Properties

Label 403.2.h.b.118.6
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.6
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.6

$q$-expansion

\(f(q)\) \(=\) \(q-0.837386 q^{2} +(0.883556 + 1.53036i) q^{3} -1.29878 q^{4} +(-2.21305 + 3.83311i) q^{5} +(-0.739877 - 1.28150i) q^{6} +(-1.99716 - 3.45918i) q^{7} +2.76236 q^{8} +(-0.0613409 + 0.106246i) q^{9} +O(q^{10})\) \(q-0.837386 q^{2} +(0.883556 + 1.53036i) q^{3} -1.29878 q^{4} +(-2.21305 + 3.83311i) q^{5} +(-0.739877 - 1.28150i) q^{6} +(-1.99716 - 3.45918i) q^{7} +2.76236 q^{8} +(-0.0613409 + 0.106246i) q^{9} +(1.85318 - 3.20980i) q^{10} +(-1.39540 + 2.41690i) q^{11} +(-1.14755 - 1.98761i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(1.67239 + 2.89667i) q^{14} -7.82141 q^{15} +0.284411 q^{16} +(-0.576858 - 0.999148i) q^{17} +(0.0513661 - 0.0889686i) q^{18} +(-1.68123 - 2.91198i) q^{19} +(2.87427 - 4.97839i) q^{20} +(3.52920 - 6.11275i) q^{21} +(1.16849 - 2.02388i) q^{22} +0.745639 q^{23} +(2.44070 + 4.22741i) q^{24} +(-7.29518 - 12.6356i) q^{25} +(0.418693 - 0.725198i) q^{26} +5.08454 q^{27} +(2.59388 + 4.49273i) q^{28} -5.02785 q^{29} +6.54954 q^{30} +(0.0190669 - 5.56773i) q^{31} -5.76287 q^{32} -4.93164 q^{33} +(0.483053 + 0.836672i) q^{34} +17.6792 q^{35} +(0.0796687 - 0.137990i) q^{36} +(-1.55308 - 2.69001i) q^{37} +(1.40784 + 2.43845i) q^{38} -1.76711 q^{39} +(-6.11323 + 10.5884i) q^{40} +(-4.81293 + 8.33625i) q^{41} +(-2.95530 + 5.11873i) q^{42} +(4.51314 + 7.81698i) q^{43} +(1.81232 - 3.13903i) q^{44} +(-0.271501 - 0.470254i) q^{45} -0.624387 q^{46} -9.11327 q^{47} +(0.251293 + 0.435252i) q^{48} +(-4.47727 + 7.75486i) q^{49} +(6.10888 + 10.5809i) q^{50} +(1.01937 - 1.76561i) q^{51} +(0.649392 - 1.12478i) q^{52} +(2.71344 - 4.69982i) q^{53} -4.25772 q^{54} +(-6.17617 - 10.6974i) q^{55} +(-5.51686 - 9.55548i) q^{56} +(2.97093 - 5.14580i) q^{57} +4.21025 q^{58} +(0.500931 + 0.867638i) q^{59} +10.1583 q^{60} -11.4247 q^{61} +(-0.0159664 + 4.66234i) q^{62} +0.490030 q^{63} +4.25693 q^{64} +(-2.21305 - 3.83311i) q^{65} +4.12969 q^{66} +(-0.828863 + 1.43563i) q^{67} +(0.749215 + 1.29768i) q^{68} +(0.658813 + 1.14110i) q^{69} -14.8043 q^{70} +(-0.716560 + 1.24112i) q^{71} +(-0.169446 + 0.293488i) q^{72} +(-6.94652 + 12.0317i) q^{73} +(1.30053 + 2.25258i) q^{74} +(12.8914 - 22.3285i) q^{75} +(2.18356 + 3.78204i) q^{76} +11.1473 q^{77} +1.47975 q^{78} +(1.40672 + 2.43651i) q^{79} +(-0.629416 + 1.09018i) q^{80} +(4.67650 + 8.09993i) q^{81} +(4.03028 - 6.98066i) q^{82} +(-5.39673 + 9.34741i) q^{83} +(-4.58367 + 7.93915i) q^{84} +5.10646 q^{85} +(-3.77924 - 6.54583i) q^{86} +(-4.44239 - 7.69444i) q^{87} +(-3.85458 + 6.67634i) q^{88} +2.37455 q^{89} +(0.227351 + 0.393784i) q^{90} +3.99431 q^{91} -0.968424 q^{92} +(8.53750 - 4.89022i) q^{93} +7.63133 q^{94} +14.8826 q^{95} +(-5.09182 - 8.81929i) q^{96} -4.35710 q^{97} +(3.74921 - 6.49381i) q^{98} +(-0.171190 - 0.296510i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.837386 −0.592121 −0.296061 0.955169i \(-0.595673\pi\)
