i
\(115\) 10.6842 18.5056i 0.996308 1.72566i
\(116\) −6.99021 −0.649025
\(117\) 0.0537640 + 0.0931220i 0.00497049 + 0.00860913i
\(118\) 1.58492 + 2.74517i 0.145904 + 0.252713i
\(119\) −6.54379 + 11.3342i −0.599869 + 1.03900i
\(120\) 5.76597 0.526358
\(121\) 2.71447 + 4.70160i 0.246770 + 0.427418i
\(122\) 1.37012 0.124045
\(123\) −10.2985 −0.928588
\(124\) 7.07510 8.05773i 0.635362 0.723605i
\(125\) −0.210921 −0.0188653
\(126\) −0.0691846 −0.00616345
\(127\) 10.5872 + 18.3376i 0.939464 + 1.62720i 0.766473 + 0.642277i \(0.222010\pi\)
0.172992 + 0.984923i \(0.444657\pi\)
\(128\) 7.92105 0.700128
\(129\) −0.584822 + 1.01294i −0.0514907 + 0.0891846i
\(130\) −0.431784 0.747872i −0.0378699 0.0655927i
\(131\) 5.14082 + 8.90417i 0.449156 + 0.777961i 0.998331 0.0577463i \(-0.0183914\pi\)
−0.549175 + 0.835707i \(0.685058\pi\)
\(132\) −7.73110 −0.672906
\(133\) 7.78530 13.4845i 0.675071 1.16926i
\(134\) −2.04557 + 3.54303i −0.176710 + 0.306071i
\(135\) 8.38414 14.5218i 0.721592 1.24983i
\(136\) 2.95800 + 5.12341i 0.253647 + 0.439329i
\(137\) −5.68208 + 9.84165i −0.485453 + 0.840829i −0.999860 0.0167169i \(-0.994679\pi\)
0.514407 + 0.857546i \(0.328012\pi\)
\(138\) −1.55882 2.69996i −0.132696 0.229836i
\(139\) −11.0598 −0.938084 −0.469042 0.883176i \(-0.655401\pi\)
−0.469042 + 0.883176i \(0.655401\pi\)
\(140\) −14.4446 −1.22079
\(141\) −8.20010 14.2030i −0.690573 1.19611i
\(142\) −1.84502 + 3.19566i −0.154830 + 0.268174i
\(143\) 1.18016 + 2.04409i 0.0986895 + 0.170935i
\(144\) 0.191453 0.331607i 0.0159544 0.0276339i
\(145\) 5.75786 9.97291i 0.478165 0.828205i
\(146\) 2.06803 3.58194i 0.171152 0.296443i
\(147\) 2.40134 0.198060
\(148\) −5.39096 9.33742i −0.443134 0.767531i
\(149\) −0.517481 0.896304i −0.0423937 0.0734281i 0.844050 0.536265i \(-0.180165\pi\)
−0.886444 + 0.462836i \(0.846832\pi\)
\(150\) −1.17265 + 2.03109i −0.0957465 + 0.165838i
\(151\) −11.1142 −0.904460 −0.452230 0.891901i \(-0.649371\pi\)
−0.452230 + 0.891901i \(0.649371\pi\)
\(152\) −3.51920 6.09543i −0.285445 0.494405i
\(153\) 0.595321 0.0481289
\(154\) −1.51865 −0.122376
\(155\) 5.66815 + 16.7312i 0.455277 + 1.34388i
\(156\) 3.27546 0.262247
\(157\) −4.28248 −0.341779 −0.170890 0.985290i \(-0.554664\pi\)
−0.170890 + 0.985290i \(0.554664\pi\)
\(158\) 2.39844 + 4.15422i 0.190810 + 0.330492i
\(159\) −4.26196 −0.337995
\(160\) −4.92787 + 8.53533i −0.389583 + 0.674777i
\(161\) 7.96038 + 13.7878i 0.627366 + 1.08663i
\(162\) −1.17934 2.04268i −0.0926577 0.160488i
\(163\) 0.514999 0.0403379 0.0201689 0.999797i \(-0.493580\pi\)
0.0201689 + 0.999797i \(0.493580\pi\)
\(164\) 5.83107 10.0997i 0.455330 0.788655i
\(165\) 6.36814 11.0299i 0.495759 0.858680i
\(166\) −0.107400 + 0.186022i −0.00833582 + 0.0144381i
\(167\) 1.40979 + 2.44183i 0.109093 + 0.188955i 0.915403 0.402538i \(-0.131872\pi\)
−0.806310 + 0.591493i \(0.798539\pi\)
\(168\) −2.14800 + 3.72044i −0.165721 + 0.287038i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −4.78108 −0.366692
\(171\) −0.708267 −0.0541625
\(172\) −0.662258 1.14706i −0.0504967 0.0874628i
\(173\) 0.266536 0.461654i 0.0202643 0.0350989i −0.855715 0.517447i \(-0.826883\pi\)
0.875980 + 0.482348i \(0.160216\pi\)
\(174\) −0.840069 1.45504i −0.0636854 0.110306i
\(175\) 5.98834 10.3721i 0.452676 0.784057i
\(176\) 4.20253 7.27899i 0.316777 0.548674i
\(177\) 9.90341 17.1532i 0.744386 1.28931i
\(178\) 3.47574 0.260518
\(179\) 0.977311 + 1.69275i 0.0730476 + 0.126522i 0.900236 0.435403i \(-0.143394\pi\)
−0.827188 + 0.561925i \(0.810061\pi\)
\(180\) 0.328525 + 0.569022i 0.0244868 + 0.0424124i
\(181\) 5.52764 9.57415i 0.410866 0.711641i −0.584119 0.811668i \(-0.698560\pi\)
0.994985 + 0.100028i \(0.0318931\pi\)
\(182\) 0.643410 0.0476927
\(183\) −4.28062 7.41425i −0.316432 0.548077i
\(184\) 7.19669 0.530547
\(185\) 17.7622 1.30591
\(186\) 2.52752 + 0.504350i 0.185327 + 0.0369808i
\(187\) 13.0677 0.955604
\(188\) 18.5717 1.35448
\(189\) 6.24669 + 10.8196i 0.454380 + 0.787009i
\(190\) 5.68816 0.412662
\(191\) −6.91195 + 11.9718i −0.500131 + 0.866252i 0.499869 + 0.866101i \(0.333381\pi\)
−1.00000 0.000151274i \(0.999952\pi\)
\(192\) −5.33730 9.24448i −0.385187 0.667163i
\(193\) −3.69654 6.40260i −0.266083 0.460869i 0.701764 0.712410i \(-0.252396\pi\)
−0.967847 + 0.251541i \(0.919063\pi\)
\(194\) 0.712192 0.0511324
\(195\) −2.69801 + 4.67309i −0.193208 + 0.334647i
\(196\) −1.35965 + 2.35499i −0.0971180 + 0.168213i
