Properties

Label 403.2.h.b.118.8
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.8
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.8

$q$-expansion

\(f(q)\) \(=\) \(q-0.291491 q^{2} +(-0.965220 - 1.67181i) q^{3} -1.91503 q^{4} +(-0.817652 + 1.41622i) q^{5} +(0.281353 + 0.487317i) q^{6} +(-0.566002 - 0.980344i) q^{7} +1.14120 q^{8} +(-0.363299 + 0.629252i) q^{9} +O(q^{10})\) \(q-0.291491 q^{2} +(-0.965220 - 1.67181i) q^{3} -1.91503 q^{4} +(-0.817652 + 1.41622i) q^{5} +(0.281353 + 0.487317i) q^{6} +(-0.566002 - 0.980344i) q^{7} +1.14120 q^{8} +(-0.363299 + 0.629252i) q^{9} +(0.238338 - 0.412814i) q^{10} +(-1.40676 + 2.43657i) q^{11} +(1.84843 + 3.20157i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(0.164984 + 0.285761i) q^{14} +3.15686 q^{15} +3.49742 q^{16} +(-0.697052 - 1.20733i) q^{17} +(0.105898 - 0.183421i) q^{18} +(4.07645 + 7.06061i) q^{19} +(1.56583 - 2.71210i) q^{20} +(-1.09263 + 1.89249i) q^{21} +(0.410056 - 0.710238i) q^{22} +1.36940 q^{23} +(-1.10151 - 1.90786i) q^{24} +(1.16289 + 2.01418i) q^{25} +(0.145745 - 0.252438i) q^{26} -4.38867 q^{27} +(1.08391 + 1.87739i) q^{28} +8.21183 q^{29} -0.920195 q^{30} +(-0.187632 + 5.56460i) q^{31} -3.30186 q^{32} +5.43131 q^{33} +(0.203184 + 0.351925i) q^{34} +1.85117 q^{35} +(0.695729 - 1.20504i) q^{36} +(0.953286 + 1.65114i) q^{37} +(-1.18825 - 2.05810i) q^{38} +1.93044 q^{39} +(-0.933102 + 1.61618i) q^{40} +(0.861909 - 1.49287i) q^{41} +(0.318492 - 0.551645i) q^{42} +(-0.941995 - 1.63158i) q^{43} +(2.69398 - 4.66612i) q^{44} +(-0.594104 - 1.02902i) q^{45} -0.399167 q^{46} -7.80087 q^{47} +(-3.37578 - 5.84702i) q^{48} +(2.85928 - 4.95242i) q^{49} +(-0.338972 - 0.587116i) q^{50} +(-1.34562 + 2.33068i) q^{51} +(0.957517 - 1.65847i) q^{52} +(-6.20206 + 10.7423i) q^{53} +1.27926 q^{54} +(-2.30047 - 3.98454i) q^{55} +(-0.645919 - 1.11876i) q^{56} +(7.86933 - 13.6301i) q^{57} -2.39367 q^{58} +(-1.48057 - 2.56443i) q^{59} -6.04549 q^{60} +1.73188 q^{61} +(0.0546929 - 1.62203i) q^{62} +0.822511 q^{63} -6.03237 q^{64} +(-0.817652 - 1.41622i) q^{65} -1.58318 q^{66} +(-3.58654 + 6.21208i) q^{67} +(1.33488 + 2.31207i) q^{68} +(-1.32177 - 2.28937i) q^{69} -0.539599 q^{70} +(-4.99209 + 8.64655i) q^{71} +(-0.414595 + 0.718100i) q^{72} +(-7.66699 + 13.2796i) q^{73} +(-0.277874 - 0.481292i) q^{74} +(2.24489 - 3.88826i) q^{75} +(-7.80653 - 13.5213i) q^{76} +3.18490 q^{77} -0.562705 q^{78} +(-4.12374 - 7.14253i) q^{79} +(-2.85967 + 4.95310i) q^{80} +(5.32592 + 9.22477i) q^{81} +(-0.251239 + 0.435158i) q^{82} +(-5.77267 + 9.99856i) q^{83} +(2.09243 - 3.62419i) q^{84} +2.27978 q^{85} +(0.274583 + 0.475591i) q^{86} +(-7.92622 - 13.7286i) q^{87} +(-1.60538 + 2.78061i) q^{88} -5.04840 q^{89} +(0.173176 + 0.299949i) q^{90} +1.13200 q^{91} -2.62244 q^{92} +(9.48406 - 5.05738i) q^{93} +2.27388 q^{94} -13.3325 q^{95} +(3.18702 + 5.52008i) q^{96} +16.6299 q^{97} +(-0.833455 + 1.44359i) q^{98} +(-1.02215 - 1.77041i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.291491 −0.206115 −0.103058 0.994675i \(-0.532863\pi\)
−0.103058 + 0.994675i \(0.532863\pi\)
\(3\) −0.965220 1.67181i −0.557270 0.965220i −0.997723 0.0674442i \(-0.978516\pi\)
0.440453 0.897776i \(-0.354818\pi\)
\(4\) −1.91503 −0.957517
\(5\) −0.817652 + 1.41622i −0.365665 + 0.633351i −0.988883 0.148698i \(-0.952492\pi\)
0.623217 + 0.782049i \(0.285825\pi\)
\(6\) 0.281353 + 0.487317i 0.114862 + 0.198946i
\(7\) −0.566002 0.980344i −0.213929 0.370535i 0.739012 0.673692i \(-0.235293\pi\)
−0.952941 + 0.303157i \(0.901959\pi\)
\(8\) 1.14120 0.403474
\(9\) −0.363299 + 0.629252i −0.121100 + 0.209751i
\(10\) 0.238338 0.412814i 0.0753691 0.130543i
\(11\) −1.40676 + 2.43657i −0.424153 + 0.734654i −0.996341 0.0854682i \(-0.972761\pi\)
0.572188 + 0.820122i \(0.306095\pi\)
\(12\) 1.84843 + 3.20157i 0.533595 + 0.924214i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0.164984 + 0.285761i 0.0440939 + 0.0763729i
\(15\) 3.15686 0.815097
\(16\) 3.49742 0.874354
\(17\) −0.697052 1.20733i −0.169060 0.292820i 0.769030 0.639213i \(-0.220740\pi\)
−0.938090 + 0.346393i \(0.887406\pi\)
\(18\) 0.105898 0.183421i 0.0249605 0.0432328i
\(19\) 4.07645 + 7.06061i 0.935201 + 1.61982i 0.774276 + 0.632849i \(0.218114\pi\)
0.160925 + 0.986967i \(0.448552\pi\)
\(20\) 1.56583 2.71210i 0.350131 0.606444i
\(21\) −1.09263 + 1.89249i −0.238432 + 0.412976i
\(22\) 0.410056 0.710238i 0.0874243 0.151423i
\(23\) 1.36940 0.285539 0.142769 0.989756i \(-0.454399\pi\)
0.142769 + 0.989756i \(0.454399\pi\)
\(24\) −1.10151 1.90786i −0.224844 0.389441i
\(25\) 1.16289 + 2.01418i 0.232578 + 0.402837i
\(26\) 0.145745 0.252438i 0.0285830 0.0495073i
\(27\) −4.38867 −0.844599
\(28\) 1.08391 + 1.87739i 0.204840 + 0.354794i
\(29\) 8.21183 1.52490 0.762449 0.647048i \(-0.223997\pi\)
0.762449 + 0.647048i \(0.223997\pi\)
\(30\) −0.920195 −0.168004
\(31\) −0.187632 + 5.56460i −0.0336997 + 0.999432i
\(32\) −3.30186 −0.583691
\(33\) 5.43131 0.945470
\(34\) 0.203184 + 0.351925i 0.0348458 + 0.0603547i
\(35\) 1.85117 0.312905
\(36\) 0.695729 1.20504i 0.115955 0.200840i
\(37\) 0.953286 + 1.65114i 0.156719 + 0.271446i 0.933684 0.358099i \(-0.116575\pi\)
−0.776964 + 0.629544i \(0.783242\pi\)
\(38\) −1.18825 2.05810i −0.192759 0.333868i
\(39\) 1.93044 0.309118
\(40\) −0.933102 + 1.61618i −0.147536 + 0.255540i
\(41\) 0.861909 1.49287i 0.134608 0.233147i −0.790840 0.612023i \(-0.790356\pi\)
0.925447 + 0.378876i \(0.123689\pi\)
\(42\) 0.318492 0.551645i 0.0491444 0.0851207i
\(43\) −0.941995 1.63158i −0.143653 0.248814i 0.785217 0.619221i \(-0.212552\pi\)
−0.928870 + 0.370407i \(0.879218\pi\)