−0.296061 + 0.955169i \(0.595673\pi\)
\(3\) 0.883556 + 1.53036i 0.510121 + 0.883556i 0.999931 + 0.0117265i \(0.00373274\pi\)
−0.489810 + 0.871829i \(0.662934\pi\)
\(4\) −1.29878 −0.649392
\(5\) −2.21305 + 3.83311i −0.989706 + 1.71422i −0.370910 + 0.928669i \(0.620954\pi\)
−0.618795 + 0.785552i \(0.712379\pi\)
\(6\) −0.739877 1.28150i −0.302054 0.523172i
\(7\) −1.99716 3.45918i −0.754854 1.30745i −0.945447 0.325777i \(-0.894374\pi\)
0.190592 0.981669i \(-0.438959\pi\)
\(8\) 2.76236 0.976640
\(9\) −0.0613409 + 0.106246i −0.0204470 + 0.0354152i
\(10\) 1.85318 3.20980i 0.586026 1.01503i
\(11\) −1.39540 + 2.41690i −0.420728 + 0.728722i −0.996011 0.0892322i \(-0.971559\pi\)
0.575283 + 0.817955i \(0.304892\pi\)
\(12\) −1.14755 1.98761i −0.331269 0.573774i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 1.67239 + 2.89667i 0.446965 + 0.774167i
\(15\) −7.82141 −2.01948
\(16\) 0.284411 0.0711027
\(17\) −0.576858 0.999148i −0.139909 0.242329i 0.787553 0.616247i \(-0.211348\pi\)
−0.927462 + 0.373918i \(0.878014\pi\)
\(18\) 0.0513661 0.0889686i 0.0121071 0.0209701i
\(19\) −1.68123 2.91198i −0.385701 0.668054i 0.606165 0.795339i \(-0.292707\pi\)
−0.991866 + 0.127285i \(0.959374\pi\)
\(20\) 2.87427 4.97839i 0.642707 1.11320i
\(21\) 3.52920 6.11275i 0.770134 1.33391i
\(22\) 1.16849 2.02388i 0.249122 0.431492i
\(23\) 0.745639 0.155476 0.0777382 0.996974i \(-0.475230\pi\)
0.0777382 + 0.996974i \(0.475230\pi\)
\(24\) 2.44070 + 4.22741i 0.498205 + 0.862916i
\(25\) −7.29518 12.6356i −1.45904 2.52712i
\(26\) 0.418693 0.725198i 0.0821125 0.142223i
\(27\) 5.08454 0.978520
\(28\) 2.59388 + 4.49273i 0.490197 + 0.849046i
\(29\) −5.02785 −0.933649 −0.466824 0.884350i \(-0.654602\pi\)
−0.466824 + 0.884350i \(0.654602\pi\)
\(30\) 6.54954 1.19578
\(31\) 0.0190669 5.56773i 0.00342452 0.999994i
\(32\) −5.76287 −1.01874
\(33\) −4.93164 −0.858489
\(34\) 0.483053 + 0.836672i 0.0828429 + 0.143488i
\(35\) 17.6792 2.98834
\(36\) 0.0796687 0.137990i 0.0132781 0.0229984i
\(37\) −1.55308 2.69001i −0.255325 0.442235i 0.709659 0.704545i \(-0.248849\pi\)
−0.964984 + 0.262310i \(0.915516\pi\)
\(38\) 1.40784 + 2.43845i 0.228382 + 0.395569i
\(39\) −1.76711 −0.282964
\(40\) −6.11323 + 10.5884i −0.966587 + 1.67418i
\(41\) −4.81293 + 8.33625i −0.751654 + 1.30190i 0.195367 + 0.980730i \(0.437410\pi\)
−0.947021 + 0.321173i \(0.895923\pi\)
\(42\) −2.95530 + 5.11873i −0.456013 + 0.789838i
\(43\) 4.51314 + 7.81698i 0.688247 + 1.19208i 0.972405 + 0.233301i \(0.0749528\pi\)