\(197\) −6.85003 + 11.8646i −0.488045 + 0.845318i −0.999905 0.0137504i \(-0.995623\pi\)
0.511861 + 0.859068i \(0.328956\pi\)
\(198\) 0.0345397 + 0.0598245i 0.00245463 + 0.00425154i
\(199\) 9.67207 16.7525i 0.685635 1.18755i −0.287602 0.957750i \(-0.592858\pi\)
0.973237 0.229805i \(-0.0738087\pi\)
\(200\) −2.70692 4.68852i −0.191408 0.331528i
\(201\) 25.5635 1.80311
\(202\) 3.07287 0.216206
\(203\) 4.28995 + 7.43042i 0.301096 + 0.521513i
\(204\) 9.06717 15.7048i 0.634829 1.09956i
\(205\) 9.60616 + 16.6384i 0.670923 + 1.16207i
\(206\) 0.383150 0.663634i 0.0266953 0.0462376i
\(207\) 0.362098 0.627171i 0.0251675 0.0435914i
\(208\) −1.78050 + 3.08391i −0.123455 + 0.213831i
\(209\) −15.5469 −1.07540
\(210\) −1.73593 3.00671i −0.119790 0.207483i
\(211\) 1.91424 + 3.31556i 0.131782 + 0.228252i 0.924363 0.381513i \(-0.124597\pi\)
−0.792582 + 0.609766i \(0.791264\pi\)
\(212\) 2.41314 4.17968i 0.165735 0.287061i
\(213\) 23.0572 1.57985
\(214\) 0.0233891 + 0.0405112i 0.00159885 + 0.00276929i
\(215\) 2.18202 0.148812
\(216\) 5.64740 0.384257
\(217\) −12.9072 2.57555i −0.876198 0.174840i
\(218\) −1.41302 −0.0957016
\(219\) −25.8443 −1.74639
\(220\) 7.21133 + 12.4904i 0.486188 + 0.842102i
\(221\) −5.53643 −0.372420
\(222\) 1.29575 2.24430i 0.0869650 0.150628i
\(223\) −0.352879 0.611204i −0.0236305 0.0409293i 0.853968 0.520325i \(-0.174189\pi\)
−0.877599 + 0.479396i \(0.840856\pi\)
\(224\) −3.67156 6.35933i −0.245317 0.424901i
\(225\) −0.544788 −0.0363192
\(226\) 2.05384 3.55736i 0.136619 0.236632i
\(227\) −9.38927 + 16.2627i −0.623188 + 1.07939i 0.365700 + 0.930733i \(0.380830\pi\)
−0.988888 + 0.148661i \(0.952504\pi\)
\(228\) −10.7874 + 18.6844i −0.714414 + 1.23740i
\(229\) 4.25653 + 7.37253i 0.281280 + 0.487191i 0.971700 0.236218i \(-0.0759078\pi\)
−0.690421 + 0.723408i \(0.742574\pi\)
\(230\) −2.90804 + 5.03687i −0.191750 + 0.332121i
\(231\) 4.74465 + 8.21797i 0.312175 + 0.540703i
\(232\) 3.87839 0.254629
\(233\) 8.14573 0.533644 0.266822 0.963746i \(-0.414026\pi\)
0.266822 + 0.963746i \(0.414026\pi\)
\(234\) −0.0146335 0.0253460i −0.000956624 0.00165692i
\(235\) −15.2976 + 26.4962i −0.997905 + 1.72842i
\(236\) 11.2147 + 19.4244i 0.730015 + 1.26442i
\(237\) 14.9867 25.9577i 0.973490 1.68613i
\(238\) 1.78110 3.08495i 0.115451 0.199967i
\(239\) 5.08527 8.80794i 0.328939 0.569738i −0.653363 0.757045i \(-0.726642\pi\)
0.982302 + 0.187306i \(0.0599757\pi\)
\(240\) 19.2152 1.24033
\(241\) −10.0893 17.4752i −0.649909 1.12568i −0.983144 0.182832i \(-0.941474\pi\)
0.333235 0.942844i \(-0.391860\pi\)
\(242\) −0.738826 1.27968i −0.0474935 0.0822612i
\(243\) 0.558460 0.967280i 0.0358252 0.0620511i
\(244\) 9.69482 0.620647
\(245\) −2.23990 3.87962i −0.143102 0.247860i
\(246\) 2.80306 0.178717
\(247\) 6.58681 0.419109
\(248\) −3.92549 + 4.47068i −0.249269 + 0.283888i
\(249\) 1.34218 0.0850570
\(250\) 0.0574086 0.00363084
\(251\) 5.59491 + 9.69067i 0.353148 + 0.611669i 0.986799 0.161949i \(-0.0517780\pi\)
−0.633652 + 0.773619i \(0.718445\pi\)
\(252\) −0.489541 −0.0308382
\(253\) 7.94828 13.7668i 0.499704 0.865513i
\(254\) −2.88164 4.99115i −0.180810 0.313172i
\(255\) 14.9373 + 25.8722i 0.935412 + 1.62018i
\(256\) 10.3970 0.649815
\(257\) −1.54540 + 2.67671i −0.0963995 + 0.166969i −0.910192 0.414187i \(-0.864066\pi\)
0.813792 + 0.581156i \(0.197399\pi\)
\(258\) 0.159177 0.275703i 0.00990995 0.0171645i
\(259\) −6.61696 + 11.4609i −0.411158 + 0.712147i
\(260\) −3.05525 5.29184i −0.189478 0.328186i
\(261\) 0.195139 0.337991i 0.0120788 0.0209211i
\(262\) −1.39923 2.42354i −0.0864450 0.149727i
\(263\) −3.32266 −0.204884 −0.102442 0.994739i \(-0.532666\pi\)
−0.102442 + 0.994739i \(0.532666\pi\)
\(264\) 4.28946 0.263998
\(265\) 3.97542 + 6.88563i 0.244208 + 0.422981i
\(266\) −2.11901 + 3.67023i −0.129925 + 0.225036i
\(267\) −10.8591 18.8086i −0.664568 1.15106i
\(268\) −14.4742 + 25.0700i −0.884151 + 1.53139i
\(269\) 5.60804 9.71341i 0.341928 0.592237i −0.642863 0.765982i \(-0.722253\pi\)
0.984791 + 0.173744i \(0.0555867\pi\)
\(270\) −2.28200 + 3.95254i −0.138878 + 0.240544i
\(271\) 16.3213 0.991450 0.495725 0.868480i \(-0.334902\pi\)
0.495725 + 0.868480i \(0.334902\pi\)
\(272\) 9.85759 + 17.0738i 0.597704 + 1.03525i
\(273\) −2.01018 3.48173i −0.121662 0.210724i
\(274\) 1.54655 2.67871i 0.0934307 0.161827i
\(275\) −11.9585 −0.721122
\(276\) −11.0300 19.1045i −0.663929 1.14996i