\(44\) 2.69398 4.66612i 0.406133 0.703444i
\(45\) −0.594104 1.02902i −0.0885638 0.153397i
\(46\) −0.399167 −0.0588539
\(47\) −7.80087 −1.13787 −0.568937 0.822381i \(-0.692645\pi\)
−0.568937 + 0.822381i \(0.692645\pi\)
\(48\) −3.37578 5.84702i −0.487251 0.843944i
\(49\) 2.85928 4.95242i 0.408469 0.707489i
\(50\) −0.338972 0.587116i −0.0479378 0.0830307i
\(51\) −1.34562 + 2.33068i −0.188424 + 0.326360i
\(52\) 0.957517 1.65847i 0.132784 0.229988i
\(53\) −6.20206 + 10.7423i −0.851918 + 1.47557i 0.0275564 + 0.999620i \(0.491227\pi\)
−0.879475 + 0.475946i \(0.842106\pi\)
\(54\) 1.27926 0.174085
\(55\) −2.30047 3.98454i −0.310196 0.537275i
\(56\) −0.645919 1.11876i −0.0863146 0.149501i
\(57\) 7.86933 13.6301i 1.04232 1.80535i
\(58\) −2.39367 −0.314305
\(59\) −1.48057 2.56443i −0.192754 0.333860i 0.753408 0.657554i \(-0.228409\pi\)
−0.946162 + 0.323693i \(0.895075\pi\)
\(60\) −6.04549 −0.780469
\(61\) 1.73188 0.221744 0.110872 0.993835i \(-0.464636\pi\)
0.110872 + 0.993835i \(0.464636\pi\)
\(62\) 0.0546929 1.62203i 0.00694601 0.205998i
\(63\) 0.822511 0.103627
\(64\) −6.03237 −0.754047
\(65\) −0.817652 1.41622i −0.101417 0.175660i
\(66\) −1.58318 −0.194876
\(67\) −3.58654 + 6.21208i −0.438166 + 0.758926i −0.997548 0.0699841i \(-0.977705\pi\)
0.559382 + 0.828910i \(0.311038\pi\)
\(68\) 1.33488 + 2.31207i 0.161878 + 0.280380i
\(69\) −1.32177 2.28937i −0.159122 0.275608i
\(70\) −0.539599 −0.0644945
\(71\) −4.99209 + 8.64655i −0.592452 + 1.02616i 0.401449 + 0.915881i \(0.368507\pi\)
−0.993901 + 0.110275i \(0.964827\pi\)
\(72\) −0.414595 + 0.718100i −0.0488605 + 0.0846289i
\(73\) −7.66699 + 13.2796i −0.897353 + 1.55426i −0.0664887 + 0.997787i \(0.521180\pi\)
−0.830865 + 0.556475i \(0.812154\pi\)
\(74\) −0.277874 0.481292i −0.0323022 0.0559491i
\(75\) 2.24489 3.88826i 0.259217 0.448978i
\(76\) −7.80653 13.5213i −0.895470 1.55100i
\(77\) 3.18490 0.362954
\(78\) −0.562705 −0.0637138
\(79\) −4.12374 7.14253i −0.463957 0.803597i 0.535197 0.844727i \(-0.320238\pi\)
−0.999154 + 0.0411302i \(0.986904\pi\)
\(80\) −2.85967 + 4.95310i −0.319721 + 0.553773i
\(81\) 5.32592 + 9.22477i 0.591769 + 1.02497i
\(82\) −0.251239 + 0.435158i −0.0277447 + 0.0480551i
\(83\) −5.77267 + 9.99856i −0.633633 + 1.09748i 0.353170 + 0.935559i \(0.385104\pi\)
−0.986803 + 0.161925i \(0.948230\pi\)
\(84\) 2.09243 3.62419i 0.228303 0.395432i
\(85\) 2.27978 0.247277
\(86\) 0.274583 + 0.475591i 0.0296090 + 0.0512843i
\(87\) −7.92622 13.7286i −0.849780 1.47186i
\(88\) −1.60538 + 2.78061i −0.171135 + 0.296414i
\(89\) −5.04840 −0.535129 −0.267564 0.963540i \(-0.586219\pi\)
−0.267564 + 0.963540i \(0.586219\pi\)
\(90\) 0.173176 + 0.299949i 0.0182543 + 0.0316175i
\(91\) 1.13200 0.118666
\(92\) −2.62244 −0.273408
\(93\) 9.48406 5.05738i 0.983451 0.524426i
\(94\) 2.27388 0.234533
\(95\) −13.3325 −1.36788
\(96\) 3.18702 + 5.52008i 0.325274 + 0.563391i
\(97\) 16.6299 1.68851 0.844256 0.535940i \(-0.180043\pi\)
0.844256 + 0.535940i \(0.180043\pi\)
\(98\) −0.833455 + 1.44359i −0.0841917 + 0.145824i
\(99\) −1.02215 1.77041i −0.102729 0.177933i
\(100\) −2.22697 3.85723i −0.222697 0.385723i
\(101\) 3.81091 0.379200 0.189600 0.981861i \(-0.439281\pi\)
0.189600 + 0.981861i \(0.439281\pi\)
\(102\) 0.392235 0.679371i 0.0388370 0.0672677i
\(103\) 6.39130 11.0701i 0.629754 1.09077i −0.357847 0.933780i \(-0.616489\pi\)
0.987601 0.156985i \(-0.0501776\pi\)
\(104\) −0.570598 + 0.988305i −0.0559517 + 0.0969113i
\(105\) −1.78679 3.09481i −0.174373 0.302022i
\(106\) 1.80784 3.13128i 0.175593 0.304136i
\(107\) −7.41980 12.8515i −0.717299 1.24240i −0.962066 0.272816i \(-0.912045\pi\)
0.244767 0.969582i \(-0.421288\pi\)
\(108\) 8.40444 0.808718
\(109\) 20.1470 1.92974 0.964868 0.262736i \(-0.0846249\pi\)
0.964868 + 0.262736i \(0.0846249\pi\)
\(110\) 0.670567 + 1.16146i 0.0639361 + 0.110741i
\(111\) 1.84026 3.18743i 0.174670 0.302537i
\(112\) −1.97954 3.42867i −0.187049 0.323979i
\(113\) 0.857716 1.48561i 0.0806871 0.139754i −0.822858 0.568247i \(-0.807622\pi\)
0.903545 + 0.428493i \(0.140955\pi\)
\(114\) −2.29384 + 3.97304i −0.214838 + 0.372110i
\(115\) −1.11969 + 1.93936i −0.104412 + 0.180846i
\(116\) −15.7259 −1.46012
\(117\) −0.363299 0.629252i −0.0335870 0.0581744i
\(118\) 0.431574 + 0.747508i 0.0397296 + 0.0688137i
\(119\) −0.789065 + 1.36670i −0.0723335 + 0.125285i
\(120\) 3.60259 0.328870
\(121\) 1.54208 + 2.67096i 0.140189 + 0.242814i
\(122\) −0.504827 −0.0457049
\(123\) −3.32773 −0.300051
\(124\) 0.359321 10.6564i 0.0322680 0.956973i
\(125\) −11.9799 −1.07151
\(126\) −0.239754 −0.0213590
\(127\) 2.27960 + 3.94838i 0.202282 + 0.350362i 0.949263 0.314483i \(-0.101831\pi\)
−0.746982 + 0.664845i \(0.768498\pi\)
\(128\) 8.36210 0.739112
\(129\) −1.81846 + 3.14967i −0.160107 + 0.277313i
\(130\) 0.238338 + 0.412814i 0.0209036 + 0.0362062i
\(131\) 8.92638 + 15.4609i 0.779902 + 1.35083i 0.931998 + 0.362463i \(0.118064\pi\)
−0.152096 + 0.988366i \(0.548602\pi\)
\(132\) −10.4011 −0.905304
\(133\) 4.61455 7.99264i 0.400132 0.693050i
\(134\) 1.04544 1.81076i 0.0903127 0.156426i
\(135\) 3.58840 6.21530i 0.308841 0.534928i
\(136\) −0.795473 1.37780i −0.0682112 0.118145i
\(137\) 6.63925 11.4995i 0.567230 0.982470i −0.429609 0.903015i \(-0.641349\pi\)
0.996838 0.0794554i \(-0.0253181\pi\)
\(138\) 0.385283 + 0.667331i 0.0327975 + 0.0568069i
\(139\) 8.44477 0.716276 0.358138 0.933669i \(-0.383412\pi\)
0.358138 + 0.933669i \(0.383412\pi\)
\(140\) −3.54505 −0.299612
\(141\) 7.52955 + 13.0416i 0.634103 + 1.09830i
\(142\) 1.45515 2.52039i 0.122113 0.211506i
\(143\) −1.40676 2.43657i −0.117639 0.203756i
\(144\) −1.27061 + 2.20076i −0.105884 + 0.183396i
