Properties

Label 403.2.h.b.118.7
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.7
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.7

$q$-expansion

\(f(q)\) \(=\) \(q-0.708536 q^{2} +(-0.837990 - 1.45144i) q^{3} -1.49798 q^{4} +(1.10081 - 1.90665i) q^{5} +(0.593746 + 1.02840i) q^{6} +(1.50089 + 2.59962i) q^{7} +2.47844 q^{8} +(0.0955444 - 0.165488i) q^{9} +O(q^{10})\) \(q-0.708536 q^{2} +(-0.837990 - 1.45144i) q^{3} -1.49798 q^{4} +(1.10081 - 1.90665i) q^{5} +(0.593746 + 1.02840i) q^{6} +(1.50089 + 2.59962i) q^{7} +2.47844 q^{8} +(0.0955444 - 0.165488i) q^{9} +(-0.779961 + 1.35093i) q^{10} +(2.27605 - 3.94223i) q^{11} +(1.25529 + 2.17423i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-1.06343 - 1.84192i) q^{14} -3.68986 q^{15} +1.23989 q^{16} +(-3.32635 - 5.76141i) q^{17} +(-0.0676966 + 0.117254i) q^{18} +(0.733221 + 1.26998i) q^{19} +(-1.64898 + 2.85612i) q^{20} +(2.51546 - 4.35691i) q^{21} +(-1.61266 + 2.79321i) q^{22} -6.58855 q^{23} +(-2.07691 - 3.59732i) q^{24} +(0.0764505 + 0.132416i) q^{25} +(0.354268 - 0.613610i) q^{26} -5.34820 q^{27} +(-2.24830 - 3.89416i) q^{28} -5.25374 q^{29} +2.61440 q^{30} +(-0.0357722 - 5.56765i) q^{31} -5.83539 q^{32} -7.62922 q^{33} +(2.35684 + 4.08216i) q^{34} +6.60875 q^{35} +(-0.143123 + 0.247897i) q^{36} +(1.42159 + 2.46227i) q^{37} +(-0.519514 - 0.899824i) q^{38} +1.67598 q^{39} +(2.72829 - 4.72553i) q^{40} +(3.27262 - 5.66835i) q^{41} +(-1.78229 + 3.08702i) q^{42} +(1.10219 + 1.90904i) q^{43} +(-3.40947 + 5.90537i) q^{44} +(-0.210352 - 0.364340i) q^{45} +4.66822 q^{46} +10.4132 q^{47} +(-1.03901 - 1.79962i) q^{48} +(-1.00533 + 1.74129i) q^{49} +(-0.0541679 - 0.0938216i) q^{50} +(-5.57490 + 9.65601i) q^{51} +(0.748988 - 1.29729i) q^{52} +(5.14880 - 8.91797i) q^{53} +3.78939 q^{54} +(-5.01097 - 8.67926i) q^{55} +(3.71987 + 6.44300i) q^{56} +(1.22886 - 2.12846i) q^{57} +3.72247 q^{58} +(2.65403 + 4.59691i) q^{59} +5.52732 q^{60} -11.2874 q^{61} +(0.0253459 + 3.94488i) q^{62} +0.573606 q^{63} +1.65481 q^{64} +(1.10081 + 1.90665i) q^{65} +5.40558 q^{66} +(-0.702967 + 1.21757i) q^{67} +(4.98279 + 8.63045i) q^{68} +(5.52114 + 9.56289i) q^{69} -4.68254 q^{70} +(4.94784 - 8.56991i) q^{71} +(0.236801 - 0.410152i) q^{72} +(1.60143 - 2.77376i) q^{73} +(-1.00725 - 1.74460i) q^{74} +(0.128130 - 0.221927i) q^{75} +(-1.09835 - 1.90239i) q^{76} +13.6644 q^{77} -1.18749 q^{78} +(1.38059 + 2.39126i) q^{79} +(1.36488 - 2.36403i) q^{80} +(4.19511 + 7.26614i) q^{81} +(-2.31877 + 4.01623i) q^{82} +(-7.35669 + 12.7422i) q^{83} +(-3.76810 + 6.52654i) q^{84} -14.6467 q^{85} +(-0.780939 - 1.35263i) q^{86} +(4.40259 + 7.62550i) q^{87} +(5.64105 - 9.77059i) q^{88} -8.89431 q^{89} +(0.149042 + 0.258148i) q^{90} -3.00178 q^{91} +9.86949 q^{92} +(-8.05114 + 4.71756i) q^{93} -7.37811 q^{94} +3.22854 q^{95} +(4.89000 + 8.46973i) q^{96} -0.237685 q^{97} +(0.712316 - 1.23377i) q^{98} +(-0.434927 - 0.753316i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.708536 −0.501011 −0.250505 0.968115i \(-0.580597\pi\)
−0.250505 + 0.968115i \(0.580597\pi\)
\(3\) −0.837990 1.45144i −0.483814 0.837990i 0.516013 0.856581i \(-0.327416\pi\)
−0.999827 + 0.0185903i \(0.994082\pi\)
\(4\) −1.49798 −0.748988
\(5\) 1.10081 1.90665i 0.492296 0.852681i −0.507665 0.861555i \(-0.669491\pi\)
0.999961 + 0.00887355i \(0.00282458\pi\)
\(6\) 0.593746 + 1.02840i 0.242396 + 0.419842i
\(7\) 1.50089 + 2.59962i 0.567283 + 0.982562i 0.996833 + 0.0795196i \(0.0253386\pi\)
−0.429551 + 0.903043i \(0.641328\pi\)
\(8\) 2.47844 0.876262
\(9\) 0.0955444 0.165488i 0.0318481 0.0551626i
\(10\) −0.779961 + 1.35093i −0.246645 + 0.427202i
\(11\) 2.27605 3.94223i 0.686254 1.18863i −0.286787 0.957994i \(-0.592587\pi\)
0.973041 0.230633i \(-0.0740795\pi\)
\(12\) 1.25529 + 2.17423i 0.362371 + 0.627645i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) −1.06343 1.84192i −0.284215 0.492274i
\(15\) −3.68986 −0.952718
\(16\) 1.23989 0.309972
\(17\) −3.32635 5.76141i −0.806758 1.39735i −0.915098 0.403232i \(-0.867887\pi\)
0.108339 0.994114i \(-0.465447\pi\)
\(18\) −0.0676966 + 0.117254i −0.0159563 + 0.0276370i
\(19\) 0.733221 + 1.26998i 0.168212 + 0.291353i 0.937791 0.347199i \(-0.112867\pi\)
−0.769579 + 0.638552i \(0.779534\pi\)
\(20\) −1.64898 + 2.85612i −0.368724 + 0.638648i
\(21\) 2.51546 4.35691i 0.548919 0.950755i
\(22\) −1.61266 + 2.79321i −0.343821 + 0.595515i
\(23\) −6.58855 −1.37381 −0.686903 0.726749i \(-0.741030\pi\)
−0.686903 + 0.726749i \(0.741030\pi\)
\(24\) −2.07691 3.59732i −0.423948 0.734299i
\(25\) 0.0764505 + 0.132416i 0.0152901 + 0.0264832i
\(26\) 0.354268 0.613610i 0.0694777 0.120339i
\(27\) −5.34820 −1.02926
\(28\) −2.24830 3.89416i −0.424888 0.735928i
\(29\) −5.25374 −0.975596 −0.487798 0.872957i \(-0.662200\pi\)
−0.487798 + 0.872957i \(0.662200\pi\)
\(30\) 2.61440 0.477322
\(31\) −0.0357722 5.56765i −0.00642487 0.999979i
\(32\) −5.83539 −1.03156
\(33\) −7.62922 −1.32808
\(34\) 2.35684 + 4.08216i 0.404194 + 0.700085i
\(35\) 6.60875 1.11708
\(36\) −0.143123 + 0.247897i −0.0238539 + 0.0413161i
\(37\) 1.42159 + 2.46227i 0.233708 + 0.404794i 0.958896 0.283756i \(-0.0915807\pi\)
−0.725188 + 0.688550i \(0.758247\pi\)
\(38\) −0.519514 0.899824i −0.0842762 0.145971i
\(39\) 1.67598 0.268372
\(40\) 2.72829 4.72553i 0.431380 0.747172i
\(41\) 3.27262 5.66835i 0.511098 0.885248i −0.488819 0.872385i \(-0.662572\pi\)
0.999917 0.0128627i \(-0.00409443\pi\)
\(42\) −1.78229 + 3.08702i −0.275014 + 0.476338i
\(43\) 1.10219 + 1.90904i 0.168082 + 0.291126i 0.937745 0.347323i \(-0.112909\pi\)
−0.769664 + 0.638450i \(0.779576\pi\)