\(277\) 1.99976 0.120154 0.0600769 0.998194i \(-0.480865\pi\)
0.0600769 + 0.998194i \(0.480865\pi\)
\(278\) 3.01028 0.180544
\(279\) 0.192099 + 0.567035i 0.0115006 + 0.0339475i
\(280\) 8.01434 0.478948
\(281\) −12.6356 −0.753778 −0.376889 0.926258i \(-0.623006\pi\)
−0.376889 + 0.926258i \(0.623006\pi\)
\(282\) 2.23191 + 3.86578i 0.132908 + 0.230204i
\(283\) −8.76623 −0.521098 −0.260549 0.965461i \(-0.583904\pi\)
−0.260549 + 0.965461i \(0.583904\pi\)
\(284\) −13.0551 + 22.6121i −0.774678 + 1.34178i
\(285\) −17.7713 30.7808i −1.05268 1.82329i
\(286\) −0.321216 0.556362i −0.0189939 0.0328984i
\(287\) −14.3143 −0.844948
\(288\) −0.167010 + 0.289270i −0.00984116 + 0.0170454i
\(289\) −6.82601 + 11.8230i −0.401530 + 0.695471i
\(290\) −1.56718 + 2.71444i −0.0920280 + 0.159397i
\(291\) −2.22507 3.85394i −0.130436 0.225922i
\(292\) 14.6331 25.3453i 0.856340 1.48322i
\(293\) −10.3874 17.9915i −0.606840 1.05108i −0.991758 0.128126i \(-0.959104\pi\)
0.384918 0.922951i \(-0.374230\pi\)
\(294\) −0.653600 −0.0381187
\(295\) −36.9504 −2.15134
\(296\) 2.99108 + 5.18070i 0.173853 + 0.301122i
\(297\) 6.23719 10.8031i 0.361918 0.626861i
\(298\) 0.140848 + 0.243957i 0.00815913 + 0.0141320i
\(299\) −3.36747 + 5.83263i −0.194746 + 0.337310i
\(300\) −8.29752 + 14.3717i −0.479058 + 0.829752i
\(301\) −0.812867 + 1.40793i −0.0468529 + 0.0811515i
\(302\) 3.02507 0.174073
\(303\) −9.60043 16.6284i −0.551531 0.955279i
\(304\) −11.7278 20.3131i −0.672635 1.16504i
\(305\) −7.98566 + 13.8316i −0.457258 + 0.791993i
\(306\) −0.162035 −0.00926293
\(307\) 1.29498 + 2.24297i 0.0739084 + 0.128013i 0.900611 0.434626i \(-0.143119\pi\)
−0.826703 + 0.562639i \(0.809786\pi\)
\(308\) −10.7458 −0.612296
\(309\) −4.78823 −0.272393
\(310\) −1.54276 4.55391i −0.0876230 0.258645i
\(311\) 17.9033 1.01520 0.507602 0.861592i \(-0.330532\pi\)
0.507602 + 0.861592i \(0.330532\pi\)
\(312\) −1.81733 −0.102886
\(313\) −1.48701 2.57558i −0.0840510 0.145581i 0.820935 0.571021i \(-0.193453\pi\)
−0.904986 + 0.425440i \(0.860119\pi\)
\(314\) 1.16561 0.0657792
\(315\) 0.403237 0.698427i 0.0227198 0.0393519i
\(316\) 16.9711 + 29.3947i 0.954696 + 1.65358i
\(317\) 0.324446 + 0.561956i 0.0182227 + 0.0315626i 0.874993 0.484136i \(-0.160866\pi\)
−0.856770 + 0.515698i \(0.827533\pi\)
\(318\) 1.16002 0.0650508
\(319\) 4.28343 7.41912i 0.239826 0.415391i
\(320\) −9.95695 + 17.2459i −0.556610 + 0.964077i
\(321\) 0.146147 0.253135i 0.00815715 0.0141286i
\(322\) −2.16666 3.75277i −0.120743 0.209134i
\(323\) 18.2337 31.5817i 1.01455 1.75725i
\(324\) −8.34486 14.4537i −0.463603 0.802985i
\(325\) 5.06648 0.281038
\(326\) −0.140173 −0.00776346
\(327\) 4.41463 + 7.64636i 0.244130 + 0.422845i
\(328\) −3.23526 + 5.60364i −0.178638 + 0.309409i
\(329\) −11.3976 19.7413i −0.628372 1.08837i
\(330\) −1.73329 + 3.00214i −0.0954142 + 0.165262i
\(331\) −5.49851 + 9.52371i −0.302226 + 0.523470i −0.976640 0.214883i \(-0.931063\pi\)
0.674414 + 0.738353i \(0.264396\pi\)
\(332\) −0.759946 + 1.31626i −0.0417074 + 0.0722394i
\(333\) 0.601978 0.0329882
\(334\) −0.383719 0.664620i −0.0209961 0.0363664i
\(335\) −23.8449 41.3005i −1.30278 2.25649i
\(336\) −7.15823 + 12.3984i −0.390514 + 0.676389i
\(337\) −19.8803 −1.08295 −0.541475 0.840717i \(-0.682134\pi\)
−0.541475 + 0.840717i \(0.682134\pi\)
\(338\) 0.136090 + 0.235716i 0.00740234 + 0.0128212i
\(339\) −25.6669 −1.39404
\(340\) −33.8303 −1.83471
\(341\) 4.21669 + 12.4468i 0.228346 + 0.674031i
\(342\) 0.192777 0.0104242
\(343\) 19.8851 1.07369
\(344\) 0.367441 + 0.636427i 0.0198111 + 0.0343138i
\(345\) 36.3419 1.95658
\(346\) −0.0725460 + 0.125653i −0.00390009 + 0.00675516i
\(347\) −4.87934 8.45126i −0.261937 0.453688i 0.704820 0.709386i \(-0.251028\pi\)
−0.966757 + 0.255699i \(0.917694\pi\)
\(348\) −5.94422 10.2957i −0.318644 0.551907i
\(349\) 5.07241 0.271520 0.135760 0.990742i \(-0.456652\pi\)
0.135760 + 0.990742i \(0.456652\pi\)
\(350\) −1.62991 + 2.82309i −0.0871224 + 0.150900i
\(351\) −2.64253 + 4.57699i −0.141048 + 0.244302i
\(352\) −3.66598 + 6.34966i −0.195397 + 0.338438i
\(353\) 1.58527 + 2.74577i 0.0843755 + 0.146143i 0.905125 0.425146i \(-0.139777\pi\)
−0.820749 + 0.571288i \(0.806444\pi\)
\(354\) −2.69552 + 4.66878i −0.143265 + 0.248143i
\(355\) −21.5071 37.2513i −1.14148 1.97710i
\(356\) 24.5939 1.30348
\(357\) −22.2584 −1.17804
\(358\) −0.266005 0.460735i −0.0140588 0.0243506i