\(145\) −6.71442 + 11.6297i −0.557602 + 0.965796i
\(146\) 2.23486 3.87089i 0.184958 0.320357i
\(147\) −11.0394 −0.910510
\(148\) −1.82557 3.16199i −0.150061 0.259914i
\(149\) −1.70525 2.95359i −0.139700 0.241967i 0.787683 0.616081i \(-0.211280\pi\)
−0.927383 + 0.374113i \(0.877947\pi\)
\(150\) −0.654364 + 1.13339i −0.0534286 + 0.0925411i
\(151\) 1.41358 0.115035 0.0575177 0.998344i \(-0.481681\pi\)
0.0575177 + 0.998344i \(0.481681\pi\)
\(152\) 4.65202 + 8.05754i 0.377329 + 0.653553i
\(153\) 1.01295 0.0818923
\(154\) −0.928371 −0.0748102
\(155\) −7.72726 4.81564i −0.620668 0.386801i
\(156\) −3.69686 −0.295985
\(157\) −5.16030 −0.411837 −0.205919 0.978569i \(-0.566018\pi\)
−0.205919 + 0.978569i \(0.566018\pi\)
\(158\) 1.20203 + 2.08198i 0.0956286 + 0.165634i
\(159\) 23.9454 1.89899
\(160\) 2.69977 4.67614i 0.213436 0.369681i
\(161\) −0.775081 1.34248i −0.0610849 0.105802i
\(162\) −1.55246 2.68894i −0.121973 0.211263i
\(163\) 6.88608 0.539359 0.269680 0.962950i \(-0.413082\pi\)
0.269680 + 0.962950i \(0.413082\pi\)
\(164\) −1.65058 + 2.85890i −0.128889 + 0.223242i
\(165\) −4.44093 + 7.69191i −0.345726 + 0.598814i
\(166\) 1.68268 2.91449i 0.130601 0.226208i
\(167\) 1.02734 + 1.77941i 0.0794981 + 0.137695i 0.903034 0.429570i \(-0.141335\pi\)
−0.823535 + 0.567265i \(0.808002\pi\)
\(168\) −1.24691 + 2.15971i −0.0962010 + 0.166625i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −0.664536 −0.0509676
\(171\) −5.92387 −0.453010
\(172\) 1.80395 + 3.12454i 0.137550 + 0.238244i
\(173\) −2.86601 + 4.96407i −0.217898 + 0.377411i −0.954165 0.299280i \(-0.903254\pi\)
0.736267 + 0.676691i \(0.236587\pi\)
\(174\) 2.31042 + 4.00177i 0.175153 + 0.303373i
\(175\) 1.31639 2.28006i 0.0995101 0.172357i
\(176\) −4.92001 + 8.52171i −0.370860 + 0.642348i
\(177\) −2.85816 + 4.95048i −0.214832 + 0.372101i
\(178\) 1.47156 0.110298
\(179\) −6.99568 12.1169i −0.522881 0.905657i −0.999645 0.0266259i \(-0.991524\pi\)
0.476764 0.879031i \(-0.341810\pi\)
\(180\) 1.13773 + 1.97060i 0.0848013 + 0.146880i
\(181\) −2.67739 + 4.63737i −0.199009 + 0.344693i −0.948207 0.317652i \(-0.897105\pi\)
0.749199 + 0.662345i \(0.230439\pi\)
\(182\) −0.329969 −0.0244589
\(183\) −1.67164 2.89537i −0.123572 0.214032i
\(184\) 1.56275 0.115207
\(185\) −3.11783 −0.229227
\(186\) −2.76452 + 1.47418i −0.202704 + 0.108092i
\(187\) 3.92233 0.286829
\(188\) 14.9389 1.08953
\(189\) 2.48399 + 4.30240i 0.180684 + 0.312954i
\(190\) 3.88629 0.281941
\(191\) −10.5506 + 18.2741i −0.763413 + 1.32227i 0.177669 + 0.984090i \(0.443144\pi\)
−0.941082 + 0.338179i \(0.890189\pi\)
\(192\) 5.82257 + 10.0850i 0.420208 + 0.727821i
\(193\) 0.865511 + 1.49911i 0.0623008 + 0.107908i 0.895493 0.445075i \(-0.146823\pi\)
−0.833193 + 0.552983i \(0.813490\pi\)
\(194\) −4.84747 −0.348028
\(195\) −1.57843 + 2.73392i −0.113034 + 0.195780i
\(196\) −5.47562 + 9.48406i −0.391116 + 0.677433i
\(197\) 0.647895 1.12219i 0.0461606 0.0799526i −0.842022 0.539443i \(-0.818635\pi\)
0.888183 + 0.459491i \(0.151968\pi\)
\(198\) 0.297946 + 0.516057i 0.0211741 + 0.0366746i
\(199\) −11.5919 + 20.0777i −0.821727 + 1.42327i 0.0826678 + 0.996577i \(0.473656\pi\)
−0.904395 + 0.426696i \(0.859677\pi\)
\(200\) 1.32708 + 2.29858i 0.0938391 + 0.162534i
\(201\) 13.8472 0.976707
\(202\) −1.11085 −0.0781588
\(203\) −4.64791 8.05042i −0.326219 0.565029i
\(204\) 2.57690 4.46332i 0.180419 0.312495i
\(205\) 1.40948 + 2.44130i 0.0984426 + 0.170508i
\(206\) −1.86301 + 3.22682i −0.129802 + 0.224823i
\(207\) −0.497500 + 0.861695i −0.0345786 + 0.0598920i
\(208\) −1.74871 + 3.02885i −0.121251 + 0.210013i
\(209\) −22.9383 −1.58667
\(210\) 0.520832 + 0.902107i 0.0359408 + 0.0622513i
\(211\) 6.96634 + 12.0660i 0.479582 + 0.830661i 0.999726 0.0234180i \(-0.00745486\pi\)
−0.520143 + 0.854079i \(0.674122\pi\)
\(212\) 11.8771 20.5718i 0.815726 1.41288i
\(213\) 19.2738 1.32062
\(214\) 2.16280 + 3.74608i 0.147846 + 0.256077i
\(215\) 3.08090 0.210115
\(216\) −5.00833 −0.340774
\(217\) 5.56142 2.96563i 0.377534 0.201320i
\(218\) −5.87267 −0.397748
\(219\) 29.6013 2.00027
\(220\) 4.40548 + 7.63052i 0.297018 + 0.514450i
\(221\) 1.39410 0.0937775
\(222\) −0.536419 + 0.929105i −0.0360021 + 0.0623575i
\(223\) −6.55288 11.3499i −0.438814 0.760047i 0.558785 0.829313i \(-0.311268\pi\)
−0.997598 + 0.0692654i \(0.977934\pi\)
\(224\) 1.86886 + 3.23696i 0.124868 + 0.216278i
\(225\) −1.68990 −0.112660
\(226\) −0.250016 + 0.433041i −0.0166308 + 0.0288055i
\(227\) 5.22178 9.04438i 0.346582 0.600297i −0.639058 0.769158i \(-0.720676\pi\)
0.985640 + 0.168861i \(0.0540091\pi\)
\(228\) −15.0700 + 26.1021i −0.998037 + 1.72865i
\(229\) 1.11825 + 1.93687i 0.0738962 + 0.127992i 0.900606 0.434637i \(-0.143123\pi\)
−0.826710 + 0.562629i \(0.809790\pi\)
\(230\) 0.326379 0.565306i 0.0215208 0.0372752i
\(231\) −3.07413 5.32456i −0.202263 0.350330i
\(232\) 9.37131 0.615257
\(233\) −15.5098 −1.01608 −0.508042 0.861333i \(-0.669630\pi\)
−0.508042 + 0.861333i \(0.669630\pi\)
\(234\) 0.105898 + 0.183421i 0.00692279 + 0.0119906i
\(235\) 6.37840 11.0477i 0.416081 0.720673i
\(236\) 2.83535 + 4.91097i 0.184565 + 0.319677i
\(237\) −7.96063 + 13.7882i −0.517099 + 0.895641i
\(238\) 0.230005 0.398381i 0.0149090 0.0258232i
\(239\) 5.42011 9.38790i 0.350598 0.607253i −0.635757 0.771889i \(-0.719312\pi\)
0.986354 + 0.164637i \(0.0526452\pi\)
\(240\) 11.0408 0.712684
\(241\) −5.11607 8.86129i −0.329555 0.570806i 0.652869 0.757471i \(-0.273565\pi\)
−0.982424 + 0.186665i \(0.940232\pi\)
\(242\) −0.449501 0.778559i −0.0288950 0.0500477i
\(243\) 3.69838 6.40578i 0.237251 0.410931i
\(244\) −3.31661 −0.212324