\(44\) −3.40947 + 5.90537i −0.513996 + 0.890268i
\(45\) −0.210352 0.364340i −0.0313574 0.0543126i
\(46\) 4.66822 0.688292
\(47\) 10.4132 1.51892 0.759459 0.650555i \(-0.225464\pi\)
0.759459 + 0.650555i \(0.225464\pi\)
\(48\) −1.03901 1.79962i −0.149969 0.259753i
\(49\) −1.00533 + 1.74129i −0.143619 + 0.248756i
\(50\) −0.0541679 0.0938216i −0.00766050 0.0132684i
\(51\) −5.57490 + 9.65601i −0.780642 + 1.35211i
\(52\) 0.748988 1.29729i 0.103866 0.179901i
\(53\) 5.14880 8.91797i 0.707241 1.22498i −0.258635 0.965975i \(-0.583273\pi\)
0.965877 0.259003i \(-0.0833939\pi\)
\(54\) 3.78939 0.515671
\(55\) −5.01097 8.67926i −0.675680 1.17031i
\(56\) 3.71987 + 6.44300i 0.497088 + 0.860982i
\(57\) 1.22886 2.12846i 0.162767 0.281921i
\(58\) 3.72247 0.488784
\(59\) 2.65403 + 4.59691i 0.345525 + 0.598467i 0.985449 0.169971i \(-0.0543675\pi\)
−0.639924 + 0.768438i \(0.721034\pi\)
\(60\) 5.52732 0.713575
\(61\) −11.2874 −1.44520 −0.722602 0.691265i \(-0.757054\pi\)
−0.722602 + 0.691265i \(0.757054\pi\)
\(62\) 0.0253459 + 3.94488i 0.00321893 + 0.501000i
\(63\) 0.573606 0.0722676
\(64\) 1.65481 0.206851
\(65\) 1.10081 + 1.90665i 0.136538 + 0.236491i
\(66\) 5.40558 0.665381
\(67\) −0.702967 + 1.21757i −0.0858811 + 0.148750i −0.905766 0.423777i \(-0.860704\pi\)
0.819885 + 0.572528i \(0.194037\pi\)
\(68\) 4.98279 + 8.63045i 0.604252 + 1.04660i
\(69\) 5.52114 + 9.56289i 0.664667 + 1.15124i
\(70\) −4.68254 −0.559670
\(71\) 4.94784 8.56991i 0.587201 1.01706i −0.407396 0.913251i \(-0.633563\pi\)
0.994597 0.103810i \(-0.0331034\pi\)
\(72\) 0.236801 0.410152i 0.0279073 0.0483369i
\(73\) 1.60143 2.77376i 0.187433 0.324644i −0.756960 0.653461i \(-0.773316\pi\)
0.944394 + 0.328817i \(0.106650\pi\)
\(74\) −1.00725 1.74460i −0.117090 0.202806i
\(75\) 0.128130 0.221927i 0.0147951 0.0256259i
\(76\) −1.09835 1.90239i −0.125989 0.218220i
\(77\) 13.6644 1.55720
\(78\) −1.18749 −0.134457
\(79\) 1.38059 + 2.39126i 0.155329 + 0.269038i 0.933179 0.359413i \(-0.117023\pi\)
−0.777850 + 0.628450i \(0.783690\pi\)
\(80\) 1.36488 2.36403i 0.152598 0.264307i
\(81\) 4.19511 + 7.26614i 0.466123 + 0.807349i
\(82\) −2.31877 + 4.01623i −0.256066 + 0.443519i
\(83\) −7.35669 + 12.7422i −0.807501 + 1.39863i 0.107088 + 0.994250i \(0.465847\pi\)
−0.914589 + 0.404384i \(0.867486\pi\)
\(84\) −3.76810 + 6.52654i −0.411134 + 0.712104i
\(85\) −14.6467 −1.58865
\(86\) −0.780939 1.35263i −0.0842108 0.145857i
\(87\) 4.40259 + 7.62550i 0.472007 + 0.817540i
\(88\) 5.64105 9.77059i 0.601338 1.04155i
\(89\) −8.89431 −0.942795 −0.471398 0.881921i \(-0.656250\pi\)
−0.471398 + 0.881921i \(0.656250\pi\)
\(90\) 0.149042 + 0.258148i 0.0157104 + 0.0272112i
\(91\) −3.00178 −0.314672
\(92\) 9.86949 1.02897
\(93\) −8.05114 + 4.71756i −0.834865 + 0.489188i
\(94\) −7.37811 −0.760994
\(95\) 3.22854 0.331241
\(96\) 4.89000 + 8.46973i 0.499084 + 0.864438i
\(97\) −0.237685 −0.0241332 −0.0120666 0.999927i \(-0.503841\pi\)
−0.0120666 + 0.999927i \(0.503841\pi\)
\(98\) 0.712316 1.23377i 0.0719547 0.124629i
\(99\) −0.434927 0.753316i −0.0437118 0.0757111i
\(100\) −0.114521 0.198356i −0.0114521 0.0198356i
\(101\) −1.53942 −0.153178 −0.0765891 0.997063i \(-0.524403\pi\)
−0.0765891 + 0.997063i \(0.524403\pi\)
\(102\) 3.95002 6.84163i 0.391110 0.677422i
\(103\) 4.60051 7.96832i 0.453302 0.785142i −0.545287 0.838249i \(-0.683579\pi\)
0.998589 + 0.0531076i \(0.0169126\pi\)
\(104\) −1.23922 + 2.14639i −0.121516 + 0.210471i
\(105\) −5.53807 9.59222i −0.540460 0.936105i
\(106\) −3.64811 + 6.31871i −0.354335 + 0.613727i
\(107\) −1.12869 1.95495i −0.109115 0.188992i 0.806297 0.591511i \(-0.201468\pi\)
−0.915412 + 0.402519i \(0.868135\pi\)
\(108\) 8.01148 0.770905
\(109\) −1.89458 −0.181467 −0.0907337 0.995875i \(-0.528921\pi\)
−0.0907337 + 0.995875i \(0.528921\pi\)
\(110\) 3.55046 + 6.14957i 0.338523 + 0.586339i
\(111\) 2.38256 4.12671i 0.226142 0.391690i
\(112\) 1.86093 + 3.22323i 0.175842 + 0.304567i
\(113\) 0.0197680 0.0342392i 0.00185962 0.00322095i −0.865094 0.501610i \(-0.832741\pi\)
0.866954 + 0.498389i \(0.166075\pi\)
\(114\) −0.870695 + 1.50809i −0.0815480 + 0.141245i
\(115\) −7.25271 + 12.5621i −0.676319 + 1.17142i
\(116\) 7.86999 0.730710
\(117\) 0.0955444 + 0.165488i 0.00883308 + 0.0152993i
\(118\) −1.88048 3.25708i −0.173112 0.299838i
\(119\) 9.98496 17.2945i 0.915320 1.58538i
\(120\) −9.14511 −0.834830
\(121\) −4.86078 8.41912i −0.441889 0.765375i
\(122\) 7.99753 0.724062
\(123\) −10.9697 −0.989105
\(124\) 0.0535859 + 8.34021i 0.00481215 + 0.748973i
\(125\) 11.3447 1.01470
\(126\) −0.406421 −0.0362068
\(127\) 7.73043 + 13.3895i 0.685965 + 1.18813i 0.973133 + 0.230246i \(0.0739530\pi\)
−0.287168 + 0.957880i \(0.592714\pi\)
\(128\) 10.4983 0.927926
\(129\) 1.84724 3.19952i 0.162641 0.281702i
\(130\) −0.779961 1.35093i −0.0684071 0.118485i
\(131\) 7.47146 + 12.9409i 0.652785 + 1.13066i 0.982444 + 0.186556i \(0.0597326\pi\)
−0.329660 + 0.944100i \(0.606934\pi\)
\(132\) 11.4284 0.994714
\(133\) −2.20097 + 3.81219i −0.190848 + 0.330558i
\(134\) 0.498078 0.862696i 0.0430273 0.0745255i
\(135\) −5.88734 + 10.1972i −0.506701 + 0.877632i
\(136\) −8.24417 14.2793i −0.706931 1.22444i
\(137\) −3.50354 + 6.06831i −0.299328 + 0.518451i −0.975982 0.217850i \(-0.930096\pi\)
0.676654 + 0.736301i \(0.263429\pi\)
\(138\) −3.91193 6.77565i −0.333005 0.576782i
\(139\) 17.0630 1.44727 0.723634 0.690184i \(-0.242471\pi\)
0.723634 + 0.690184i \(0.242471\pi\)
\(140\) −9.89976 −0.836682
\(141\) −8.72614 15.1141i −0.734874 1.27284i
\(142\) −3.50572 + 6.07209i −0.294194 + 0.509559i
\(143\) 2.27605 + 3.94223i 0.190333 + 0.329666i