\(359\) −2.05744 + 3.56358i −0.108587 + 0.188079i −0.915198 0.403004i \(-0.867966\pi\)
0.806611 + 0.591083i \(0.201299\pi\)
\(360\) −0.182276 0.315711i −0.00960678 0.0166394i
\(361\) −12.1930 + 21.1190i −0.641739 + 1.11152i
\(362\) −1.50452 + 2.60590i −0.0790756 + 0.136963i
\(363\) −4.61657 + 7.99613i −0.242307 + 0.419688i
\(364\) 4.55269 0.238626
\(365\) 24.1067 + 41.7541i 1.26180 + 2.18551i
\(366\) 1.16510 + 2.01802i 0.0609009 + 0.105483i
\(367\) 14.6746 25.4172i 0.766009 1.32677i −0.173703 0.984798i \(-0.555573\pi\)
0.939712 0.341968i \(-0.111093\pi\)
\(368\) 23.9831 1.25020
\(369\) 0.325561 + 0.563888i 0.0169480 + 0.0293549i
\(370\) −4.83454 −0.251336
\(371\) −5.92385 −0.307551
\(372\) 17.8844 + 3.56872i 0.927263 + 0.185030i
\(373\) −24.6684 −1.27728 −0.638642 0.769504i \(-0.720503\pi\)
−0.638642 + 0.769504i \(0.720503\pi\)
\(374\) −3.55677 −0.183916
\(375\) −0.179359 0.310659i −0.00926207 0.0160424i
\(376\) −10.3042 −0.531397
\(377\) −1.81477 + 3.14328i −0.0934656 + 0.161887i
\(378\) −1.70023 2.94488i −0.0874503 0.151468i
\(379\) 12.2974 + 21.2996i 0.631672 + 1.09409i 0.987210 + 0.159427i \(0.0509646\pi\)
−0.355537 + 0.934662i \(0.615702\pi\)
\(380\) 40.2487 2.06471
\(381\) −18.0060 + 31.1873i −0.922474 + 1.59777i
\(382\) 1.88130 3.25851i 0.0962557 0.166720i
\(383\) 4.46963 7.74162i 0.228387 0.395578i −0.728943 0.684574i \(-0.759988\pi\)
0.957330 + 0.288996i \(0.0933215\pi\)
\(384\) 6.73577 + 11.6667i 0.343733 + 0.595364i
\(385\) 8.85132 15.3309i 0.451105 0.781337i
\(386\) 1.00613 + 1.74266i 0.0512106 + 0.0886993i
\(387\) 0.0739505 0.00375911
\(388\) 5.03938 0.255836
\(389\) −0.839534 1.45412i −0.0425661 0.0737266i 0.843957 0.536410i \(-0.180220\pi\)
−0.886524 + 0.462684i \(0.846887\pi\)
\(390\) 0.734346 1.27193i 0.0371851 0.0644064i
\(391\) 18.6438 + 32.2919i 0.942855 + 1.63307i
\(392\) 0.754377 1.30662i 0.0381018 0.0659943i
\(393\) −8.74314 + 15.1436i −0.441033 + 0.763892i
\(394\) 1.86445 3.22932i 0.0939295 0.162691i
\(395\) −55.9165 −2.81346
\(396\) 0.244398 + 0.423311i 0.0122815 + 0.0212722i
\(397\) −5.32986 9.23159i −0.267498 0.463320i 0.700717 0.713439i \(-0.252864\pi\)
−0.968215 + 0.250119i \(0.919530\pi\)
\(398\) −2.63255 + 4.55972i −0.131958 + 0.228558i
\(399\) 26.4813 1.32573
\(400\) −9.02085 15.6246i −0.451042 0.781228i
\(401\) 33.5321 1.67451 0.837257 0.546810i \(-0.184158\pi\)
0.837257 + 0.546810i \(0.184158\pi\)
\(402\) −6.95790 −0.347028
\(403\) −1.78650 5.27337i −0.0889918 0.262685i
\(404\) 21.7432 1.08177
\(405\) 27.4948 1.36623
\(406\) −1.16764 2.02242i −0.0579492 0.100371i
\(407\) 13.2138 0.654984
\(408\) −5.03075 + 8.71352i −0.249059 + 0.431383i
\(409\) 2.69398 + 4.66611i 0.133209 + 0.230724i 0.924912 0.380182i \(-0.124139\pi\)
−0.791703 + 0.610906i \(0.790805\pi\)
\(410\) −2.61461 4.52864i −0.129126 0.223654i
\(411\) −19.3273 −0.953347
\(412\) 2.71112 4.69579i 0.133567 0.231345i
\(413\) 13.7651 23.8419i 0.677338 1.17318i
\(414\) −0.0985560 + 0.170704i −0.00484376 + 0.00838965i
\(415\) −1.25194 2.16842i −0.0614554 0.106444i
\(416\) 1.55318 2.69018i 0.0761508 0.131897i
\(417\) −9.40489 16.2897i −0.460559 0.797712i
\(418\) 4.23157 0.206973
\(419\) −31.9891 −1.56277 −0.781385 0.624049i \(-0.785487\pi\)
−0.781385 + 0.624049i \(0.785487\pi\)
\(420\) −12.2832 21.2751i −0.599358 1.03812i
\(421\) 17.4708 30.2602i 0.851473 1.47479i −0.0284061 0.999596i \(-0.509043\pi\)
0.879879 0.475198i \(-0.157624\pi\)
\(422\) −0.521019 0.902431i −0.0253628 0.0439297i
\(423\) −0.518449 + 0.897981i −0.0252079 + 0.0436613i
\(424\) −1.33888 + 2.31902i −0.0650220 + 0.112621i
\(425\) 14.0251 24.2922i 0.680317 1.17834i
\(426\) −6.27573 −0.304060
\(427\) −5.94980 10.3053i −0.287931 0.498711i
\(428\) 0.165499 + 0.286652i 0.00799967 + 0.0138558i
\(429\) −2.00712 + 3.47644i −0.0969047 + 0.167844i
\(430\) −0.593903 −0.0286406
\(431\) 4.91708 + 8.51662i 0.236847 + 0.410231i 0.959808 0.280658i \(-0.0905526\pi\)
−0.722961 + 0.690889i \(0.757219\pi\)
\(432\) 18.8201 0.905480
\(433\) −10.5628 −0.507614 −0.253807 0.967255i \(-0.581683\pi\)
−0.253807 + 0.967255i \(0.581683\pi\)
\(434\) 3.51309 + 0.701016i 0.168634 + 0.0336498i
\(435\) 19.5851 0.939034
\(436\) −9.99833 −0.478833
\(437\) −22.1809 38.4184i −1.06106 1.83780i
\(438\) 7.03432 0.336113
\(439\) 1.82442 3.15999i 0.0870747 0.150818i −0.819199 0.573510i \(-0.805581\pi\)
0.906273 + 0.422692i \(0.138915\pi\)
\(440\) −4.00107 6.93006i −0.190744 0.330378i