\(245\) 4.67580 + 8.09872i 0.298726 + 0.517408i
\(246\) 0.970002 0.0618450
\(247\) −8.15289 −0.518756
\(248\) −0.214125 + 6.35030i −0.0135969 + 0.403245i
\(249\) 22.2876 1.41242
\(250\) 3.49203 0.220855
\(251\) 6.99814 + 12.1211i 0.441719 + 0.765079i 0.997817 0.0660372i \(-0.0210356\pi\)
−0.556098 + 0.831116i \(0.687702\pi\)
\(252\) −1.57514 −0.0992242
\(253\) −1.92641 + 3.33663i −0.121112 + 0.209772i
\(254\) −0.664482 1.15092i −0.0416933 0.0722149i
\(255\) −2.20049 3.81137i −0.137800 0.238677i
\(256\) 9.62727 0.601705
\(257\) 8.94601 15.4949i 0.558037 0.966548i −0.439623 0.898182i \(-0.644888\pi\)
0.997660 0.0683661i \(-0.0217786\pi\)
\(258\) 0.530066 0.918101i 0.0330004 0.0571585i
\(259\) 1.07912 1.86910i 0.0670534 0.116140i
\(260\) 1.56583 + 2.71210i 0.0971087 + 0.168197i
\(261\) −2.98335 + 5.16731i −0.184665 + 0.319848i
\(262\) −2.60196 4.50672i −0.160750 0.278426i
\(263\) 0.564628 0.0348164 0.0174082 0.999848i \(-0.494459\pi\)
0.0174082 + 0.999848i \(0.494459\pi\)
\(264\) 6.19820 0.381473
\(265\) −10.1423 17.5669i −0.623034 1.07913i
\(266\) −1.34510 + 2.32978i −0.0824733 + 0.142848i
\(267\) 4.87281 + 8.43996i 0.298211 + 0.516517i
\(268\) 6.86835 11.8963i 0.419551 0.726684i
\(269\) −14.7514 + 25.5501i −0.899407 + 1.55782i −0.0711543 + 0.997465i \(0.522668\pi\)
−0.828253 + 0.560354i \(0.810665\pi\)
\(270\) −1.04599 + 1.81170i −0.0636567 + 0.110257i
\(271\) −4.38634 −0.266451 −0.133225 0.991086i \(-0.542533\pi\)
−0.133225 + 0.991086i \(0.542533\pi\)
\(272\) −2.43788 4.22253i −0.147818 0.256029i
\(273\) −1.09263 1.89249i −0.0661291 0.114539i
\(274\) −1.93528 + 3.35201i −0.116915 + 0.202502i
\(275\) −6.54360 −0.394594
\(276\) 2.53123 + 4.38422i 0.152362 + 0.263899i
\(277\) −11.7770 −0.707614 −0.353807 0.935318i \(-0.615113\pi\)
−0.353807 + 0.935318i \(0.615113\pi\)
\(278\) −2.46157 −0.147635
\(279\) −3.43337 2.13968i −0.205550 0.128099i
\(280\) 2.11255 0.126249
\(281\) −6.50230 −0.387895 −0.193947 0.981012i \(-0.562129\pi\)
−0.193947 + 0.981012i \(0.562129\pi\)
\(282\) −2.19480 3.80150i −0.130698 0.226376i
\(283\) −1.49693 −0.0889833 −0.0444917 0.999010i \(-0.514167\pi\)
−0.0444917 + 0.999010i \(0.514167\pi\)
\(284\) 9.56001 16.5584i 0.567282 0.982562i
\(285\) 12.8688 + 22.2893i 0.762279 + 1.32031i
\(286\) 0.410056 + 0.710238i 0.0242471 + 0.0419973i
\(287\) −1.95137 −0.115186
\(288\) 1.19956 2.07770i 0.0706848 0.122430i
\(289\) 7.52824 13.0393i 0.442838 0.767017i
\(290\) 1.95719 3.38996i 0.114930 0.199065i
\(291\) −16.0515 27.8020i −0.940957 1.62978i
\(292\) 14.6825 25.4309i 0.859231 1.48823i
\(293\) 1.44000 + 2.49415i 0.0841257 + 0.145710i 0.905018 0.425373i \(-0.139857\pi\)
−0.820893 + 0.571083i \(0.806524\pi\)
\(294\) 3.21787 0.187670
\(295\) 4.84238 0.281934
\(296\) 1.08789 + 1.88427i 0.0632321 + 0.109521i
\(297\) 6.17378 10.6933i 0.358239 0.620488i
\(298\) 0.497066 + 0.860943i 0.0287943 + 0.0498731i
\(299\) −0.684698 + 1.18593i −0.0395971 + 0.0685842i
\(300\) −4.29903 + 7.44615i −0.248205 + 0.429903i
\(301\) −1.06634 + 1.84696i −0.0614629 + 0.106457i
\(302\) −0.412046 −0.0237106
\(303\) −3.67837 6.37112i −0.211317 0.366011i
\(304\) 14.2570 + 24.6939i 0.817697 + 1.41629i
\(305\) −1.41608 + 2.45272i −0.0810843 + 0.140442i
\(306\) −0.295266 −0.0168792
\(307\) −6.37233 11.0372i −0.363688 0.629926i 0.624877 0.780723i \(-0.285149\pi\)
−0.988565 + 0.150798i \(0.951816\pi\)
\(308\) −6.09920 −0.347534
\(309\) −24.6761 −1.40377
\(310\) 2.25242 + 1.40371i 0.127929 + 0.0797256i
\(311\) −18.6991 −1.06033 −0.530165 0.847894i \(-0.677870\pi\)
−0.530165 + 0.847894i \(0.677870\pi\)
\(312\) 2.20301 0.124721
\(313\) −9.16560 15.8753i −0.518070 0.897324i −0.999780 0.0209930i \(-0.993317\pi\)
0.481709 0.876331i \(-0.340016\pi\)
\(314\) 1.50418 0.0848859
\(315\) −0.672528 + 1.16485i −0.0378927 + 0.0656320i
\(316\) 7.89710 + 13.6782i 0.444247 + 0.769458i
\(317\) 13.8682 + 24.0204i 0.778915 + 1.34912i 0.932568 + 0.360995i \(0.117563\pi\)
−0.153653 + 0.988125i \(0.549104\pi\)
\(318\) −6.97987 −0.391411
\(319\) −11.5520 + 20.0087i −0.646790 + 1.12027i
\(320\) 4.93239 8.54314i 0.275729 0.477576i
\(321\) −14.3235 + 24.8090i −0.799458 + 1.38470i
\(322\) 0.225929 + 0.391320i 0.0125905 + 0.0218074i
\(323\) 5.68299 9.84322i 0.316210 0.547692i
\(324\) −10.1993 17.6657i −0.566629 0.981430i
\(325\) −2.32578 −0.129011
\(326\) −2.00723 −0.111170
\(327\) −19.4463 33.6820i −1.07538 1.86262i
\(328\) 0.983607 1.70366i 0.0543106 0.0940688i
\(329\) 4.41530 + 7.64753i 0.243424 + 0.421622i
\(330\) 1.29449 2.24212i 0.0712593 0.123425i
\(331\) 10.5308 18.2399i 0.578826 1.00256i −0.416789 0.909003i \(-0.636844\pi\)
0.995614 0.0935523i \(-0.0298222\pi\)
\(332\) 11.0549 19.1476i 0.606714 1.05086i
\(333\) −1.38531 −0.0759145
\(334\) −0.299461 0.518681i −0.0163858 0.0283810i
\(335\) −5.86509 10.1586i −0.320444 0.555026i
\(336\) −3.82139 + 6.61885i −0.208474 + 0.361088i
\(337\) 11.1487 0.607310 0.303655 0.952782i \(-0.401793\pi\)
0.303655 + 0.952782i \(0.401793\pi\)
\(338\) 0.145745 + 0.252438i 0.00792751 + 0.0137308i
\(339\) −3.31154 −0.179858
\(340\) −4.36586 −0.236772
\(341\) −13.2946 8.28521i −0.719943 0.448669i
\(342\) 1.72675 0.0933722
\(343\) −14.3975 −0.777390
\(344\) −1.07500 1.86196i −0.0579602 0.100390i
\(345\) 4.32299 0.232742
\(346\) 0.835415 1.44698i 0.0449122 0.0777902i
\(347\) −13.7745 23.8581i −0.739452 1.28077i −0.952742 0.303780i \(-0.901751\pi\)
0.213290 0.976989i \(-0.431582\pi\)
\(348\) 15.1790 + 26.2908i 0.813678 + 1.40933i
\(349\) 22.8087 1.22092 0.610461 0.792046i \(-0.290984\pi\)
0.610461 + 0.792046i \(0.290984\pi\)