\(144\) 0.118464 0.205186i 0.00987202 0.0170988i
\(145\) −5.78336 + 10.0171i −0.480282 + 0.831872i
\(146\) −1.13467 + 1.96531i −0.0939061 + 0.162650i
\(147\) 3.36984 0.277940
\(148\) −2.12951 3.68842i −0.175045 0.303186i
\(149\) −6.64847 11.5155i −0.544664 0.943385i −0.998628 0.0523652i \(-0.983324\pi\)
0.453964 0.891020i \(-0.350009\pi\)
\(150\) −0.0907844 + 0.157243i −0.00741252 + 0.0128389i
\(151\) 23.5398 1.91564 0.957821 0.287366i \(-0.0927797\pi\)
0.957821 + 0.287366i \(0.0927797\pi\)
\(152\) 1.81725 + 3.14756i 0.147398 + 0.255301i
\(153\) −1.27126 −0.102775
\(154\) −9.68170 −0.780174
\(155\) −10.6550 6.06070i −0.855826 0.486807i
\(156\) −2.51058 −0.201007
\(157\) −8.94058 −0.713536 −0.356768 0.934193i \(-0.616121\pi\)
−0.356768 + 0.934193i \(0.616121\pi\)
\(158\) −0.978201 1.69429i −0.0778215 0.134791i
\(159\) −17.2586 −1.36869
\(160\) −6.42363 + 11.1261i −0.507833 + 0.879592i
\(161\) −9.88867 17.1277i −0.779337 1.34985i
\(162\) −2.97239 5.14832i −0.233533 0.404491i
\(163\) −11.2462 −0.880869 −0.440435 0.897785i \(-0.645176\pi\)
−0.440435 + 0.897785i \(0.645176\pi\)
\(164\) −4.90231 + 8.49106i −0.382806 + 0.663040i
\(165\) −8.39830 + 14.5463i −0.653807 + 1.13243i
\(166\) 5.21248 9.02828i 0.404567 0.700730i
\(167\) 7.43910 + 12.8849i 0.575655 + 0.997064i 0.995970 + 0.0896855i \(0.0285862\pi\)
−0.420315 + 0.907378i \(0.638080\pi\)
\(168\) 6.23442 10.7983i 0.480996 0.833110i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 10.3777 0.795933
\(171\) 0.280221 0.0214290
\(172\) −1.65105 2.85970i −0.125891 0.218050i
\(173\) 7.74038 13.4067i 0.588490 1.01930i −0.405940 0.913900i \(-0.633056\pi\)
0.994430 0.105395i \(-0.0336108\pi\)
\(174\) −3.11939 5.40294i −0.236480 0.409596i
\(175\) −0.229487 + 0.397484i −0.0173476 + 0.0300470i
\(176\) 2.82204 4.88792i 0.212719 0.368441i
\(177\) 4.44810 7.70434i 0.334340 0.579094i
\(178\) 6.30194 0.472350
\(179\) 12.0976 + 20.9537i 0.904220 + 1.56615i 0.821961 + 0.569543i \(0.192880\pi\)
0.0822581 + 0.996611i \(0.473787\pi\)
\(180\) 0.315102 + 0.545773i 0.0234863 + 0.0406795i
\(181\) 11.5612 20.0246i 0.859338 1.48842i −0.0132241 0.999913i \(-0.504209\pi\)
0.872562 0.488504i \(-0.162457\pi\)
\(182\) 2.12687 0.157654
\(183\) 9.45873 + 16.3830i 0.699210 + 1.21107i
\(184\) −16.3293 −1.20381
\(185\) 6.25958 0.460214
\(186\) 5.70452 3.34256i 0.418276 0.245088i
\(187\) −30.2837 −2.21456
\(188\) −15.5987 −1.13765
\(189\) −8.02706 13.9033i −0.583883 1.01131i
\(190\) −2.28754 −0.165955
\(191\) 4.80502 8.32254i 0.347679 0.602198i −0.638158 0.769906i \(-0.720303\pi\)
0.985837 + 0.167708i \(0.0536366\pi\)
\(192\) −1.38671 2.40186i −0.100078 0.173339i
\(193\) 6.14684 + 10.6466i 0.442459 + 0.766362i 0.997871 0.0652132i \(-0.0207728\pi\)
−0.555412 + 0.831575i \(0.687439\pi\)
\(194\) 0.168408 0.0120910
\(195\) 1.84493 3.19551i 0.132118 0.228835i
\(196\) 1.50597 2.60841i 0.107569 0.186315i
\(197\) −9.33800 + 16.1739i −0.665305 + 1.15234i 0.313898 + 0.949457i \(0.398365\pi\)
−0.979203 + 0.202885i \(0.934968\pi\)
\(198\) 0.308162 + 0.533751i 0.0219001 + 0.0379321i
\(199\) 11.4585 19.8466i 0.812269 1.40689i −0.0990039 0.995087i \(-0.531566\pi\)
0.911273 0.411804i \(-0.135101\pi\)
\(200\) 0.189478 + 0.328186i 0.0133981 + 0.0232062i
\(201\) 2.35632 0.166202
\(202\) 1.09074 0.0767439
\(203\) −7.88529 13.6577i −0.553439 0.958584i
\(204\) 8.35107 14.4645i 0.584692 1.01272i
\(205\) −7.20505 12.4795i −0.503223 0.871607i
\(206\) −3.25963 + 5.64584i −0.227109 + 0.393364i
\(207\) −0.629499 + 1.09032i −0.0437532 + 0.0757827i
\(208\) −0.619944 + 1.07377i −0.0429854 + 0.0744528i
\(209\) 6.67538 0.461746
\(210\) 3.92392 + 6.79643i 0.270776 + 0.468998i
\(211\) 4.77153 + 8.26453i 0.328485 + 0.568953i 0.982212 0.187778i \(-0.0601285\pi\)
−0.653726 + 0.756731i \(0.726795\pi\)
\(212\) −7.71277 + 13.3589i −0.529716 + 0.917494i
\(213\) −16.5850 −1.13638
\(214\) 0.799718 + 1.38515i 0.0546676 + 0.0946871i
\(215\) 4.85318 0.330984
\(216\) −13.2552 −0.901903
\(217\) 14.4201 8.44942i 0.978897 0.573584i
\(218\) 1.34238 0.0909171
\(219\) −5.36794 −0.362732
\(220\) 7.50632 + 13.0013i 0.506076 + 0.876550i
\(221\) 6.65270 0.447509
\(222\) −1.68813 + 2.92392i −0.113300 + 0.196241i
\(223\) 3.59963 + 6.23474i 0.241049 + 0.417509i 0.961013 0.276502i \(-0.0891752\pi\)
−0.719964 + 0.694011i \(0.755842\pi\)
\(224\) −8.75827 15.1698i −0.585187 1.01357i
\(225\) 0.0292177 0.00194784
\(226\) −0.0140063 + 0.0242597i −0.000931687 + 0.00161373i
\(227\) 10.7319 18.5882i 0.712300 1.23374i −0.251691 0.967808i \(-0.580987\pi\)
0.963992 0.265933i \(-0.0856799\pi\)
\(228\) −1.84081 + 3.18838i −0.121911 + 0.211155i
\(229\) −1.82376 3.15885i −0.120518 0.208743i 0.799454 0.600727i \(-0.205122\pi\)
−0.919972 + 0.391984i \(0.871789\pi\)
\(230\) 5.13881 8.90068i 0.338843 0.586893i
\(231\) −11.4506 19.8330i −0.753395 1.30492i
\(232\) −13.0211 −0.854877
\(233\) 5.29283 0.346745 0.173372 0.984856i \(-0.444534\pi\)
0.173372 + 0.984856i \(0.444534\pi\)
\(234\) −0.0676966 0.117254i −0.00442547 0.00766514i
\(235\) 11.4629 19.8543i 0.747756 1.29515i
\(236\) −3.97567 6.88607i −0.258794 0.448245i
\(237\) 2.31385 4.00770i 0.150301 0.260328i
\(238\) −7.07470 + 12.2537i −0.458585 + 0.794293i
\(239\) 3.22644 5.58836i 0.208701 0.361481i −0.742605 0.669730i \(-0.766410\pi\)
0.951306 + 0.308249i \(0.0997431\pi\)
\(240\) −4.57501 −0.295316
\(241\) −10.0872 17.4715i −0.649771 1.12544i −0.983177 0.182653i \(-0.941531\pi\)
0.333407 0.942783i \(-0.391802\pi\)
\(242\) 3.44404 + 5.96525i 0.221391 + 0.383461i
\(243\) −0.991382 + 1.71712i −0.0635972 + 0.110154i
\(244\) 16.9083 1.08244