\(441\) −0.0759122 0.131484i −0.00361487 0.00626113i
\(442\) 1.50691 0.0716764
\(443\) −18.8392 + 32.6305i −0.895079 + 1.55032i −0.0613717 + 0.998115i \(0.519548\pi\)
−0.833707 + 0.552207i \(0.813786\pi\)
\(444\) 9.16856 15.8804i 0.435120 0.753651i
\(445\) −20.2581 + 35.0881i −0.960327 + 1.66333i
\(446\) 0.0960469 + 0.166358i 0.00454795 + 0.00787729i
\(447\) 0.880094 1.52437i 0.0416270 0.0721001i
\(448\) −7.41852 12.8493i −0.350492 0.607070i
\(449\) −1.42094 −0.0670583 −0.0335292 0.999438i \(-0.510675\pi\)
−0.0335292 + 0.999438i \(0.510675\pi\)
\(450\) 0.148281 0.00699003
\(451\) 7.14628 + 12.3777i 0.336505 + 0.582844i
\(452\) 14.5327 25.1714i 0.683561 1.18396i
\(453\) −9.45110 16.3698i −0.444051 0.769119i
\(454\) 2.55558 4.42640i 0.119939 0.207741i
\(455\) −3.75007 + 6.49530i −0.175806 + 0.304505i
\(456\) 5.98520 10.3667i 0.280283 0.485464i
\(457\) −20.7824 −0.972161 −0.486081 0.873914i \(-0.661574\pi\)
−0.486081 + 0.873914i \(0.661574\pi\)
\(458\) −1.15855 2.00666i −0.0541353 0.0937652i
\(459\) 14.6302 + 25.3402i 0.682878 + 1.18278i
\(460\) −20.5769 + 35.6403i −0.959404 + 1.66174i
\(461\) −9.70918 −0.452202 −0.226101 0.974104i \(-0.572598\pi\)
−0.226101 + 0.974104i \(0.572598\pi\)
\(462\) −1.29140 2.23677i −0.0600814 0.104064i
\(463\) −18.3234 −0.851559 −0.425780 0.904827i \(-0.640000\pi\)
−0.425780 + 0.904827i \(0.640000\pi\)
\(464\) 12.9248 0.600019
\(465\) −19.8229 + 22.5761i −0.919267 + 1.04694i
\(466\) −2.21711 −0.102706
\(467\) 5.08178 0.235157 0.117578 0.993064i \(-0.462487\pi\)
0.117578 + 0.993064i \(0.462487\pi\)
\(468\) −0.103545 0.179345i −0.00478637 0.00829024i
\(469\) 35.5317 1.64070
\(470\) 4.16371 7.21176i 0.192058 0.332654i
\(471\) −3.64167 6.30755i −0.167799 0.290637i
\(472\) −6.22227 10.7773i −0.286403 0.496065i
\(473\) 1.62326 0.0746376
\(474\) −4.07909 + 7.06519i −0.187359 + 0.324515i
\(475\) −16.6860 + 28.9009i −0.765605 + 1.32607i
\(476\) 12.6028 21.8287i 0.577649 1.00052i
\(477\) 0.134731 + 0.233360i 0.00616889 + 0.0106848i
\(478\) −1.38411 + 2.39735i −0.0633078 + 0.109652i
\(479\) 19.8708 + 34.4172i 0.907920 + 1.57256i 0.816949 + 0.576710i \(0.195664\pi\)
0.0909716 + 0.995853i \(0.471003\pi\)
\(480\) −16.7619 −0.765074
\(481\) −5.59833 −0.255262
\(482\) 2.74611 + 4.75641i 0.125082 + 0.216648i
\(483\) −13.5384 + 23.4493i −0.616020 + 1.06698i
\(484\) −5.22784 9.05489i −0.237629 0.411586i
\(485\) −4.15096 + 7.18967i −0.188485 + 0.326466i
\(486\) −0.152002 + 0.263275i −0.00689495 + 0.0119424i
\(487\) 2.00653 3.47541i 0.0909245 0.157486i −0.816976 0.576672i \(-0.804351\pi\)
0.907900 + 0.419186i \(0.137684\pi\)
\(488\) −5.37899 −0.243495
\(489\) 0.437937 + 0.758528i 0.0198042 + 0.0343018i
\(490\) 0.609658 + 1.05596i 0.0275415 + 0.0477034i
\(491\) 13.9530 24.1673i 0.629690 1.09065i −0.357924 0.933751i \(-0.616515\pi\)
0.987614 0.156904i \(-0.0501513\pi\)
\(492\) 19.8341 0.894192
\(493\) 10.0474 + 17.4025i 0.452511 + 0.783771i
\(494\) −1.79280 −0.0806621
\(495\) −0.805248 −0.0361932
\(496\) −13.0817 + 14.8986i −0.587388 + 0.668968i
\(497\) 32.0481 1.43755
\(498\) −0.365315 −0.0163701
\(499\) −5.38430 9.32587i −0.241034 0.417483i 0.719975 0.694000i \(-0.244153\pi\)
−0.961009 + 0.276517i \(0.910820\pi\)
\(500\) 0.406216 0.0181665
\(501\) −2.39767 + 4.15289i −0.107120 + 0.185537i
\(502\) −1.52283 2.63761i −0.0679671 0.117722i
\(503\) −10.4850 18.1606i −0.467505 0.809742i 0.531806 0.846866i \(-0.321514\pi\)
−0.999311 + 0.0371244i \(0.988180\pi\)
\(504\) 0.271613 0.0120986
\(505\) −17.9100 + 31.0210i −0.796984 + 1.38042i
\(506\) −2.16337 + 3.74706i −0.0961735 + 0.166577i
\(507\) 0.850363 1.47287i 0.0377660 0.0654126i
\(508\) −20.3901 35.3167i −0.904665 1.56693i
\(509\) 8.94713 15.4969i 0.396574 0.686887i −0.596726 0.802445i \(-0.703532\pi\)
0.993301 + 0.115558i \(0.0368656\pi\)
\(510\) −4.06565 7.04192i −0.180030 0.311822i
\(511\) −35.9220 −1.58909
\(512\) −18.6720 −0.825192
\(513\) −17.4058 30.1478i −0.768486 1.33106i
\(514\) 0.420629 0.728550i 0.0185531 0.0321350i
\(515\) 4.46632 + 7.73589i 0.196809 + 0.340884i
\(516\) 1.12632 1.95084i 0.0495834 0.0858810i
\(517\) −11.3803 + 19.7113i −0.500505 + 0.866900i
\(518\) 1.80101 3.11944i 0.0791319 0.137060i
\(519\) 0.906609 0.0397957
\(520\) 1.69515 + 2.93608i 0.0743371 + 0.128756i
\(521\) 19.6269 + 33.9948i 0.859869 + 1.48934i 0.872053 + 0.489412i \(0.162788\pi\)
−0.0121836 + 0.999926i \(0.503878\pi\)