\(350\) −0.383717 + 0.664617i −0.0205105 + 0.0355253i
\(351\) 2.19433 3.80070i 0.117125 0.202866i
\(352\) 4.64491 8.04521i 0.247574 0.428811i
\(353\) 6.68667 + 11.5816i 0.355895 + 0.616429i 0.987271 0.159048i \(-0.0508426\pi\)
−0.631375 + 0.775477i \(0.717509\pi\)
\(354\) 0.833127 1.44302i 0.0442802 0.0766956i
\(355\) −8.16358 14.1397i −0.433278 0.750459i
\(356\) 9.66785 0.512395
\(357\) 3.04649 0.161237
\(358\) 2.03918 + 3.53196i 0.107774 + 0.186670i
\(359\) −0.858901 + 1.48766i −0.0453311 + 0.0785157i −0.887801 0.460228i \(-0.847768\pi\)
0.842470 + 0.538744i \(0.181101\pi\)
\(360\) −0.677989 1.17431i −0.0357332 0.0618917i
\(361\) −23.7348 + 41.1099i −1.24920 + 2.16368i
\(362\) 0.780433 1.35175i 0.0410187 0.0710464i
\(363\) 2.97689 5.15612i 0.156246 0.270626i
\(364\) −2.16782 −0.113625
\(365\) −12.5379 21.7162i −0.656262 1.13668i
\(366\) 0.487269 + 0.843975i 0.0254700 + 0.0441153i
\(367\) −1.41209 + 2.44580i −0.0737102 + 0.127670i −0.900525 0.434805i \(-0.856817\pi\)
0.826814 + 0.562475i \(0.190151\pi\)
\(368\) 4.78935 0.249662
\(369\) 0.626261 + 1.08472i 0.0326018 + 0.0564680i
\(370\) 0.908818 0.0472472
\(371\) 14.0415 0.728999
\(372\) −18.1623 + 9.68505i −0.941671 + 0.502146i
\(373\) 31.7562 1.64427 0.822137 0.569289i \(-0.192782\pi\)
0.822137 + 0.569289i \(0.192782\pi\)
\(374\) −1.14332 −0.0591198
\(375\) 11.5632 + 20.0281i 0.597122 + 1.03425i
\(376\) −8.90232 −0.459102
\(377\) −4.10591 + 7.11165i −0.211465 + 0.366269i
\(378\) −0.724061 1.25411i −0.0372417 0.0645045i
\(379\) −4.14593 7.18096i −0.212962 0.368861i 0.739678 0.672961i \(-0.234978\pi\)
−0.952640 + 0.304100i \(0.901644\pi\)
\(380\) 25.5321 1.30977
\(381\) 4.40063 7.62211i 0.225451 0.390492i
\(382\) 3.07540 5.32674i 0.157351 0.272540i
\(383\) −11.5934 + 20.0803i −0.592393 + 1.02605i 0.401517 + 0.915852i \(0.368483\pi\)
−0.993909 + 0.110202i \(0.964850\pi\)
\(384\) −8.07126 13.9798i −0.411885 0.713406i
\(385\) −2.60415 + 4.51051i −0.132720 + 0.229877i
\(386\) −0.252288 0.436976i −0.0128411 0.0222415i
\(387\) 1.36890 0.0695852
\(388\) −31.8468 −1.61678
\(389\) −7.24532 12.5493i −0.367352 0.636273i 0.621798 0.783177i \(-0.286402\pi\)
−0.989151 + 0.146904i \(0.953069\pi\)
\(390\) 0.460097 0.796912i 0.0232979 0.0403532i
\(391\) −0.954540 1.65331i −0.0482732 0.0836116i
\(392\) 3.26300 5.65169i 0.164807 0.285453i
\(393\) 17.2318 29.8464i 0.869231 1.50555i
\(394\) −0.188856 + 0.327107i −0.00951441 + 0.0164794i
\(395\) 13.4871 0.678612
\(396\) 1.95744 + 3.39039i 0.0983652 + 0.170373i
\(397\) 4.25232 + 7.36523i 0.213418 + 0.369650i 0.952782 0.303655i \(-0.0982072\pi\)
−0.739364 + 0.673306i \(0.764874\pi\)
\(398\) 3.37893 5.85248i 0.169370 0.293358i
\(399\) −17.8162 −0.891927
\(400\) 4.06711 + 7.04444i 0.203355 + 0.352222i
\(401\) −22.7771 −1.13743 −0.568717 0.822533i \(-0.692560\pi\)
−0.568717 + 0.822533i \(0.692560\pi\)
\(402\) −4.03634 −0.201314
\(403\) −4.72527 2.94479i −0.235383 0.146691i
\(404\) −7.29802 −0.363090
\(405\) −17.4190 −0.865558
\(406\) 1.35482 + 2.34662i 0.0672387 + 0.116461i
\(407\) −5.36416 −0.265892
\(408\) −1.53561 + 2.65976i −0.0760241 + 0.131678i
\(409\) −11.3608 19.6775i −0.561755 0.972988i −0.997343 0.0728423i \(-0.976793\pi\)
0.435588 0.900146i \(-0.356540\pi\)
\(410\) −0.410852 0.711616i −0.0202905 0.0351442i
\(411\) −25.6334 −1.26440
\(412\) −12.2396 + 21.1995i −0.603000 + 1.04443i
\(413\) −1.67602 + 2.90294i −0.0824713 + 0.142845i
\(414\) 0.145017 0.251176i 0.00712718 0.0123446i
\(415\) −9.44007 16.3507i −0.463395 0.802624i
\(416\) 1.65093 2.85949i 0.0809434 0.140198i
\(417\) −8.15106 14.1181i −0.399159 0.691364i
\(418\) 6.68629 0.327037
\(419\) 4.98063 0.243320 0.121660 0.992572i \(-0.461178\pi\)
0.121660 + 0.992572i \(0.461178\pi\)
\(420\) 3.42176 + 5.92666i 0.166965 + 0.289191i
\(421\) 11.2882 19.5518i 0.550154 0.952894i −0.448109 0.893979i \(-0.647902\pi\)
0.998263 0.0589155i \(-0.0187642\pi\)
\(422\) −2.03062 3.51714i −0.0988492 0.171212i
\(423\) 2.83405 4.90871i 0.137796 0.238670i
\(424\) −7.07777 + 12.2591i −0.343727 + 0.595352i
\(425\) 1.62119 2.80798i 0.0786392 0.136207i
\(426\) −5.61815 −0.272200
\(427\) −0.980247 1.69784i −0.0474375 0.0821641i
\(428\) 14.2092 + 24.6110i 0.686826 + 1.18962i
\(429\) −2.71566 + 4.70366i −0.131113 + 0.227095i
\(430\) −0.898053 −0.0433080
\(431\) −6.94935 12.0366i −0.334739 0.579784i 0.648696 0.761048i \(-0.275315\pi\)
−0.983435 + 0.181263i \(0.941981\pi\)
\(432\) −15.3490 −0.738479
\(433\) −13.2479 −0.636656 −0.318328 0.947981i \(-0.603121\pi\)
−0.318328 + 0.947981i \(0.603121\pi\)
\(434\) −1.62110 + 0.864454i −0.0778155 + 0.0414951i
\(435\) 25.9236 1.24294
\(436\) −38.5822 −1.84775
\(437\) 5.58227 + 9.66878i 0.267036 + 0.462520i
\(438\) −8.62852 −0.412286
\(439\) −8.77562 + 15.1998i −0.418837 + 0.725448i −0.995823 0.0913067i \(-0.970896\pi\)
0.576985 + 0.816755i \(0.304229\pi\)
\(440\) −2.62529 4.54714i −0.125156 0.216776i
\(441\) 2.07755 + 3.59842i 0.0989309 + 0.171353i
\(442\) −0.406368 −0.0193290
\(443\) 11.0743 19.1812i 0.526156 0.911329i −0.473380 0.880858i \(-0.656966\pi\)
0.999536 0.0304702i \(-0.00970047\pi\)
\(444\) −3.52416 + 6.10402i −0.167249 + 0.289684i
\(445\) 4.12783 7.14962i 0.195678 0.338924i
\(446\) 1.91011 + 3.30840i 0.0904461 + 0.156657i
\(447\) −3.29189 + 5.70172i −0.155701 + 0.269682i
\(448\) 3.41434 + 5.91380i 0.161312 + 0.279401i
\(449\) −10.6095 −0.500692 −0.250346 0.968156i \(-0.580544\pi\)
−0.250346 + 0.968156i \(0.580544\pi\)
\(450\) 0.492592 0.0232210
\(451\) 2.42499 + 4.20021i 0.114188 + 0.197780i
\(452\) −1.64255 + 2.84499i −0.0772593 + 0.133817i
\(453\) −1.36442 2.36324i −0.0641058 0.111035i