\(245\) 2.21336 + 3.83365i 0.141406 + 0.244923i
\(246\) 7.77244 0.495552
\(247\) −1.46644 −0.0933075
\(248\) −0.0886593 13.7991i −0.00562987 0.876244i
\(249\) 24.6593 1.56272
\(250\) −8.03812 −0.508376
\(251\) −7.91399 13.7074i −0.499526 0.865205i 0.500474 0.865752i \(-0.333159\pi\)
−1.00000 0.000546839i \(0.999826\pi\)
\(252\) −0.859248 −0.0541276
\(253\) −14.9958 + 25.9736i −0.942781 + 1.63294i
\(254\) −5.47729 9.48694i −0.343676 0.595264i
\(255\) 12.2738 + 21.2588i 0.768613 + 1.33128i
\(256\) −10.7480 −0.671752
\(257\) −2.79388 + 4.83914i −0.174277 + 0.301857i −0.939911 0.341420i \(-0.889092\pi\)
0.765634 + 0.643277i \(0.222426\pi\)
\(258\) −1.30884 + 2.26698i −0.0814848 + 0.141136i
\(259\) −4.26730 + 7.39117i −0.265157 + 0.459265i
\(260\) −1.64898 2.85612i −0.102266 0.177129i
\(261\) −0.501966 + 0.869430i −0.0310709 + 0.0538164i
\(262\) −5.29380 9.16913i −0.327052 0.566471i
\(263\) 23.6267 1.45689 0.728443 0.685106i \(-0.240244\pi\)
0.728443 + 0.685106i \(0.240244\pi\)
\(264\) −18.9086 −1.16374
\(265\) −11.3357 19.6339i −0.696344 1.20610i
\(266\) 1.55946 2.70107i 0.0956169 0.165613i
\(267\) 7.45335 + 12.9096i 0.456137 + 0.790053i
\(268\) 1.05303 1.82390i 0.0643239 0.111412i
\(269\) −7.72534 + 13.3807i −0.471023 + 0.815835i −0.999451 0.0331431i \(-0.989448\pi\)
0.528428 + 0.848978i \(0.322782\pi\)
\(270\) 4.17139 7.22506i 0.253863 0.439703i
\(271\) −4.92814 −0.299363 −0.149682 0.988734i \(-0.547825\pi\)
−0.149682 + 0.988734i \(0.547825\pi\)
\(272\) −4.12430 7.14349i −0.250072 0.433138i
\(273\) 2.51546 + 4.35691i 0.152243 + 0.263692i
\(274\) 2.48239 4.29962i 0.149966 0.259749i
\(275\) 0.696020 0.0419716
\(276\) −8.27054 14.3250i −0.497828 0.862263i
\(277\) −3.75504 −0.225618 −0.112809 0.993617i \(-0.535985\pi\)
−0.112809 + 0.993617i \(0.535985\pi\)
\(278\) −12.0898 −0.725096
\(279\) −0.924796 0.526038i −0.0553661 0.0314931i
\(280\) 16.3794 0.978857
\(281\) −2.61081 −0.155748 −0.0778740 0.996963i \(-0.524813\pi\)
−0.0778740 + 0.996963i \(0.524813\pi\)
\(282\) 6.18278 + 10.7089i 0.368179 + 0.637706i
\(283\) 5.71029 0.339441 0.169721 0.985492i \(-0.445713\pi\)
0.169721 + 0.985492i \(0.445713\pi\)
\(284\) −7.41175 + 12.8375i −0.439807 + 0.761767i
\(285\) −2.70548 4.68604i −0.160259 0.277577i
\(286\) −1.61266 2.79321i −0.0953587 0.165166i
\(287\) 19.6474 1.15975
\(288\) −0.557539 + 0.965686i −0.0328533 + 0.0569036i
\(289\) −13.6292 + 23.6065i −0.801718 + 1.38862i
\(290\) 4.09772 7.09745i 0.240626 0.416777i
\(291\) 0.199178 + 0.344986i 0.0116760 + 0.0202234i
\(292\) −2.39891 + 4.15503i −0.140385 + 0.243155i
\(293\) 12.7659 + 22.1112i 0.745791 + 1.29175i 0.949824 + 0.312784i \(0.101261\pi\)
−0.204034 + 0.978964i \(0.565405\pi\)
\(294\) −2.38765 −0.139251
\(295\) 11.6863 0.680402
\(296\) 3.52333 + 6.10258i 0.204789 + 0.354706i
\(297\) −12.1728 + 21.0838i −0.706335 + 1.22341i
\(298\) 4.71068 + 8.15913i 0.272882 + 0.472646i
\(299\) 3.29427 5.70585i 0.190513 0.329978i
\(300\) −0.191935 + 0.332441i −0.0110814 + 0.0191935i
\(301\) −3.30852 + 5.73053i −0.190700 + 0.330302i
\(302\) −16.6788 −0.959757
\(303\) 1.29002 + 2.23438i 0.0741097 + 0.128362i
\(304\) 0.909112 + 1.57463i 0.0521411 + 0.0903111i
\(305\) −12.4252 + 21.5211i −0.711467 + 1.23230i
\(306\) 0.900731 0.0514914
\(307\) −3.15551 5.46551i −0.180095 0.311933i 0.761818 0.647791i \(-0.224307\pi\)
−0.941913 + 0.335858i \(0.890974\pi\)
\(308\) −20.4689 −1.16632
\(309\) −15.4207 −0.877255
\(310\) 7.54942 + 4.29422i 0.428778 + 0.243896i
\(311\) −0.633190 −0.0359049 −0.0179524 0.999839i \(-0.505715\pi\)
−0.0179524 + 0.999839i \(0.505715\pi\)
\(312\) 4.15382 0.235164
\(313\) 16.7812 + 29.0659i 0.948530 + 1.64290i 0.748525 + 0.663107i \(0.230762\pi\)
0.200005 + 0.979795i \(0.435904\pi\)
\(314\) 6.33472 0.357489
\(315\) 0.631429 1.09367i 0.0355770 0.0616212i
\(316\) −2.06810 3.58205i −0.116340 0.201506i
\(317\) 13.2042 + 22.8704i 0.741623 + 1.28453i 0.951756 + 0.306857i \(0.0992772\pi\)
−0.210132 + 0.977673i \(0.567389\pi\)
\(318\) 12.2283 0.685730
\(319\) −11.9578 + 20.7115i −0.669507 + 1.15962i
\(320\) 1.82163 3.15515i 0.101832 0.176378i
\(321\) −1.89166 + 3.27646i −0.105582 + 0.182874i
\(322\) 7.00648 + 12.1356i 0.390456 + 0.676290i
\(323\) 4.87790 8.44877i 0.271414 0.470102i
\(324\) −6.28418 10.8845i −0.349121 0.604695i
\(325\) −0.152901 −0.00848142
\(326\) 7.96833 0.441325
\(327\) 1.58764 + 2.74987i 0.0877965 + 0.152068i
\(328\) 8.11101 14.0487i 0.447856 0.775709i
\(329\) 15.6290 + 27.0703i 0.861656 + 1.49243i
\(330\) 5.95050 10.3066i 0.327564 0.567358i
\(331\) −15.2280 + 26.3757i −0.837008 + 1.44974i 0.0553768 + 0.998466i \(0.482364\pi\)
−0.892385 + 0.451275i \(0.850969\pi\)
\(332\) 11.0201 19.0875i 0.604809 1.04756i
\(333\) 0.543300 0.0297726
\(334\) −5.27087 9.12942i −0.288409 0.499540i
\(335\) 1.54766 + 2.68063i 0.0845578 + 0.146458i
\(336\) 3.11889 5.40207i 0.170149 0.294707i
\(337\) −18.8044 −1.02434 −0.512171 0.858883i \(-0.671159\pi\)
−0.512171 + 0.858883i \(0.671159\pi\)
\(338\) 0.354268 + 0.613610i 0.0192696 + 0.0333760i
\(339\) −0.0662615 −0.00359883
\(340\) 21.9404 1.18988
\(341\) −22.0304 12.5312i −1.19301 0.678603i
\(342\) −0.198546 −0.0107362
\(343\) 14.9769 0.808675
\(344\) 2.73171 + 4.73146i 0.147284 + 0.255103i
\(345\) 24.3108 1.30885
\(346\) −5.48434 + 9.49915i −0.294840 + 0.510678i
\(347\) 0.737302 + 1.27704i 0.0395804 + 0.0685553i 0.885137 0.465331i \(-0.154065\pi\)
−0.845557 + 0.533886i \(0.820731\pi\)
\(348\) −6.59497 11.4228i −0.353528 0.612328i
\(349\) 33.4211 1.78899 0.894496 0.447076i \(-0.147535\pi\)
0.894496 + 0.447076i \(0.147535\pi\)