\(522\) −0.0531131 + 0.0919946i −0.00232470 + 0.00402650i
\(523\) 11.4547 0.500878 0.250439 0.968132i \(-0.419425\pi\)
0.250439 + 0.968132i \(0.419425\pi\)
\(524\) −9.90080 17.1487i −0.432519 0.749144i
\(525\) 20.3691 0.888978
\(526\) 0.904365 0.0394322
\(527\) −30.2296 6.03212i −1.31682 0.262763i
\(528\) 14.2947 0.622097
\(529\) 22.3594 0.972150
\(530\) −1.08203 1.87414i −0.0470005 0.0814073i
\(531\) −1.25228 −0.0543444
\(532\) −14.9938 + 25.9701i −0.650066 + 1.12595i
\(533\) −3.02769 5.24411i −0.131144 0.227147i
\(534\) 2.95565 + 5.11933i 0.127903 + 0.221535i
\(535\) −0.545287 −0.0235748
\(536\) 8.03073 13.9096i 0.346874 0.600804i
\(537\) −1.66214 + 2.87891i −0.0717266 + 0.124234i
\(538\) −1.52640 + 2.64380i −0.0658078 + 0.113983i
\(539\) −1.66632 2.88616i −0.0717736 0.124316i
\(540\) −16.1472 + 27.9677i −0.694863 + 1.20354i
\(541\) −2.11235 3.65870i −0.0908171 0.157300i 0.817038 0.576584i \(-0.195615\pi\)
−0.907855 + 0.419284i \(0.862281\pi\)
\(542\) −4.44235 −0.190815
\(543\) 18.8020 0.806871
\(544\) −8.59905 14.8940i −0.368681 0.638575i
\(545\) 8.23566 14.2646i 0.352777 0.611028i
\(546\) 0.547132 + 0.947661i 0.0234151 + 0.0405561i
\(547\) 11.9800 20.7500i 0.512228 0.887205i −0.487671 0.873027i \(-0.662154\pi\)
0.999899 0.0141778i \(-0.00451308\pi\)
\(548\) 10.9432 18.9542i 0.467471 0.809684i
\(549\) −0.270641 + 0.468764i −0.0115507 + 0.0200064i
\(550\) 3.25486 0.138788
\(551\) −11.9536 20.7042i −0.509239 0.882029i
\(552\) 6.11980 + 10.5998i 0.260476 + 0.451158i
\(553\) 20.8306 36.0796i 0.885806 1.53426i
\(554\) −0.544296 −0.0231249
\(555\) 15.1044 + 26.1615i 0.641144 + 1.11049i
\(556\) 21.3003 0.903336
\(557\) −9.25679 −0.392223 −0.196111 0.980582i \(-0.562831\pi\)
−0.196111 + 0.980582i \(0.562831\pi\)
\(558\) −0.0522855 0.154336i −0.00221342 0.00653357i
\(559\) −0.687732 −0.0290880
\(560\) 26.7079 1.12862
\(561\) 11.1123 + 19.2470i 0.469161 + 0.812611i
\(562\) 3.43917 0.145073
\(563\) −19.1835 + 33.2269i −0.808490 + 1.40035i 0.105419 + 0.994428i \(0.466382\pi\)
−0.913909 + 0.405918i \(0.866952\pi\)
\(564\) 15.7927 + 27.3538i 0.664993 + 1.15180i
\(565\) 23.9413 + 41.4676i 1.00722 + 1.74455i
\(566\) 2.38600 0.100291
\(567\) −10.2426 + 17.7408i −0.430150 + 0.745042i
\(568\) 7.24338 12.5459i 0.303925 0.526414i
\(569\) −7.58001 + 13.1290i −0.317770 + 0.550394i −0.980023 0.198887i \(-0.936267\pi\)
0.662252 + 0.749281i \(0.269601\pi\)
\(570\) 4.83700 + 8.37793i 0.202600 + 0.350913i
\(571\) 16.5657 28.6927i 0.693253 1.20075i −0.277512 0.960722i \(-0.589510\pi\)
0.970766 0.240028i \(-0.0771567\pi\)
\(572\) −2.27288 3.93675i −0.0950340 0.164604i
\(573\) −23.5107 −0.982172
\(574\) 3.89609 0.162619
\(575\) −17.0612 29.5509i −0.711502 1.23236i
\(576\) −0.337450 + 0.584480i −0.0140604 + 0.0243533i
\(577\) −15.6947 27.1841i −0.653380 1.13169i −0.982297 0.187329i \(-0.940017\pi\)
0.328917 0.944359i \(-0.393316\pi\)
\(578\) 1.85791 3.21799i 0.0772789 0.133851i
\(579\) 6.28681 10.8891i 0.261271 0.452534i
\(580\) −11.0892 + 19.2070i −0.460453 + 0.797528i
\(581\) 1.86554 0.0773957
\(582\) 0.605622 + 1.04897i 0.0251039 + 0.0434811i
\(583\) 2.95742 + 5.12241i 0.122484 + 0.212148i
\(584\) −8.11893 + 14.0624i −0.335964 + 0.581906i
\(585\) 0.341162 0.0141053
\(586\) 2.82726 + 4.89695i 0.116793 + 0.202291i
\(587\) −23.7961 −0.982171 −0.491085 0.871111i \(-0.663400\pi\)
−0.491085 + 0.871111i \(0.663400\pi\)
\(588\) −4.62479 −0.190723
\(589\) 35.9648 + 7.17655i 1.48190 + 0.295704i
\(590\) 10.0572 0.414048
\(591\) −23.3001 −0.958437
\(592\) 9.96781 + 17.2648i 0.409675 + 0.709577i
\(593\) 25.8132 1.06002 0.530010 0.847991i \(-0.322188\pi\)
0.530010 + 0.847991i \(0.322188\pi\)
\(594\) −1.69764 + 2.94040i −0.0696551 + 0.120646i
\(595\) 20.7620 + 35.9608i 0.851158 + 1.47425i
\(596\) 0.996626 + 1.72621i 0.0408234 + 0.0707082i
\(597\) 32.8991 1.34647
\(598\) 0.916561 1.58753i 0.0374810 0.0649189i
\(599\) 20.5366 35.5704i 0.839103 1.45337i −0.0515432 0.998671i \(-0.516414\pi\)
0.890646 0.454698i \(-0.150253\pi\)
\(600\) 4.60373 7.97389i 0.187946 0.325533i
\(601\) 12.0024 + 20.7888i 0.489589 + 0.847994i 0.999928 0.0119798i \(-0.00381337\pi\)
−0.510339 + 0.859973i \(0.670480\pi\)
\(602\) 0.221247 0.383211i 0.00901734 0.0156185i
\(603\) −0.808124 1.39971i −0.0329093 0.0570006i
\(604\) 21.4050 0.870957
\(605\) 17.2248 0.700287
\(606\) 2.61305 + 4.52594i 0.106148 + 0.183854i