\(454\) −1.52210 + 2.63636i −0.0714357 + 0.123730i
\(455\) −0.925585 + 1.60316i −0.0433921 + 0.0751573i
\(456\) 8.98045 15.5546i 0.420548 0.728411i
\(457\) 18.9407 0.886010 0.443005 0.896519i \(-0.353912\pi\)
0.443005 + 0.896519i \(0.353912\pi\)
\(458\) −0.325960 0.564580i −0.0152311 0.0263811i
\(459\) 3.05913 + 5.29856i 0.142788 + 0.247316i
\(460\) 2.14424 3.71394i 0.0999759 0.173163i
\(461\) 4.08386 0.190204 0.0951022 0.995468i \(-0.469682\pi\)
0.0951022 + 0.995468i \(0.469682\pi\)
\(462\) 0.896082 + 1.55206i 0.0416895 + 0.0722083i
\(463\) 30.8493 1.43369 0.716844 0.697233i \(-0.245586\pi\)
0.716844 + 0.697233i \(0.245586\pi\)
\(464\) 28.7202 1.33330
\(465\) −0.592327 + 17.5667i −0.0274685 + 0.814634i
\(466\) 4.52098 0.209430
\(467\) 36.9982 1.71207 0.856036 0.516916i \(-0.172920\pi\)
0.856036 + 0.516916i \(0.172920\pi\)
\(468\) 0.695729 + 1.20504i 0.0321601 + 0.0557029i
\(469\) 8.11996 0.374945
\(470\) −1.85924 + 3.22031i −0.0857605 + 0.148542i
\(471\) 4.98083 + 8.62705i 0.229504 + 0.397513i
\(472\) −1.68963 2.92652i −0.0777713 0.134704i
\(473\) 5.30063 0.243723
\(474\) 2.32045 4.01914i 0.106582 0.184605i
\(475\) −9.48091 + 16.4214i −0.435014 + 0.753466i
\(476\) 1.51109 2.61728i 0.0692605 0.119963i
\(477\) −4.50640 7.80531i −0.206334 0.357381i
\(478\) −1.57991 + 2.73649i −0.0722635 + 0.125164i
\(479\) −16.5043 28.5863i −0.754100 1.30614i −0.945821 0.324690i \(-0.894740\pi\)
0.191721 0.981450i \(-0.438593\pi\)
\(480\) −10.4235 −0.475765
\(481\) −1.90657 −0.0869322
\(482\) 1.49129 + 2.58299i 0.0679263 + 0.117652i
\(483\) −1.49625 + 2.59158i −0.0680816 + 0.117921i
\(484\) −2.95313 5.11497i −0.134233 0.232499i
\(485\) −13.5975 + 23.5515i −0.617430 + 1.06942i
\(486\) −1.07804 + 1.86722i −0.0489010 + 0.0846990i
\(487\) −7.27231 + 12.5960i −0.329540 + 0.570780i −0.982421 0.186681i \(-0.940227\pi\)
0.652881 + 0.757461i \(0.273560\pi\)
\(488\) 1.97641 0.0894681
\(489\) −6.64658 11.5122i −0.300569 0.520600i
\(490\) −1.36295 2.36070i −0.0615719 0.106646i
\(491\) 12.8216 22.2076i 0.578629 1.00221i −0.417008 0.908903i \(-0.636921\pi\)
0.995637 0.0933116i \(-0.0297453\pi\)
\(492\) 6.37271 0.287304
\(493\) −5.72407 9.91438i −0.257799 0.446521i
\(494\) 2.37649 0.106923
\(495\) 3.34304 0.150258
\(496\) −0.656227 + 19.4617i −0.0294655 + 0.873858i
\(497\) 11.3021 0.506969
\(498\) −6.49662 −0.291121
\(499\) 12.8263 + 22.2157i 0.574183 + 0.994513i 0.996130 + 0.0878930i \(0.0280134\pi\)
−0.421947 + 0.906620i \(0.638653\pi\)
\(500\) 22.9419 1.02599
\(501\) 1.98322 3.43504i 0.0886038 0.153466i
\(502\) −2.03989 3.53320i −0.0910449 0.157694i
\(503\) −11.6192 20.1251i −0.518076 0.897333i −0.999779 0.0209992i \(-0.993315\pi\)
0.481704 0.876334i \(-0.340018\pi\)
\(504\) 0.938646 0.0418106
\(505\) −3.11600 + 5.39707i −0.138660 + 0.240166i
\(506\) 0.561530 0.972598i 0.0249630 0.0432373i
\(507\) −0.965220 + 1.67181i −0.0428669 + 0.0742477i
\(508\) −4.36551 7.56128i −0.193688 0.335477i
\(509\) 15.5178 26.8776i 0.687813 1.19133i −0.284730 0.958608i \(-0.591904\pi\)
0.972544 0.232720i \(-0.0747626\pi\)
\(510\) 0.641423 + 1.11098i 0.0284027 + 0.0491949i
\(511\) 17.3581 0.767878
\(512\) −19.5305 −0.863132
\(513\) −17.8902 30.9867i −0.789870 1.36809i
\(514\) −2.60768 + 4.51664i −0.115020 + 0.199220i
\(515\) 10.4517 + 18.1029i 0.460558 + 0.797710i
\(516\) 3.48242 6.03173i 0.153305 0.265532i
\(517\) 10.9739 19.0074i 0.482632 0.835943i
\(518\) −0.314554 + 0.544824i −0.0138207 + 0.0239382i
\(519\) 11.0653 0.485713
\(520\) −0.933102 1.61618i −0.0409192 0.0708742i
\(521\) 7.58436 + 13.1365i 0.332277 + 0.575520i 0.982958 0.183831i \(-0.0588499\pi\)
−0.650681 + 0.759351i \(0.725517\pi\)
\(522\) 0.869618 1.50622i 0.0380622 0.0659256i
\(523\) −7.86242 −0.343799 −0.171900 0.985114i \(-0.554991\pi\)
−0.171900 + 0.985114i \(0.554991\pi\)
\(524\) −17.0943 29.6082i −0.746769 1.29344i
\(525\) −5.08244 −0.221816
\(526\) −0.164584 −0.00717619
\(527\) 6.84909 3.65228i 0.298351 0.159096i
\(528\) 18.9956 0.826676
\(529\) −21.1248 −0.918468
\(530\) 2.95637 + 5.12059i 0.128417 + 0.222424i
\(531\) 2.15156 0.0933699
\(532\) −8.83702 + 15.3062i −0.383133 + 0.663606i
\(533\) 0.861909 + 1.49287i 0.0373334 + 0.0646634i
\(534\) −1.42038 2.46017i −0.0614659 0.106462i
\(535\) 24.2673 1.04917
\(536\) −4.09295 + 7.08920i −0.176789 + 0.306207i
\(537\) −13.5047 + 23.3909i −0.582772 + 1.00939i
\(538\) 4.29989 7.44763i 0.185381 0.321090i
\(539\) 8.04463 + 13.9337i 0.346507 + 0.600167i
\(540\) −6.87191 + 11.9025i −0.295720 + 0.512202i
\(541\) 14.6063 + 25.2989i 0.627976 + 1.08769i 0.987957 + 0.154726i \(0.0494496\pi\)
−0.359982 + 0.932959i \(0.617217\pi\)
\(542\) 1.27858 0.0549196
\(543\) 10.3371 0.443606
\(544\) 2.30157 + 3.98643i 0.0986788 + 0.170917i
\(545\) −16.4733 + 28.5325i −0.705637 + 1.22220i
\(546\) 0.318492 + 0.551645i 0.0136302 + 0.0236082i
\(547\) 9.87380 17.1019i 0.422173 0.731226i −0.573978 0.818870i \(-0.694601\pi\)
0.996152 + 0.0876447i \(0.0279340\pi\)
\(548\) −12.7144 + 22.0220i −0.543132 + 0.940732i
\(549\) −0.629190 + 1.08979i −0.0268532 + 0.0465110i
\(550\) 1.90740 0.0813318
\(551\) 33.4751 + 57.9805i 1.42609 + 2.47005i
\(552\) −1.50840 2.61262i −0.0642017 0.111201i
\(553\) −4.66809 + 8.08537i −0.198507 + 0.343825i
\(554\) 3.43290 0.145850
\(555\) 3.00939 + 5.21241i 0.127741 + 0.221255i
\(556\) −16.1720 −0.685847
\(557\) −5.44336 −0.230642 −0.115321 0.993328i \(-0.536790\pi\)
−0.115321 + 0.993328i \(0.536790\pi\)
\(558\) 1.00080 + 0.623697i 0.0423671 + 0.0264032i
\(559\) 1.88399 0.0796843
\(560\) 6.47432 0.273590
\(561\) −3.78591 6.55738i −0.159841 0.276853i
\(562\) 1.89536 0.0799509