\(350\) 0.162600 0.281632i 0.00869134 0.0150538i
\(351\) 2.67410 4.63168i 0.142733 0.247221i
\(352\) −13.2816 + 23.0044i −0.707913 + 1.22614i
\(353\) −3.84514 6.65998i −0.204656 0.354475i 0.745367 0.666654i \(-0.232274\pi\)
−0.950023 + 0.312179i \(0.898941\pi\)
\(354\) −3.15164 + 5.45880i −0.167508 + 0.290132i
\(355\) −10.8932 18.8676i −0.578153 1.00139i
\(356\) 13.3235 0.706142
\(357\) −33.4692 −1.77138
\(358\) −8.57161 14.8465i −0.453024 0.784660i
\(359\) −3.86535 + 6.69498i −0.204005 + 0.353348i −0.949815 0.312811i \(-0.898729\pi\)
0.745810 + 0.666159i \(0.232063\pi\)
\(360\) −0.521345 0.902996i −0.0274773 0.0475920i
\(361\) 8.42477 14.5921i 0.443409 0.768007i
\(362\) −8.19153 + 14.1881i −0.430537 + 0.745713i
\(363\) −8.14658 + 14.1103i −0.427584 + 0.740598i
\(364\) 4.49659 0.235685
\(365\) −3.52573 6.10675i −0.184545 0.319642i
\(366\) −6.70185 11.6079i −0.350311 0.606757i
\(367\) −8.56551 + 14.8359i −0.447116 + 0.774428i −0.998197 0.0600242i \(-0.980882\pi\)
0.551081 + 0.834452i \(0.314216\pi\)
\(368\) −8.16905 −0.425841
\(369\) −0.625362 1.08316i −0.0325550 0.0563870i
\(370\) −4.43514 −0.230572
\(371\) 30.9111 1.60482
\(372\) 12.0604 7.06679i 0.625304 0.366396i
\(373\) 14.1241 0.731318 0.365659 0.930749i \(-0.380844\pi\)
0.365659 + 0.930749i \(0.380844\pi\)
\(374\) 21.4571 1.10952
\(375\) −9.50674 16.4662i −0.490926 0.850309i
\(376\) 25.8085 1.33097
\(377\) 2.62687 4.54988i 0.135291 0.234331i
\(378\) 5.68746 + 9.85097i 0.292531 + 0.506679i
\(379\) −3.04615 5.27609i −0.156470 0.271014i 0.777123 0.629349i \(-0.216678\pi\)
−0.933593 + 0.358334i \(0.883345\pi\)
\(380\) −4.83627 −0.248096
\(381\) 12.9561 22.4405i 0.663759 1.14966i
\(382\) −3.40453 + 5.89682i −0.174191 + 0.301707i
\(383\) −7.22779 + 12.5189i −0.369323 + 0.639686i −0.989460 0.144807i \(-0.953744\pi\)
0.620137 + 0.784494i \(0.287077\pi\)
\(384\) −8.79746 15.2377i −0.448944 0.777593i
\(385\) 15.0418 26.0532i 0.766603 1.32779i
\(386\) −4.35526 7.54353i −0.221677 0.383956i
\(387\) 0.421231 0.0214124
\(388\) 0.356046 0.0180755
\(389\) −7.04822 12.2079i −0.357359 0.618964i 0.630160 0.776466i \(-0.282989\pi\)
−0.987519 + 0.157502i \(0.949656\pi\)
\(390\) −1.30720 + 2.26414i −0.0661926 + 0.114649i
\(391\) 21.9158 + 37.9593i 1.10833 + 1.91968i
\(392\) −2.49166 + 4.31569i −0.125848 + 0.217975i
\(393\) 12.5220 21.6888i 0.631653 1.09405i
\(394\) 6.61631 11.4598i 0.333325 0.577336i
\(395\) 6.07907 0.305871
\(396\) 0.651511 + 1.12845i 0.0327396 + 0.0567067i
\(397\) −11.1760 19.3574i −0.560907 0.971519i −0.997418 0.0718201i \(-0.977119\pi\)
0.436511 0.899699i \(-0.356214\pi\)
\(398\) −8.11873 + 14.0621i −0.406955 + 0.704867i
\(399\) 7.37756 0.369340
\(400\) 0.0947900 + 0.164181i 0.00473950 + 0.00820906i
\(401\) 9.80738 0.489757 0.244878 0.969554i \(-0.421252\pi\)
0.244878 + 0.969554i \(0.421252\pi\)
\(402\) −1.66954 −0.0832689
\(403\) 4.83961 + 2.75285i 0.241078 + 0.137129i
\(404\) 2.30602 0.114729
\(405\) 18.4720 0.917882
\(406\) 5.58701 + 9.67698i 0.277279 + 0.480261i
\(407\) 12.9424 0.641532
\(408\) −13.8171 + 23.9319i −0.684047 + 1.18480i
\(409\) 4.92478 + 8.52998i 0.243515 + 0.421780i 0.961713 0.274058i \(-0.0883662\pi\)
−0.718198 + 0.695839i \(0.755033\pi\)
\(410\) 5.10504 + 8.84219i 0.252120 + 0.436684i
\(411\) 11.7437 0.579276
\(412\) −6.89146 + 11.9364i −0.339518 + 0.588062i
\(413\) −7.96681 + 13.7989i −0.392021 + 0.679000i
\(414\) 0.446022 0.772534i 0.0219208 0.0379680i
\(415\) 16.1966 + 28.0533i 0.795059 + 1.37708i
\(416\) 2.91770 5.05360i 0.143052 0.247773i
\(417\) −14.2987 24.7660i −0.700208 1.21280i
\(418\) −4.72975 −0.231340
\(419\) −32.3603 −1.58091 −0.790453 0.612523i \(-0.790155\pi\)
−0.790453 + 0.612523i \(0.790155\pi\)
\(420\) 8.29590 + 14.3689i 0.404798 + 0.701132i
\(421\) −3.96754 + 6.87199i −0.193366 + 0.334920i −0.946364 0.323103i \(-0.895274\pi\)
0.752998 + 0.658023i \(0.228607\pi\)
\(422\) −3.38080 5.85572i −0.164575 0.285052i
\(423\) 0.994920 1.72325i 0.0483747 0.0837874i
\(424\) 12.7610 22.1027i 0.619729 1.07340i
\(425\) 0.508602 0.880925i 0.0246708 0.0427311i
\(426\) 11.7511 0.569340
\(427\) −16.9411 29.3429i −0.819839 1.42000i
\(428\) 1.69075 + 2.92847i 0.0817256 + 0.141553i
\(429\) 3.81461 6.60710i 0.184171 0.318994i
\(430\) −3.43865 −0.165827
\(431\) −8.67563 15.0266i −0.417891 0.723808i 0.577837 0.816153i \(-0.303897\pi\)
−0.995727 + 0.0923449i \(0.970564\pi\)
\(432\) −6.63117 −0.319042
\(433\) 29.1336 1.40007 0.700035 0.714109i \(-0.253168\pi\)
0.700035 + 0.714109i \(0.253168\pi\)
\(434\) −10.2171 + 5.98672i −0.490438 + 0.287372i
\(435\) 19.3856 0.929468
\(436\) 2.83803 0.135917
\(437\) −4.83086 8.36730i −0.231091 0.400262i
\(438\) 3.80338 0.181732
\(439\) 2.46278 4.26565i 0.117542 0.203588i −0.801251 0.598328i \(-0.795832\pi\)
0.918793 + 0.394740i \(0.129165\pi\)
\(440\) −12.4194 21.5111i −0.592072 1.02550i
\(441\) 0.192108 + 0.332741i 0.00914800 + 0.0158448i
\(442\) −4.71368 −0.224207
\(443\) −13.3047 + 23.0444i −0.632126 + 1.09487i 0.354991 + 0.934870i \(0.384484\pi\)
−0.987116 + 0.160004i \(0.948849\pi\)
\(444\) −3.56901 + 6.18172i −0.169378 + 0.293371i
\(445\) −9.79091 + 16.9584i −0.464134 + 0.803903i
\(446\) −2.55047 4.41754i −0.120768 0.209177i
\(447\) −11.1427 + 19.2997i −0.527032 + 0.912846i
\(448\) 2.48369 + 4.30187i 0.117343 + 0.203244i
\(449\) −11.2816 −0.532410 −0.266205 0.963916i \(-0.585770\pi\)
−0.266205 + 0.963916i \(0.585770\pi\)
\(450\) −0.0207018 −0.000975891
\(451\) −14.8973 25.8029i −0.701486 1.21501i
\(452\) −0.0296120 + 0.0512895i −0.00139283 + 0.00241245i
\(453\) −19.7261 34.1666i −0.926814 1.60529i