\(607\) −9.12713 + 15.8087i −0.370459 + 0.641654i −0.989636 0.143598i \(-0.954133\pi\)
0.619177 + 0.785251i \(0.287466\pi\)
\(608\) 10.2305 + 17.7197i 0.414901 + 0.718629i
\(609\) −7.29604 + 12.6371i −0.295650 + 0.512082i
\(610\) 2.17354 3.76469i 0.0880042 0.152428i
\(611\) 4.82153 8.35113i 0.195058 0.337851i
\(612\) −1.14654 −0.0463461
\(613\) 11.0990 + 19.2241i 0.448285 + 0.776453i 0.998275 0.0587188i \(-0.0187015\pi\)
−0.549989 + 0.835172i \(0.685368\pi\)
\(614\) −0.352469 0.610494i −0.0142245 0.0246375i
\(615\) −16.3374 + 28.2973i −0.658790 + 1.14106i
\(616\) 5.96208 0.240219
\(617\) 6.76084 + 11.7101i 0.272181 + 0.471432i 0.969420 0.245407i \(-0.0789217\pi\)
−0.697239 + 0.716839i \(0.745588\pi\)
\(618\) 1.30327 0.0524250
\(619\) −17.3508 −0.697387 −0.348694 0.937237i \(-0.613375\pi\)
−0.348694 + 0.937237i \(0.613375\pi\)
\(620\) −10.9164 32.2229i −0.438413 1.29410i
\(621\) 35.5946 1.42836
\(622\) −4.87294 −0.195387
\(623\) −15.0935 26.1427i −0.604709 1.04739i
\(624\) −6.05628 −0.242445
\(625\) 12.3316 21.3589i 0.493264 0.854358i
\(626\) 0.404737 + 0.701024i 0.0161765 + 0.0280186i
\(627\) −13.2205 22.8986i −0.527977 0.914483i
\(628\) 8.24771 0.329119
\(629\) −15.4974 + 26.8422i −0.617921 + 1.07027i
\(630\) −0.109753 + 0.190099i −0.00437268 + 0.00757371i
\(631\) −3.19349 + 5.53128i −0.127131 + 0.220197i −0.922564 0.385845i \(-0.873910\pi\)
0.795433 + 0.606041i \(0.207243\pi\)
\(632\) −9.41607 16.3091i −0.374551 0.648742i
\(633\) −3.25560 + 5.63886i −0.129398 + 0.224124i
\(634\) −0.0883079 0.152954i −0.00350716 0.00607457i
\(635\) 67.1817 2.66602
\(636\) 8.20818 0.325475
\(637\) 0.705976 + 1.22279i 0.0279718 + 0.0484486i
\(638\) −1.16587 + 2.01934i −0.0461571 + 0.0799465i
\(639\) −0.728894 1.26248i −0.0288346 0.0499430i
\(640\) 12.5658 21.7647i 0.496708 0.860324i
\(641\) −1.22899 + 2.12868i −0.0485423 + 0.0840777i −0.889276 0.457372i \(-0.848791\pi\)
0.840733 + 0.541449i \(0.182124\pi\)
\(642\) −0.0397785 + 0.0688984i −0.00156993 + 0.00271920i
\(643\) −21.4814 −0.847143 −0.423572 0.905863i \(-0.639224\pi\)
−0.423572 + 0.905863i \(0.639224\pi\)
\(644\) −15.3310 26.5541i −0.604128 1.04638i
\(645\) 1.85551 + 3.21383i 0.0730605 + 0.126545i
\(646\) −4.96286 + 8.59593i −0.195261 + 0.338202i
\(647\) 25.0238 0.983789 0.491894 0.870655i \(-0.336305\pi\)
0.491894 + 0.870655i \(0.336305\pi\)
\(648\) 4.62999 + 8.01938i 0.181883 + 0.315031i
\(649\) −27.4884 −1.07901
\(650\) −1.37900 −0.0540888
\(651\) −7.18236 21.2008i −0.281499 0.830926i
\(652\) −0.991846 −0.0388437
\(653\) 16.4204 0.642578 0.321289 0.946981i \(-0.395884\pi\)
0.321289 + 0.946981i \(0.395884\pi\)
\(654\) −1.20158 2.08119i −0.0469854 0.0813811i
\(655\) 32.6213 1.27462
\(656\) −10.7816 + 18.6742i −0.420950 + 0.729106i
\(657\) 0.816999 + 1.41508i 0.0318742 + 0.0552077i
\(658\) 3.10222 + 5.37320i 0.120937 + 0.209469i
\(659\) 32.6517 1.27193 0.635964 0.771719i \(-0.280603\pi\)
0.635964 + 0.771719i \(0.280603\pi\)
\(660\) −12.2645 + 21.2428i −0.477395 + 0.826873i
\(661\) 9.52963 16.5058i 0.370660 0.642001i −0.619008 0.785385i \(-0.712465\pi\)
0.989667 + 0.143384i \(0.0457983\pi\)
\(662\) 1.49659 2.59217i 0.0581666 0.100748i
\(663\) −4.70798 8.15445i −0.182843 0.316693i
\(664\) 0.421642 0.730305i 0.0163629 0.0283413i
\(665\) −24.7010 42.7833i −0.957863 1.65907i
\(666\) −0.163847 −0.00634893
\(667\) 24.4448 0.946506
\(668\) −2.71514 4.70277i −0.105052 0.181956i
\(669\) 0.600151 1.03949i 0.0232032 0.0401891i
\(670\) 6.49011 + 11.2412i 0.250735 + 0.434286i
\(671\) −5.94075 + 10.2897i −0.229340 + 0.397229i
\(672\) 6.24433 10.8155i 0.240880 0.417217i
\(673\) 21.8199 37.7932i 0.841095 1.45682i −0.0478738 0.998853i \(-0.515245\pi\)
0.888969 0.457967i \(-0.151422\pi\)
\(674\) 5.41104 0.208426
\(675\) −13.3883 23.1892i −0.515316 0.892554i
\(676\) 0.962959 + 1.66789i 0.0370369 + 0.0641498i
\(677\) 3.20825 5.55686i 0.123303 0.213567i −0.797765 0.602968i \(-0.793985\pi\)
0.921068 + 0.389401i \(0.127318\pi\)
\(678\) 6.98604 0.268297
\(679\) −3.09271 5.35674i −0.118687 0.205573i
\(680\) 18.7701 0.719801
\(681\) −31.9372 −1.22384
\(682\) −1.14770 3.38778i −0.0439478 0.129725i
\(683\) 23.2930 0.891283 0.445642 0.895211i \(-0.352976\pi\)
0.445642 + 0.895211i \(0.352976\pi\)
\(684\) 1.36406 0.0521563
\(685\) 18.0279 + 31.2253i 0.688812 + 1.19306i
\(686\) −5.41233 −0.206644
\(687\) −7.23920 + 12.5387i −0.276193 + 0.478380i