\(563\) −12.0972 + 20.9529i −0.509834 + 0.883059i 0.490101 + 0.871666i \(0.336960\pi\)
−0.999935 + 0.0113934i \(0.996373\pi\)
\(564\) −14.4193 24.9750i −0.607164 1.05164i
\(565\) 1.40263 + 2.42942i 0.0590090 + 0.102207i
\(566\) 0.436342 0.0183408
\(567\) 6.02897 10.4425i 0.253193 0.438543i
\(568\) −5.69695 + 9.86741i −0.239039 + 0.414027i
\(569\) 18.4093 31.8858i 0.771758 1.33672i −0.164841 0.986320i \(-0.552711\pi\)
0.936599 0.350403i \(-0.113955\pi\)
\(570\) −3.75112 6.49714i −0.157117 0.272135i
\(571\) 16.2818 28.2008i 0.681370 1.18017i −0.293192 0.956053i \(-0.594718\pi\)
0.974563 0.224115i \(-0.0719490\pi\)
\(572\) 2.69398 + 4.66612i 0.112641 + 0.195100i
\(573\) 40.7345 1.70171
\(574\) 0.568806 0.0237415
\(575\) 1.59246 + 2.75822i 0.0664100 + 0.115026i
\(576\) 2.19155 3.79588i 0.0913148 0.158162i
\(577\) −3.45823 5.98983i −0.143968 0.249360i 0.785019 0.619471i \(-0.212653\pi\)
−0.928987 + 0.370111i \(0.879320\pi\)
\(578\) −2.19441 + 3.80083i −0.0912755 + 0.158094i
\(579\) 1.67082 2.89394i 0.0694367 0.120268i
\(580\) 12.8583 22.2713i 0.533914 0.924765i
\(581\) 13.0694 0.542209
\(582\) 4.67887 + 8.10404i 0.193945 + 0.335923i
\(583\) −17.4496 30.2235i −0.722687 1.25173i
\(584\) −8.74954 + 15.1546i −0.362059 + 0.627104i
\(585\) 1.18821 0.0491264
\(586\) −0.419747 0.727023i −0.0173396 0.0300330i
\(587\) 16.0678 0.663190 0.331595 0.943422i \(-0.392413\pi\)
0.331595 + 0.943422i \(0.392413\pi\)
\(588\) 21.1407 0.871829
\(589\) −40.0544 + 21.3590i −1.65041 + 0.880082i
\(590\) −1.41151 −0.0581109
\(591\) −2.50145 −0.102896
\(592\) 3.33404 + 5.77472i 0.137028 + 0.237340i
\(593\) 23.0992 0.948571 0.474286 0.880371i \(-0.342706\pi\)
0.474286 + 0.880371i \(0.342706\pi\)
\(594\) −1.79960 + 3.11700i −0.0738385 + 0.127892i
\(595\) −1.29036 2.23497i −0.0528997 0.0916249i
\(596\) 3.26562 + 5.65622i 0.133765 + 0.231688i
\(597\) 44.7549 1.83170
\(598\) 0.199583 0.345688i 0.00816157 0.0141362i
\(599\) −20.7219 + 35.8914i −0.846674 + 1.46648i 0.0374848 + 0.999297i \(0.488065\pi\)
−0.884159 + 0.467186i \(0.845268\pi\)
\(600\) 2.56186 4.43727i 0.104587 0.181151i
\(601\) 7.37467 + 12.7733i 0.300819 + 0.521034i 0.976322 0.216324i \(-0.0694066\pi\)
−0.675503 + 0.737358i \(0.736073\pi\)
\(602\) 0.310829 0.538371i 0.0126684 0.0219424i
\(603\) −2.60597 4.51368i −0.106123 0.183811i
\(604\) −2.70705 −0.110148
\(605\) −5.04353 −0.205049
\(606\) 1.07221 + 1.85712i 0.0435556 + 0.0754404i
\(607\) −12.7808 + 22.1371i −0.518759 + 0.898516i 0.481004 + 0.876718i \(0.340272\pi\)
−0.999762 + 0.0217977i \(0.993061\pi\)
\(608\) −13.4598 23.3131i −0.545869 0.945472i
\(609\) −8.97251 + 15.5408i −0.363584 + 0.629747i
\(610\) 0.412773 0.714944i 0.0167127 0.0289472i
\(611\) 3.90043 6.75575i 0.157795 0.273308i
\(612\) −1.93984 −0.0784133
\(613\) 5.26219 + 9.11438i 0.212538 + 0.368126i 0.952508 0.304513i \(-0.0984938\pi\)
−0.739970 + 0.672640i \(0.765160\pi\)
\(614\) 1.85747 + 3.21724i 0.0749616 + 0.129837i
\(615\) 2.72092 4.71278i 0.109718 0.190038i
\(616\) 3.63460 0.146442
\(617\) 7.20070 + 12.4720i 0.289889 + 0.502103i 0.973783 0.227479i \(-0.0730482\pi\)
−0.683894 + 0.729581i \(0.739715\pi\)
\(618\) 7.19284 0.289339
\(619\) −35.5923 −1.43057 −0.715287 0.698831i \(-0.753704\pi\)
−0.715287 + 0.698831i \(0.753704\pi\)
\(620\) 14.7980 + 9.22210i 0.594300 + 0.370369i
\(621\) −6.00982 −0.241166
\(622\) 5.45063 0.218550
\(623\) 2.85740 + 4.94916i 0.114479 + 0.198284i
\(624\) 6.75155 0.270278
\(625\) 3.98093 6.89517i 0.159237 0.275807i
\(626\) 2.67169 + 4.62750i 0.106782 + 0.184952i
\(627\) 22.1405 + 38.3484i 0.884205 + 1.53149i
\(628\) 9.88215 0.394341
\(629\) 1.32898 2.30186i 0.0529899 0.0917811i
\(630\) 0.196036 0.339544i 0.00781025 0.0135278i
\(631\) −5.77319 + 9.99946i −0.229827 + 0.398072i −0.957757 0.287580i \(-0.907149\pi\)
0.727930 + 0.685652i \(0.240483\pi\)
\(632\) −4.70600 8.15103i −0.187195 0.324230i
\(633\) 13.4481 23.2928i 0.534514 0.925805i
\(634\) −4.04245 7.00173i −0.160546 0.278074i
\(635\) −7.45568 −0.295869
\(636\) −45.8562 −1.81832
\(637\) 2.85928 + 4.95242i 0.113289 + 0.196222i
\(638\) 3.36731 5.83236i 0.133313 0.230905i
\(639\) −3.62724 6.28256i −0.143491 0.248534i
\(640\) −6.83729 + 11.8425i −0.270268 + 0.468117i
\(641\) 13.1940 22.8527i 0.521132 0.902628i −0.478566 0.878052i \(-0.658843\pi\)
0.999698 0.0245760i \(-0.00782357\pi\)
\(642\) 4.17516 7.23159i 0.164780 0.285408i
\(643\) −45.7510 −1.80425 −0.902123 0.431480i \(-0.857992\pi\)
−0.902123 + 0.431480i \(0.857992\pi\)
\(644\) 1.48431 + 2.57089i 0.0584898 + 0.101307i
\(645\) −2.97374 5.15067i −0.117091 0.202808i
\(646\) −1.65654 + 2.86921i −0.0651756 + 0.112888i
\(647\) 19.9093 0.782715 0.391358 0.920239i \(-0.372006\pi\)
0.391358 + 0.920239i \(0.372006\pi\)
\(648\) 6.07792 + 10.5273i 0.238763 + 0.413550i
\(649\) 8.33123 0.327029
\(650\) 0.677943 0.0265911
\(651\) −10.3260 6.43516i −0.404707 0.252214i
\(652\) −13.1871 −0.516445
\(653\) −45.8704 −1.79505 −0.897523 0.440968i \(-0.854635\pi\)
−0.897523 + 0.440968i \(0.854635\pi\)
\(654\) 5.66842 + 9.81799i 0.221653 + 0.383914i
\(655\) −29.1947 −1.14073
\(656\) 3.01446 5.22119i 0.117695 0.203853i
\(657\) −5.57082 9.64894i −0.217338 0.376441i
\(658\) −1.28702 2.22919i −0.0501733 0.0869027i
\(659\) 26.7938 1.04374 0.521868 0.853026i \(-0.325235\pi\)
0.521868 + 0.853026i \(0.325235\pi\)
\(660\) 8.50452 14.7303i 0.331038 0.573375i
\(661\) −2.62929 + 4.55406i −0.102267 + 0.177132i −0.912618 0.408812i \(-0.865943\pi\)
0.810351 + 0.585945i \(0.199276\pi\)
\(662\) −3.06964 + 5.31676i −0.119305 + 0.206642i
\(663\) −1.34562 2.33068i −0.0522594 0.0905159i