−0.284158 + 0.958778i \(0.591714\pi\)
\(44\) 1.81232 3.13903i 0.273218 0.473227i
\(45\) −0.271501 0.470254i −0.0404730 0.0701013i
\(46\) −0.624387 −0.0920609
\(47\) −9.11327 −1.32931 −0.664654 0.747151i \(-0.731421\pi\)
−0.664654 + 0.747151i \(0.731421\pi\)
\(48\) 0.251293 + 0.435252i 0.0362710 + 0.0628232i
\(49\) −4.47727 + 7.75486i −0.639610 + 1.10784i
\(50\) 6.10888 + 10.5809i 0.863926 + 1.49636i
\(51\) 1.01937 1.76561i 0.142741 0.247234i
\(52\) 0.649392 1.12478i 0.0900545 0.155979i
\(53\) 2.71344 4.69982i 0.372720 0.645570i −0.617263 0.786757i \(-0.711759\pi\)
0.989983 + 0.141187i \(0.0450919\pi\)
\(54\) −4.25772 −0.579403
\(55\) −6.17617 10.6974i −0.832794 1.44244i
\(56\) −5.51686 9.55548i −0.737221 1.27690i
\(57\) 2.97093 5.14580i 0.393509 0.681577i
\(58\) 4.21025 0.552833
\(59\) 0.500931 + 0.867638i 0.0652157 + 0.112957i 0.896790 0.442457i \(-0.145893\pi\)
−0.831574 + 0.555414i \(0.812560\pi\)
\(60\) 10.1583 1.31143
\(61\) −11.4247 −1.46279 −0.731394 0.681955i \(-0.761130\pi\)
−0.731394 + 0.681955i \(0.761130\pi\)
\(62\) −0.0159664 + 4.66234i −0.00202773 + 0.592118i
\(63\) 0.490030 0.0617380
\(64\) 4.25693 0.532116
\(65\) −2.21305 3.83311i −0.274495 0.475439i
\(66\) 4.12969 0.508330
\(67\) −0.828863 + 1.43563i −0.101262 + 0.175390i −0.912205 0.409735i \(-0.865621\pi\)
0.810943 + 0.585125i \(0.198955\pi\)
\(68\) 0.749215 + 1.29768i 0.0908556 + 0.157367i
\(69\) 0.658813 + 1.14110i 0.0793118 + 0.137372i
\(70\) −14.8043 −1.76946
\(71\) −0.716560 + 1.24112i −0.0850401 + 0.147294i −0.905408 0.424542i \(-0.860435\pi\)
0.820368 + 0.571836i \(0.193768\pi\)
\(72\) −0.169446 + 0.293488i −0.0199693 + 0.0345879i
\(73\) −6.94652 + 12.0317i −0.813029 + 1.40821i 0.0977055 + 0.995215i \(0.468850\pi\)
−0.910735 + 0.412992i \(0.864484\pi\)
\(74\) 1.30053 + 2.25258i 0.151183 + 0.261857i
\(75\) 12.8914 22.3285i 1.48857 2.57828i
\(76\) 2.18356 + 3.78204i 0.250472 + 0.433829i
\(77\) 11.1473 1.27035
\(78\) 1.47975 0.167549
\(79\) 1.40672 + 2.43651i 0.158268 + 0.274128i 0.934244 0.356634i \(-0.116076\pi\)
−0.775976 + 0.630762i \(0.782742\pi\)
\(80\) −0.629416 + 1.09018i −0.0703708 + 0.121886i
\(81\) 4.67650 + 8.09993i 0.519611 + 0.899992i
\(82\) 4.03028 6.98066i 0.445070 0.770884i
\(83\) −5.39673 + 9.34741i −0.592368 + 1.02601i 0.401545 + 0.915839i \(0.368473\pi\)
−0.993913 + 0.110172i \(0.964860\pi\)
\(84\) −4.58367 + 7.93915i −0.500119 + 0.866232i
\(85\) 5.10646 0.553874
\(86\) −3.77924 6.54583i −0.407526 0.705855i
\(87\) −4.44239 7.69444i −0.476274 0.824931i
\(88\) −3.85458 + 6.67634i −0.410900 + 0.711700i
\(89\) 2.37455 0.251702 0.125851 0.992049i \(-0.459834\pi\)
0.125851 + 0.992049i \(0.459834\pi\)
\(90\) 0.227351 + 0.393784i 0.0239649 + 0.0415085i