\(688\) 1.22450 + 2.12090i 0.0466838 + 0.0808587i
\(689\) −1.25298 2.17023i −0.0477348 0.0826790i
\(690\) −9.89156 −0.376565
\(691\) 14.0106 24.2671i 0.532988 0.923162i −0.466270 0.884642i \(-0.654402\pi\)
0.999258 0.0385196i \(-0.0122642\pi\)
\(692\) −0.513326 + 0.889107i −0.0195137 + 0.0337988i
\(693\) 0.299979 0.519579i 0.0113953 0.0197372i
\(694\) 1.32806 + 2.30027i 0.0504126 + 0.0873171i
\(695\) −17.5452 + 30.3891i −0.665527 + 1.15273i
\(696\) 3.29804 + 5.71237i 0.125012 + 0.216527i
\(697\) −33.5251 −1.26985
\(698\) −1.38061 −0.0522570
\(699\) 6.92683 + 11.9976i 0.261997 + 0.453792i
\(700\) −11.5330 + 19.9758i −0.435908 + 0.755015i
\(701\) 3.75317 + 6.50068i 0.141755 + 0.245527i 0.928158 0.372187i \(-0.121392\pi\)
−0.786402 + 0.617715i \(0.788059\pi\)
\(702\) 0.719246 1.24577i 0.0271462 0.0470186i
\(703\) 18.4376 31.9348i 0.695387 1.20444i
\(704\) −7.40724 + 12.8297i −0.279171 + 0.483538i
\(705\) −52.0341 −1.95972
\(706\) −0.431481 0.747346i −0.0162390 0.0281268i
\(707\) −13.3440 23.1125i −0.501853 0.869235i
\(708\) −19.0732 + 33.0357i −0.716813 + 1.24156i
\(709\) 30.2077 1.13447 0.567236 0.823555i \(-0.308013\pi\)
0.567236 + 0.823555i \(0.308013\pi\)
\(710\) 5.85381 + 10.1391i 0.219690 + 0.380514i
\(711\) −1.89506 −0.0710703
\(712\) −13.6455 −0.511386
\(713\) −24.7416 + 28.1779i −0.926582 + 1.05527i
\(714\) 6.05831 0.226727
\(715\) 7.48873 0.280062
\(716\) −1.88222 3.26010i −0.0703419 0.121836i
\(717\) 17.2973 0.645980
\(718\) 0.559995 0.969939i 0.0208988 0.0361978i
\(719\) −13.2637 22.9734i −0.494653 0.856764i 0.505328 0.862927i \(-0.331371\pi\)
−0.999981 + 0.00616331i \(0.998038\pi\)
\(720\) −0.607438 1.05211i −0.0226379 0.0392099i
\(721\) −6.65535 −0.247858
\(722\) 3.31871 5.74818i 0.123510 0.213925i
\(723\) 17.1591 29.7205i 0.638155 1.10532i
\(724\) −10.6458 + 18.4390i −0.395647 + 0.685281i
\(725\) −9.19451 15.9254i −0.341476 0.591453i
\(726\) 1.25654 2.17639i 0.0466346 0.0807735i
\(727\) −7.14514 12.3758i −0.264999 0.458991i 0.702565 0.711620i \(-0.252038\pi\)
−0.967563 + 0.252629i \(0.918705\pi\)
\(728\) −2.52597 −0.0936188
\(729\) 27.8971 1.03323
\(730\) −6.56140 11.3647i −0.242848 0.420625i
\(731\) −1.90379 + 3.29746i −0.0704142 + 0.121961i
\(732\) 8.24412 + 14.2792i 0.304711 + 0.527776i
\(733\) 4.85134 8.40276i 0.179188 0.310363i −0.762414 0.647089i \(-0.775986\pi\)
0.941603 + 0.336726i \(0.109320\pi\)
\(734\) −3.99415 + 6.91807i −0.147427 + 0.255351i
\(735\) 3.80946 6.59818i 0.140514 0.243377i
\(736\) −20.9211 −0.771162
\(737\) −17.7388 30.7246i −0.653418 1.13175i
\(738\) −0.0886115 0.153480i −0.00326183 0.00564966i
\(739\) 11.7931 20.4262i 0.433816 0.751391i −0.563382 0.826196i \(-0.690500\pi\)
0.997198 + 0.0748050i \(0.0238334\pi\)
\(740\) −34.2086 −1.25753
\(741\) 5.60118 + 9.70154i 0.205765 + 0.356395i
\(742\) 1.61236 0.0591916
\(743\) 27.2610 1.00011 0.500055 0.865994i \(-0.333313\pi\)
0.500055 + 0.865994i \(0.333313\pi\)
\(744\) −9.92283 1.98004i −0.363789 0.0725917i
\(745\) −3.28370 −0.120305
\(746\) 6.71428 0.245827
\(747\) −0.0424294 0.0734898i −0.00155241 0.00268885i
\(748\) −25.1673 −0.920207
\(749\) 0.203136 0.351842i 0.00742242 0.0128560i
\(750\) 0.0488182 + 0.0845555i 0.00178259 + 0.00308753i
\(751\) −19.2721 33.3803i −0.703249 1.21806i −0.967320 0.253560i \(-0.918398\pi\)
0.264070 0.964503i \(-0.414935\pi\)
\(752\) −34.3389 −1.25221
\(753\) −9.51541 + 16.4812i −0.346761 + 0.600608i
\(754\) 0.493947 0.855541i 0.0179885 0.0311570i
\(755\) −17.6314 + 30.5385i −0.641672 + 1.11141i
\(756\) −12.0306 20.8376i −0.437549 0.757857i
\(757\) −25.6052 + 44.3496i −0.930639 + 1.61191i −0.148406 + 0.988926i \(0.547414\pi\)
−0.782232 + 0.622987i \(0.785919\pi\)
\(758\) −3.34710 5.79735i −0.121572 0.210569i
\(759\) 27.0357 0.981334
\(760\) −22.3312 −0.810039
\(761\) −5.39524 9.34482i −0.195577 0.338750i 0.751512 0.659719i \(-0.229325\pi\)
−0.947090 + 0.320969i \(0.895991\pi\)
\(762\) 4.90088 8.48858i 0.177540 0.307509i
\(763\) 6.13606 + 10.6280i 0.222140 + 0.384759i
\(764\) 13.3118 23.0568i 0.481606 0.834165i
\(765\) 0.944409 1.63576i 0.0341452 0.0591412i
\(766\) −1.21655 + 2.10712i −0.0439556 + 0.0761333i
\(767\) 11.6461 0.420516
\(768\) 8.84126 + 15.3135i 0.319031 + 0.552579i
\(769\) −20.5625 35.6153i −0.741503 1.28432i −0.951811 0.306686i \(-0.900780\pi\)
0.210307 0.977635i \(-0.432554\pi\)
\(770\) −2.40916 + 4.17279i −0.0868201 + 0.150377i
\(771\) −5.25661