\(664\) −6.58775 + 11.4103i −0.255654 + 0.442806i
\(665\) 7.54620 + 13.0704i 0.292629 + 0.506848i
\(666\) 0.403805 0.0156471
\(667\) 11.2453 0.435418
\(668\) −1.96739 3.40763i −0.0761208 0.131845i
\(669\) −12.6499 + 21.9103i −0.489075 + 0.847103i
\(670\) 1.70962 + 2.96115i 0.0660484 + 0.114399i
\(671\) −2.43633 + 4.21985i −0.0940535 + 0.162906i
\(672\) 3.60772 6.24875i 0.139171 0.241051i
\(673\) 15.2603 26.4316i 0.588240 1.01886i −0.406223 0.913774i \(-0.633154\pi\)
0.994463 0.105088i \(-0.0335124\pi\)
\(674\) −3.24975 −0.125176
\(675\) −5.10353 8.83958i −0.196435 0.340236i
\(676\) 0.957517 + 1.65847i 0.0368276 + 0.0637872i
\(677\) −24.8548 + 43.0498i −0.955247 + 1.65454i −0.221446 + 0.975173i \(0.571078\pi\)
−0.733802 + 0.679364i \(0.762256\pi\)
\(678\) 0.965283 0.0370715
\(679\) −9.41256 16.3030i −0.361221 0.625653i
\(680\) 2.60168 0.0997699
\(681\) −20.1607 −0.772558
\(682\) 3.87525 + 2.41506i 0.148391 + 0.0924776i
\(683\) 45.0893 1.72529 0.862647 0.505806i \(-0.168805\pi\)
0.862647 + 0.505806i \(0.168805\pi\)
\(684\) 11.3444 0.433764
\(685\) 10.8572 + 18.8052i 0.414832 + 0.718511i
\(686\) 4.19673 0.160232
\(687\) 2.15872 3.73901i 0.0823603 0.142652i
\(688\) −3.29455 5.70633i −0.125604 0.217552i
\(689\) −6.20206 10.7423i −0.236280 0.409248i
\(690\) −1.26011 −0.0479716
\(691\) −5.02895 + 8.71039i −0.191310 + 0.331359i −0.945685 0.325085i \(-0.894607\pi\)
0.754375 + 0.656444i \(0.227940\pi\)
\(692\) 5.48850 9.50636i 0.208641 0.361378i
\(693\) −1.15707 + 2.00411i −0.0439535 + 0.0761297i
\(694\) 4.01513 + 6.95441i 0.152412 + 0.263986i
\(695\) −6.90489 + 11.9596i −0.261917 + 0.453654i
\(696\) −9.04537 15.6670i −0.342864 0.593858i
\(697\) −2.40318 −0.0910269
\(698\) −6.64853 −0.251651
\(699\) 14.9704 + 25.9295i 0.566233 + 0.980744i
\(700\) −2.52094 + 4.36640i −0.0952826 + 0.165034i
\(701\) 10.5481 + 18.2698i 0.398395 + 0.690041i 0.993528 0.113586i \(-0.0362339\pi\)
−0.595133 + 0.803627i \(0.702901\pi\)
\(702\) −0.639628 + 1.10787i −0.0241412 + 0.0418138i
\(703\) −7.77204 + 13.4616i −0.293128 + 0.507712i
\(704\) 8.48608 14.6983i 0.319831 0.553964i
\(705\) −24.6262 −0.927477
\(706\) −1.94910 3.37594i −0.0733554 0.127055i
\(707\) −2.15698 3.73600i −0.0811217 0.140507i
\(708\) 5.47347 9.48033i 0.205706 0.356293i
\(709\) 46.8510 1.75953 0.879763 0.475413i \(-0.157701\pi\)
0.879763 + 0.475413i \(0.157701\pi\)
\(710\) 2.37961 + 4.12160i 0.0893052 + 0.154681i
\(711\) 5.99260 0.224740
\(712\) −5.76121 −0.215911
\(713\) −0.256942 + 7.62015i −0.00962257 + 0.285377i
\(714\) −0.888022 −0.0332334
\(715\) 4.60095 0.172066
\(716\) 13.3970 + 23.2042i 0.500668 + 0.867182i
\(717\) −20.9264 −0.781510
\(718\) 0.250362 0.433639i 0.00934342 0.0161833i
\(719\) −23.4679 40.6476i −0.875206 1.51590i −0.856543 0.516075i \(-0.827393\pi\)
−0.0186624 0.999826i \(-0.505941\pi\)
\(720\) −2.07783 3.59891i −0.0774362 0.134123i
\(721\) −14.4700 −0.538889
\(722\) 6.91848 11.9832i 0.257479 0.445967i
\(723\) −9.87627 + 17.1062i −0.367302 + 0.636186i
\(724\) 5.12728 8.88071i 0.190554 0.330049i
\(725\) 9.54945 + 16.5401i 0.354658 + 0.614285i
\(726\) −0.867735 + 1.50296i −0.0322047 + 0.0557801i
\(727\) 6.30816 + 10.9261i 0.233957 + 0.405225i 0.958969 0.283511i \(-0.0914993\pi\)
−0.725012 + 0.688736i \(0.758166\pi\)
\(728\) 1.29184 0.0478787
\(729\) 17.6766 0.654687
\(730\) 3.65467 + 6.33008i 0.135266 + 0.234287i
\(731\) −1.31324 + 2.27460i −0.0485719 + 0.0841290i
\(732\) 3.20126 + 5.54474i 0.118322 + 0.204939i
\(733\) −9.01199 + 15.6092i −0.332865 + 0.576540i −0.983072 0.183217i \(-0.941349\pi\)
0.650207 + 0.759757i \(0.274682\pi\)
\(734\) 0.411610 0.712929i 0.0151928 0.0263147i
\(735\) 9.02635 15.6341i 0.332942 0.576672i
\(736\) −4.52155 −0.166667
\(737\) −10.0908 17.4777i −0.371699 0.643801i
\(738\) −0.182549 0.316185i −0.00671973 0.0116389i
\(739\) −9.68707 + 16.7785i −0.356345 + 0.617207i −0.987347 0.158574i \(-0.949310\pi\)
0.631002 + 0.775781i \(0.282644\pi\)
\(740\) 5.97074 0.219489
\(741\) 7.86933 + 13.6301i 0.289087 + 0.500714i
\(742\) −4.09297 −0.150258
\(743\) −3.68643 −0.135242 −0.0676210 0.997711i \(-0.521541\pi\)
−0.0676210 + 0.997711i \(0.521541\pi\)
\(744\) 10.8232 5.77146i 0.396797 0.211592i
\(745\) 5.57722 0.204334
\(746\) −9.25665 −0.338910
\(747\) −4.19441 7.26493i −0.153465 0.265810i
\(748\) −7.51138 −0.274643
\(749\) −8.39924 + 14.5479i −0.306901 + 0.531569i
\(750\) −3.37057 5.83800i −0.123076 0.213174i
\(751\) 6.66112 + 11.5374i 0.243068 + 0.421006i 0.961587 0.274502i \(-0.0885130\pi\)
−0.718519 + 0.695507i \(0.755180\pi\)
\(752\) −27.2829 −0.994905
\(753\) 13.5095 23.3991i 0.492313 0.852711i
\(754\) 1.19684 2.07298i 0.0435862 0.0754935i
\(755\) −1.15582 + 2.00193i −0.0420645 + 0.0728578i
\(756\) −4.75693 8.23924i −0.173008 0.299658i
\(757\) −2.09062 + 3.62106i −0.0759848 + 0.131610i −0.901514 0.432750i \(-0.857543\pi\)
0.825529 + 0.564359i \(0.190877\pi\)
\(758\) 1.20850 + 2.09318i 0.0438947 + 0.0760279i
\(759\) 7.43762 0.269969
\(760\) −15.2150 −0.551904
\(761\) −11.2827 19.5422i −0.408997 0.708404i 0.585780 0.810470i \(-0.300788\pi\)
−0.994778 + 0.102066i \(0.967455\pi\)
\(762\) −1.28274 + 2.22177i −0.0464689 + 0.0804864i
\(763\) −11.4033 19.7510i −0.412826 0.715035i
\(764\) 20.2047 34.9956i 0.730980 1.26609i
\(765\) −0.828243 + 1.43456i −0.0299452 + 0.0518666i
\(766\) 3.37936 5.85322i 0.122101 0.211485i
\(767\) 2.96115 0.106921
\(768\) −9.29244 16.0950i −0.335312 0.580777i
\(769\) −1.72255 2.98354i −0.0621166 0.107589i 0.833295 0.552829i \(-0.186452\pi\)
−0.895411 + 0.445240i \(0.853118\pi\)
\(770\) 0.759084 1.31477i 0.0273555 0.0473811i
\(771\) −34.5395 −1.24391