\(91\) 3.99431 0.418718
\(92\) −0.968424 −0.100965
\(93\) 8.53750 4.89022i 0.885297 0.507092i
\(94\) 7.63133 0.787111
\(95\) 14.8826 1.52692
\(96\) −5.09182 8.81929i −0.519682 0.900115i
\(97\) −4.35710 −0.442397 −0.221198 0.975229i \(-0.570997\pi\)
−0.221198 + 0.975229i \(0.570997\pi\)
\(98\) 3.74921 6.49381i 0.378727 0.655974i
\(99\) −0.171190 0.296510i −0.0172052 0.0298003i
\(100\) 9.47486 + 16.4109i 0.947486 + 1.64109i
\(101\) 1.46025 0.145300 0.0726499 0.997358i \(-0.476854\pi\)
0.0726499 + 0.997358i \(0.476854\pi\)
\(102\) −0.853608 + 1.47849i −0.0845198 + 0.146393i
\(103\) −5.46261 + 9.46152i −0.538247 + 0.932271i 0.460752 + 0.887529i \(0.347580\pi\)
−0.998999 + 0.0447418i \(0.985753\pi\)
\(104\) −1.38118 + 2.39227i −0.135436 + 0.234581i
\(105\) 15.6206 + 27.0556i 1.52441 + 2.64036i
\(106\) −2.27220 + 3.93556i −0.220695 + 0.382256i
\(107\) −7.77964 13.4747i −0.752086 1.30265i −0.946810 0.321793i \(-0.895714\pi\)
0.194724 0.980858i \(-0.437619\pi\)
\(108\) −6.60372 −0.635444
\(109\) −4.37993 −0.419522 −0.209761 0.977753i \(-0.567269\pi\)
−0.209761 + 0.977753i \(0.567269\pi\)
\(110\) 5.17184 + 8.95788i 0.493115 + 0.854100i
\(111\) 2.74446 4.75355i 0.260493 0.451187i
\(112\) −0.568013 0.983828i −0.0536722 0.0929630i
\(113\) 5.62626 9.74497i 0.529274 0.916730i −0.470143 0.882590i \(-0.655798\pi\)
0.999417 0.0341394i \(-0.0108690\pi\)
\(114\) −2.48781 + 4.30902i −0.233005 + 0.403576i
\(115\) −1.65014 + 2.85812i −0.153876 + 0.266521i
\(116\) 6.53010 0.606304
\(117\) −0.0613409 0.106246i −0.00567097 0.00982241i
\(118\) −0.419473 0.726548i −0.0386156 0.0668842i
\(119\) −2.30415 + 3.99091i −0.211221 + 0.365846i
\(120\) −21.6055 −1.97230
\(121\) 1.60573 + 2.78121i 0.145976 + 0.252837i
\(122\) 9.56692 0.866148
\(123\) −17.0100 −1.53374
\(124\) −0.0247638 + 7.23128i −0.00222386 + 0.649389i
\(125\) 42.4479 3.79665
\(126\) −0.410344 −0.0365564
\(127\) 1.05463 + 1.82667i 0.0935832 + 0.162091i 0.909016 0.416760i \(-0.136835\pi\)
−0.815433 + 0.578851i \(0.803501\pi\)
\(128\) 7.96106 0.703665
\(129\) −7.97521 + 13.8135i −0.702179 + 1.21621i
\(130\) 1.85318 + 3.20980i 0.162534 + 0.281518i
\(131\) −6.11480 10.5911i −0.534252 0.925352i −0.999199 0.0400134i \(-0.987260\pi\)
0.464947 0.885339i \(-0.346073\pi\)
\(132\) 6.40514 0.557496
\(133\) −6.71537 + 11.6314i −0.582297 + 1.00857i
\(134\) 0.694078 1.20218i 0.0599592 0.103852i
\(135\) −11.2523 + 19.4896i −0.968447 + 1.67740i
\(136\) −1.59349 2.76000i −0.136640 0.236668i
\(137\) −1.70112 + 2.94642i −0.145336 + 0.251730i −0.929498 0.368826i \(-0.879760\pi\)
0.784162 + 0.620556i \(0.213093\pi\)
\(138\) −0.551681 0.955540i −0.0469622 0.0813409i
\(139\) 10.2497 0.869372 0.434686 0.900582i \(-0.356859\pi\)
0.434686 + 0.900582i \(0.356859\pi\)