\(454\) −7.60393 + 13.1704i −0.356870 + 0.618117i
\(455\) −3.30438 + 5.72335i −0.154912 + 0.268315i
\(456\) 3.04567 5.27526i 0.142627 0.247036i
\(457\) −13.1608 −0.615636 −0.307818 0.951445i \(-0.599599\pi\)
−0.307818 + 0.951445i \(0.599599\pi\)
\(458\) 1.29220 + 2.23816i 0.0603807 + 0.104582i
\(459\) 17.7900 + 30.8132i 0.830366 + 1.43824i
\(460\) 10.8644 18.8177i 0.506555 0.877379i
\(461\) 21.7849 1.01462 0.507312 0.861762i \(-0.330639\pi\)
0.507312 + 0.861762i \(0.330639\pi\)
\(462\) 8.11317 + 14.0524i 0.377459 + 0.653778i
\(463\) 2.26043 0.105051 0.0525255 0.998620i \(-0.483273\pi\)
0.0525255 + 0.998620i \(0.483273\pi\)
\(464\) −6.51405 −0.302407
\(465\) 0.131994 + 20.5438i 0.00612109 + 0.952698i
\(466\) −3.75016 −0.173723
\(467\) −28.5324 −1.32032 −0.660162 0.751123i \(-0.729512\pi\)
−0.660162 + 0.751123i \(0.729512\pi\)
\(468\) −0.143123 0.247897i −0.00661588 0.0114590i
\(469\) −4.22030 −0.194875
\(470\) −8.12187 + 14.0675i −0.374634 + 0.648885i
\(471\) 7.49212 + 12.9767i 0.345219 + 0.597936i
\(472\) 6.57786 + 11.3932i 0.302771 + 0.524414i
\(473\) 10.0345 0.461388
\(474\) −1.63945 + 2.83960i −0.0753022 + 0.130427i
\(475\) −0.112110 + 0.194181i −0.00514397 + 0.00890962i
\(476\) −14.9572 + 25.9067i −0.685564 + 1.18743i
\(477\) −0.983877 1.70412i −0.0450486 0.0780265i
\(478\) −2.28605 + 3.95955i −0.104561 + 0.181106i
\(479\) −10.6784 18.4956i −0.487910 0.845085i 0.511993 0.858990i \(-0.328907\pi\)
−0.999903 + 0.0139041i \(0.995574\pi\)
\(480\) 21.5318 0.982787
\(481\) −2.84318 −0.129638
\(482\) 7.14711 + 12.3792i 0.325542 + 0.563856i
\(483\) −16.5732 + 28.7057i −0.754108 + 1.30615i
\(484\) 7.28134 + 12.6116i 0.330970 + 0.573257i
\(485\) −0.261645 + 0.453182i −0.0118807 + 0.0205780i
\(486\) 0.702430 1.21664i 0.0318629 0.0551881i
\(487\) 13.6938 23.7184i 0.620527 1.07478i −0.368861 0.929485i \(-0.620252\pi\)
0.989388 0.145300i \(-0.0464146\pi\)
\(488\) −27.9752 −1.26638
\(489\) 9.42419 + 16.3232i 0.426177 + 0.738160i
\(490\) −1.56824 2.71628i −0.0708460 0.122709i
\(491\) −7.68619 + 13.3129i −0.346873 + 0.600802i −0.985692 0.168555i \(-0.946090\pi\)
0.638819 + 0.769357i \(0.279423\pi\)
\(492\) 16.4324 0.740828
\(493\) 17.4758 + 30.2690i 0.787070 + 1.36325i
\(494\) 1.03903 0.0467480
\(495\) −1.91508 −0.0860765
\(496\) −0.0443535 6.90326i −0.00199153 0.309965i
\(497\) 29.7046 1.33244
\(498\) −17.4720 −0.782940
\(499\) −5.33948 9.24826i −0.239028 0.414009i 0.721408 0.692511i \(-0.243495\pi\)
−0.960436 + 0.278502i \(0.910162\pi\)
\(500\) −16.9941 −0.759999
\(501\) 12.4678 21.5948i 0.557020 0.964787i
\(502\) 5.60734 + 9.71221i 0.250268 + 0.433477i
\(503\) −12.9423 22.4167i −0.577067 0.999510i −0.995814 0.0914068i \(-0.970864\pi\)
0.418746 0.908103i \(-0.362470\pi\)
\(504\) 1.42165 0.0633253
\(505\) −1.69460 + 2.93514i −0.0754089 + 0.130612i
\(506\) 10.6251 18.4032i 0.472343 0.818122i
\(507\) −0.837990 + 1.45144i −0.0372165 + 0.0644608i
\(508\) −11.5800 20.0572i −0.513780 0.889893i
\(509\) 11.3121 19.5932i 0.501402 0.868454i −0.498597 0.866834i \(-0.666151\pi\)
0.999999 0.00161980i \(-0.000515599\pi\)
\(510\) −8.69641 15.0626i −0.385083 0.666984i
\(511\) 9.61428 0.425311
\(512\) −13.3812 −0.591371
\(513\) −3.92142 6.79209i −0.173135 0.299878i
\(514\) 1.97956 3.42870i 0.0873148 0.151234i
\(515\) −10.1285 17.5432i −0.446317 0.773044i
\(516\) −2.76713 + 4.79281i −0.121816 + 0.210992i
\(517\) 23.7009 41.0511i 1.04236 1.80543i
\(518\) 3.02353 5.23691i 0.132846 0.230097i
\(519\) −25.9455 −1.13888
\(520\) 2.72829 + 4.72553i 0.119643 + 0.207228i
\(521\) −17.8719 30.9550i −0.782982 1.35616i −0.930198 0.367059i \(-0.880365\pi\)
0.147216 0.989104i \(-0.452969\pi\)
\(522\) 0.355661 0.616023i 0.0155669 0.0269626i
\(523\) 23.6932 1.03603 0.518017 0.855371i \(-0.326671\pi\)
0.518017 + 0.855371i \(0.326671\pi\)
\(524\) −11.1921 19.3852i −0.488928 0.846848i
\(525\) 0.769233 0.0335721
\(526\) −16.7404 −0.729916
\(527\) −31.9585 + 18.7260i −1.39213 + 0.815719i
\(528\) −9.45938 −0.411667
\(529\) 20.4089 0.887345
\(530\) 8.03172 + 13.9113i 0.348876 + 0.604270i
\(531\) 1.01431 0.0440173
\(532\) 3.29700 5.71057i 0.142943 0.247584i
\(533\) 3.27262 + 5.66835i 0.141753 + 0.245524i
\(534\) −5.28096 9.14690i −0.228530 0.395825i
\(535\) −4.96988 −0.214867
\(536\) −1.74226 + 3.01769i −0.0752543 + 0.130344i
\(537\) 20.2754 35.1180i 0.874948 1.51545i
\(538\) 5.47369 9.48070i 0.235987 0.408742i
\(539\) 4.57638 + 7.92652i 0.197118 + 0.341419i
\(540\) 8.81909 15.2751i 0.379513 0.657336i
\(541\) 7.58455 + 13.1368i 0.326085 + 0.564796i 0.981731 0.190272i \(-0.0609370\pi\)
−0.655646 + 0.755068i \(0.727604\pi\)
\(542\) 3.49177 0.149984
\(543\) −38.7527 −1.66304
\(544\) 19.4105 + 33.6201i 0.832220 + 1.44145i
\(545\) −2.08556 + 3.61230i −0.0893356 + 0.154734i
\(546\) −1.78229 3.08702i −0.0762752 0.132112i
\(547\) −16.1377 + 27.9513i −0.689999 + 1.19511i 0.281839 + 0.959462i \(0.409056\pi\)
−0.971838 + 0.235651i \(0.924278\pi\)
\(548\) 5.24823 9.09019i 0.224193 0.388314i
\(549\) −1.07845 + 1.86793i −0.0460270 + 0.0797211i
\(550\) −0.493155 −0.0210282
\(551\) −3.85216 6.67213i −0.164107 0.284242i
\(552\) 13.6838 + 23.7011i 0.582422 + 1.00878i
\(553\) −4.14424 + 7.17803i −0.176231 + 0.305241i
\(554\) 2.66058 0.113037
\(555\) −5.24547 9.08542i −0.222658 0.385654i
\(556\) −25.5600 −1.08399
\(557\) −12.1909 −0.516545 −0.258272 0.966072i \(-0.583153\pi\)
−0.258272 + 0.966072i \(0.583153\pi\)
\(558\) 0.655251 + 0.372717i 0.0277390 + 0.0157784i
\(559\) −2.20437 −0.0932351
\(560\) 8.19411 0.346264
\(561\) 25.3775 + 43.9550i 1.07144 + 1.85578i
\(562\) 1.84985 0.0780314
\(563\) −20.2610 + 35.0931i −0.853900 + 1.47900i 0.0237625 + 0.999718i \(0.492435\pi\)
−0.877662 + 0.479280i \(0.840898\pi\)
\(564\) 13.0716 + 22.6406i 0.550412 + 0.953341i
\(565\) −0.0435214 0.0753814i −0.00183096 0.00317132i
\(566\) −4.04595 −0.170064
\(567\) −12.5928 + 21.8113i −0.528847 + 0.915990i
\(568\) 12.2629 21.2400i 0.514542 0.891212i
\(569\) −5.47465 + 9.48236i −0.229509 + 0.397521i −0.957663 0.287893i \(-0.907045\pi\)
0.728154 + 0.685414i \(0.240379\pi\)
\(570\) 1.91693 + 3.32023i 0.0802915 + 0.139069i
\(571\) 0.339152 0.587428i 0.0141931 0.0245831i −0.858842 0.512241i \(-0.828815\pi\)
0.873035 + 0.487658i \(0.162149\pi\)
\(572\) −3.40947 5.90537i −0.142557 0.246916i
\(573\) −16.1062 −0.672848
\(574\) −13.9209 −0.581046
\(575\) −0.503698 0.872430i −0.0210056 0.0363828i
\(576\) 0.158108 0.273851i 0.00658782 0.0114104i
\(577\) −10.4228 18.0527i −0.433905 0.751546i 0.563300 0.826252i \(-0.309531\pi\)
−0.997206 + 0.0747064i \(0.976198\pi\)
\(578\) 9.65678 16.7260i 0.401669 0.695711i
\(579\) 10.3020 17.8436i 0.428136 0.741553i
\(580\) 8.66333 15.0053i 0.359725 0.623062i
\(581\) −44.1663 −1.83233
\(582\) −0.141124 0.244435i −0.00584980 0.0101321i
\(583\) −23.4378 40.5955i −0.970695 1.68129i
\(584\) 3.96906 6.87461i 0.164241 0.284473i
\(585\) 0.420704 0.0173939
\(586\) −9.04509 15.6666i −0.373649 0.647179i
\(587\) 30.2850 1.24999 0.624997 0.780627i \(-0.285100\pi\)
0.624997 + 0.780627i \(0.285100\pi\)
\(588\) −5.04794 −0.208174
\(589\) 7.04455 4.12775i 0.290266 0.170081i
\(590\) −8.28016 −0.340889
\(591\) 31.3006 1.28754
\(592\) 1.76261 + 3.05293i 0.0724429 + 0.125475i
\(593\) 11.9210 0.489538 0.244769 0.969581i \(-0.421288\pi\)
0.244769 + 0.969581i \(0.421288\pi\)
\(594\) 8.62484 14.9387i 0.353882 0.612941i
\(595\) −21.9830 38.0757i −0.901216 1.56095i
\(596\) 9.95925 + 17.2499i 0.407947 + 0.706584i
\(597\) −38.4083 −1.57195
\(598\) −2.33411 + 4.04280i −0.0954489 + 0.165322i
\(599\) −10.1985 + 17.6644i −0.416700 + 0.721746i −0.995605 0.0936490i \(-0.970147\pi\)
0.578905 + 0.815395i \(0.303480\pi\)
\(600\) 0.317562 0.550033i 0.0129644 0.0224550i
\(601\) −6.17320 10.6923i −0.251810 0.436148i 0.712214 0.701962i \(-0.247692\pi\)
−0.964024 + 0.265815i \(0.914359\pi\)
\(602\) 2.34421 4.06028i 0.0955427 0.165485i
\(603\) 0.134329 + 0.232665i 0.00547030 + 0.00947485i
\(604\) −35.2621 −1.43479
\(605\) −21.4031 −0.870161
\(606\) −0.914026 1.58314i −0.0371298 0.0643106i
\(607\) −11.0019 + 19.0559i −0.446554 + 0.773454i −0.998159 0.0606513i \(-0.980682\pi\)
0.551605 + 0.834105i \(0.314016\pi\)
\(608\) −4.27863 7.41081i −0.173521 0.300548i
\(609\) −13.2156 + 22.8901i −0.535523 + 0.927552i
\(610\) 8.80373 15.2485i 0.356453 0.617394i
\(611\) −5.20659 + 9.01807i −0.210636 + 0.364832i
\(612\) 1.90431 0.0769772
\(613\) 1.48933 + 2.57960i 0.0601535 + 0.104189i 0.894534 0.447000i \(-0.147508\pi\)
−0.834380 + 0.551189i \(0.814174\pi\)
\(614\) 2.23580 + 3.87251i 0.0902294 + 0.156282i
\(615\) −12.0755 + 20.9154i −0.486932 + 0.843391i
\(616\) 33.8664 1.36451
\(617\) −1.05071 1.81988i −0.0422999 0.0732655i 0.844100 0.536185i \(-0.180135\pi\)
−0.886400 + 0.462920i \(0.846802\pi\)
\(618\) 10.9261 0.439514
\(619\) −21.4350 −0.861545 −0.430772 0.902461i \(-0.641759\pi\)
−0.430772 + 0.902461i \(0.641759\pi\)
\(620\) 15.9609 + 9.07879i 0.641004 + 0.364613i
\(621\) 35.2369 1.41401
\(622\) 0.448638 0.0179887
\(623\) −13.3494 23.1218i −0.534831 0.926355i
\(624\) 2.07803 0.0831877
\(625\) 12.1061 20.9683i 0.484242 0.838732i
\(626\) −11.8901 20.5942i −0.475223 0.823111i
\(627\) −5.59391 9.68893i −0.223399 0.386939i
\(628\) 13.3928 0.534430
\(629\) 9.45741 16.3807i 0.377092 0.653142i
\(630\) −0.447390 + 0.774903i −0.0178245 + 0.0308729i
\(631\) −5.14507 + 8.91152i −0.204822 + 0.354762i −0.950076 0.312019i \(-0.898995\pi\)
0.745254 + 0.666781i \(0.232328\pi\)
\(632\) 3.42172 + 5.92660i 0.136109 + 0.235747i
\(633\) 7.99699 13.8512i 0.317852 0.550535i
\(634\) −9.35567 16.2045i −0.371561 0.643563i
\(635\) 34.0388 1.35079
\(636\) 25.8529 1.02514
\(637\) −1.00533 1.74129i −0.0398328 0.0689924i
\(638\) 8.47251 14.6748i 0.335430 0.580982i
\(639\) −0.945477 1.63761i −0.0374025 0.0647830i
\(640\) 11.5566 20.0166i 0.456814 0.791225i
\(641\) 13.3138 23.0602i 0.525863 0.910822i −0.473683 0.880696i \(-0.657076\pi\)
0.999546 0.0301265i \(-0.00959101\pi\)
\(642\) 1.34031 2.32149i 0.0528979 0.0916218i
\(643\) 3.88725 0.153298 0.0766491 0.997058i \(-0.475578\pi\)
0.0766491 + 0.997058i \(0.475578\pi\)
\(644\) 14.8130 + 25.6569i 0.583714 + 1.01102i
\(645\) −4.06692 7.04411i −0.160135 0.277361i
\(646\) −3.45617 + 5.98626i −0.135981 + 0.235526i
\(647\) −17.8590 −0.702108 −0.351054 0.936355i \(-0.614177\pi\)
−0.351054 + 0.936355i \(0.614177\pi\)
\(648\) 10.3973 + 18.0087i 0.408446 + 0.707449i
\(649\) 24.1628 0.948472
\(650\) 0.108336 0.00424928
\(651\) −24.3477 13.8493i −0.954262 0.542799i
\(652\) 16.8465 0.659761
\(653\) −7.33076 −0.286875 −0.143437 0.989659i \(-0.545816\pi\)
−0.143437 + 0.989659i \(0.545816\pi\)
\(654\) −1.12490 1.94838i −0.0439870 0.0761877i
\(655\) 32.8985 1.28545
\(656\) 4.05769 7.02812i 0.158426 0.274402i
\(657\) −0.306016 0.530035i −0.0119388 0.0206786i
\(658\) −11.0737 19.1802i −0.431699 0.747724i
\(659\) 9.43041 0.367357 0.183678 0.982986i \(-0.441200\pi\)
0.183678 + 0.982986i \(0.441200\pi\)
\(660\) 12.5805 21.7900i 0.489693 0.848174i
\(661\) 9.99018 17.3035i 0.388573 0.673028i −0.603685 0.797223i \(-0.706301\pi\)
0.992258 + 0.124195i \(0.0396348\pi\)
\(662\) 10.7896 18.6881i 0.419350 0.726336i
\(663\) −5.57490 9.65601i −0.216511 0.375008i
\(664\) −18.2331 + 31.5807i −0.707583 + 1.22557i
\(665\) 4.84568 + 8.39296i 0.187907 + 0.325465i
\(666\) −0.384947 −0.0149164
\(667\) 34.6145 1.34028
\(668\) −11.1436 19.3013i −0.431159 0.746789i
\(669\) 6.03291 10.4493i 0.233246 0.403993i
\(670\) −1.09657 1.89932i −0.0423643 0.0733772i
\(671\) −25.6907 + 44.4975i −0.991777 + 1.71781i
\(672\) −14.6787 + 25.4242i −0.566243 + 0.980761i
\(673\) −4.98470 + 8.63375i −0.192146 + 0.332806i −0.945961 0.324280i \(-0.894878\pi\)
0.753815 + 0.657086i \(0.228211\pi\)
\(674\) 13.3236 0.513207
\(675\) −0.408873 0.708189i −0.0157375 0.0272582i
\(676\) 0.748988 + 1.29729i 0.0288072 + 0.0498956i
\(677\) 10.6494 18.4454i 0.409291 0.708913i −0.585520 0.810658i \(-0.699109\pi\)
0.994810 + 0.101746i \(0.0324428\pi\)
\(678\) 0.0469487 0.00180305
\(679\) −0.356738 0.617889i −0.0136904 0.0237124i
\(680\) −36.3009 −1.39208
\(681\) −35.9729 −1.37848
\(682\) 15.6093 + 8.87882i 0.597711 + 0.339987i
\(683\) 41.9401 1.60479 0.802397 0.596791i \(-0.203558\pi\)
0.802397 + 0.596791i \(0.203558\pi\)
\(684\) −0.419764 −0.0160501
\(685\) 7.71344 + 13.3601i 0.294716 + 0.510462i
\(686\) −10.6116 −0.405155
\(687\) −3.05659 + 5.29418i −0.116616 + 0.201985i
\(688\) 1.36659 + 2.36700i 0.0521007 + 0.0902410i
\(689\) 5.14880 + 8.91797i 0.196153 + 0.339748i
\(690\) −17.2251 −0.655748
\(691\) 15.9514 27.6287i 0.606821 1.05104i −0.384940 0.922941i \(-0.625778\pi\)
0.991761 0.128103i \(-0.0408887\pi\)
\(692\) −11.5949 + 20.0830i −0.440772 + 0.763440i
\(693\) 1.30555 2.26129i 0.0495939 0.0858992i
\(694\) −0.522405 0.904832i −0.0198302 0.0343470i
\(695\) 18.7831 32.5333i 0.712483 1.23406i
\(696\) 10.9116 + 18.8994i 0.413602 + 0.716379i
\(697\) −43.5436 −1.64933
\(698\) −23.6801 −0.896304
\(699\) −4.43534 7.68224i −0.167760 0.290569i
\(700\) 0.343767 0.595422i 0.0129932 0.0225048i
\(701\) 10.3529 + 17.9318i 0.391025 + 0.677274i 0.992585 0.121553i \(-0.0387874\pi\)
−0.601560 + 0.798827i \(0.705454\pi\)
\(702\) −1.89470 + 3.28171i −0.0715107 + 0.123860i
\(703\) −2.08468 + 3.61077i −0.0786252 + 0.136183i
\(704\) 3.76643 6.52364i 0.141952 0.245869i
\(705\) −38.4232 −1.44710
\(706\) 2.72442 + 4.71884i 0.102535 + 0.177596i
\(707\) −2.31050 4.00190i −0.0868953 0.150507i
\(708\) −6.66315 + 11.5409i −0.250417 + 0.433734i
\(709\) −32.6314 −1.22550 −0.612750 0.790277i \(-0.709937\pi\)
−0.612750 + 0.790277i \(0.709937\pi\)
\(710\) 7.71825 + 13.3684i 0.289661 + 0.501707i
\(711\) 0.527632 0.0197878
\(712\) −22.0440 −0.826135
\(713\) 0.235687 + 36.6827i 0.00882653 + 1.37378i
\(714\) 23.7141 0.887479
\(715\) 10.0219 0.374800
\(716\) −18.1220 31.3882i −0.677250 1.17303i
\(717\) −10.8149 −0.403890
\(718\) 2.73874 4.74364i 0.102209 0.177031i
\(719\) 11.1779 + 19.3607i 0.416865 + 0.722032i 0.995622 0.0934680i \(-0.0297953\pi\)
−0.578757 + 0.815500i \(0.696462\pi\)
\(720\) −0.260812 0.451740i −0.00971991 0.0168354i
\(721\) 27.6194 1.02860
\(722\) −5.96926 + 10.3391i −0.222153 + 0.384780i
\(723\) −16.9059 + 29.2818i −0.628736 + 1.08900i
\(724\) −17.3184 + 29.9964i −0.643634 + 1.11481i
\(725\) −0.401651 0.695681i −0.0149170 0.0258369i
\(726\) 5.77214 9.99765i 0.214224 0.371047i
\(727\) −6.59099 11.4159i −0.244446 0.423393i 0.717530 0.696528i \(-0.245273\pi\)
−0.961976 + 0.273135i \(0.911939\pi\)
\(728\) −7.43973 −0.275735
\(729\) 28.4937 1.05532
\(730\) 2.49811 + 4.32685i 0.0924591 + 0.160144i
\(731\) 7.33252 12.7003i 0.271203 0.469737i
\(732\) −14.1690 24.5414i −0.523700 0.907075i
\(733\) −20.3344 + 35.2202i −0.751068 + 1.30089i 0.196237 + 0.980556i \(0.437128\pi\)
−0.947305 + 0.320332i \(0.896206\pi\)
\(734\) 6.06897 10.5118i 0.224010 0.387996i
\(735\) 3.70954 6.42512i 0.136829 0.236994i
\(736\) 38.4467 1.41717
\(737\) 3.19997 + 5.54252i 0.117873 + 0.204161i
\(738\) 0.443091 + 0.767457i 0.0163104 + 0.0282505i
\(739\) −5.42295 + 9.39283i −0.199486 + 0.345521i −0.948362 0.317190i \(-0.897261\pi\)
0.748876 + 0.662711i \(0.230594\pi\)
\(740\) −9.37671 −0.344695
\(741\) 1.22886 + 2.12846i 0.0451435 + 0.0781908i
\(742\) −21.9016 −0.804033
\(743\) −41.7334 −1.53105 −0.765525 0.643406i \(-0.777521\pi\)
−0.765525 + 0.643406i \(0.777521\pi\)
\(744\) −19.9543 + 11.6922i −0.731560 + 0.428657i
\(745\) −29.2747 −1.07254
\(746\) −10.0074 −0.366398
\(747\) 1.40578 + 2.43488i 0.0514348 + 0.0890877i
\(748\) 45.3643 1.65868
\(749\) 3.38808 5.86832i 0.123798 0.214424i
\(750\) 6.73587 + 11.6669i 0.245959 + 0.426014i
\(751\) 21.8011 + 37.7606i 0.795533 + 1.37790i 0.922500 + 0.385996i \(0.126142\pi\)
−0.126967 + 0.991907i \(0.540524\pi\)
\(752\) 12.9112 0.470822
\(753\) −13.2637 + 22.9734i −0.483356 + 0.837197i
\(754\) −1.86123 + 3.22375i −0.0677821 + 0.117402i
\(755\) 25.9128 44.8822i 0.943062 1.63343i
\(756\) 12.0243 + 20.8268i 0.437321 + 0.757463i
\(757\) 15.1269 26.2005i 0.549796 0.952275i −0.448492 0.893787i \(-0.648039\pi\)
0.998288 0.0584879i \(-0.0186279\pi\)
\(758\) 2.15831 + 3.73830i 0.0783932 + 0.135781i
\(759\) 50.2655 1.82452
\(760\) 8.00175 0.290254
\(761\) 4.08758 + 7.07989i 0.148175 + 0.256646i 0.930553 0.366158i \(-0.119327\pi\)
−0.782378 + 0.622804i \(0.785994\pi\)
\(762\) −9.17983 + 15.8999i −0.332550 + 0.575994i
\(763\) −2.84355 4.92517i −0.102943 0.178303i
\(764\) −7.19781 + 12.4670i −0.260407 + 0.451039i
\(765\) −1.39941 + 2.42384i −0.0505957 + 0.0876343i
\(766\) 5.12115 8.87010i 0.185035 0.320490i
\(767\) −5.30806 −0.191663
\(768\) 9.00675 + 15.6001i 0.325003 + 0.562922i
\(769\) −3.07833 5.33182i −0.111007 0.192270i 0.805169 0.593045i \(-0.202074\pi\)
−0.916177 + 0.400775i \(0.868741\pi\)
\(770\) −10.6577 + 18.4596i −0.384076 + 0.665239i
\(771\) 9.36497 0.337271