\(140\) −22.9615 −1.94060
\(141\) −8.05208 13.9466i −0.678108 1.17452i
\(142\) 0.600038 1.03930i 0.0503540 0.0872158i
\(143\) −1.39540 2.41690i −0.116689 0.202111i
\(144\) −0.0174460 + 0.0302174i −0.00145384 + 0.00251812i
\(145\) 11.1269 19.2723i 0.924038 1.60048i
\(146\) 5.81692 10.0752i 0.481412 0.833830i
\(147\) −15.8237 −1.30511
\(148\) 2.01712 + 3.49375i 0.165806 + 0.287184i
\(149\) −9.11796 15.7928i −0.746972 1.29379i −0.949268 0.314469i \(-0.898174\pi\)
0.202296 0.979324i \(-0.435160\pi\)
\(150\) −10.7951 + 18.6976i −0.881414 + 1.52665i
\(151\) 16.7337 1.36177 0.680887 0.732389i \(-0.261595\pi\)
0.680887 + 0.732389i \(0.261595\pi\)
\(152\) −4.64417 8.04393i −0.376692 0.652449i
\(153\) 0.141540 0.0114428
\(154\) −9.33460 −0.752204
\(155\) 21.2996 + 12.3948i 1.71082 + 0.995570i
\(156\) 2.29510 0.183755
\(157\) −15.2206 −1.21473 −0.607367 0.794421i \(-0.707774\pi\)
−0.607367 + 0.794421i \(0.707774\pi\)
\(158\) −1.17797 2.04030i −0.0937139 0.162317i
\(159\) 9.58991 0.760529
\(160\) 12.7535 22.0898i 1.00825 1.74635i
\(161\) −1.48916 2.57930i −0.117362 0.203277i
\(162\) −3.91603 6.78277i −0.307673 0.532905i
\(163\) −1.56277 −0.122405 −0.0612026 0.998125i \(-0.519494\pi\)
−0.0612026 + 0.998125i \(0.519494\pi\)
\(164\) 6.25096 10.8270i 0.488118 0.845446i
\(165\) 10.9140 18.9036i 0.849652 1.47164i
\(166\) 4.51915 7.82739i 0.350754 0.607523i
\(167\) 0.981987 + 1.70085i 0.0759884 + 0.131616i 0.901516 0.432746i \(-0.142455\pi\)
−0.825527 + 0.564362i \(0.809122\pi\)
\(168\) 9.74890 16.8856i 0.752144 1.30275i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −4.27608 −0.327960
\(171\) 0.412514 0.0315457
\(172\) −5.86159 10.1526i −0.446942 0.774127i
\(173\) −1.42174 + 2.46252i −0.108093 + 0.187222i −0.914998 0.403459i \(-0.867808\pi\)
0.806905 + 0.590681i \(0.201141\pi\)
\(174\) 3.71999 + 6.44322i 0.282012 + 0.488459i
\(175\) −29.1392 + 50.4706i −2.20272 + 3.81522i
\(176\) −0.396866 + 0.687393i −0.0299149 + 0.0518142i
\(177\) −0.885201 + 1.53321i −0.0665358 + 0.115243i
\(178\) −1.98841 −0.149038
\(179\) 10.2287 + 17.7166i 0.764528 + 1.32420i 0.940496 + 0.339805i \(0.110361\pi\)
−0.175968 + 0.984396i \(0.556306\pi\)
\(180\) 0.352621 + 0.610758i 0.0262829 + 0.0455232i
\(181\) 6.85586 11.8747i 0.509592 0.882640i −0.490346 0.871528i \(-0.663130\pi\)
0.999938 0.0111118i \(-0.00353708\pi\)
\(182\) −3.34478 −0.247932
\(183\) −10.0944 17.4840i −0.746199 1.29245i
\(184\) 2.05972 0.151845
\(185\) 13.7482 1.01079
\(186\) −7.14918 + 4.09500i −0.524203 + 0.300260i
\(187\) 3.21979 0.235454
\(188\) 11.8362 0.863242
\(189\) −10.1546 17.5883i −0.738640 1.27936i
\(190\) −12.4625 −0.904124
\(191\) 3.58671 6.21237i 0.259525 0.449511i −0.706589 0.707624i \(-0.749767\pi\)
0.966115 + 0.258113i \(0.0831006\pi\)
\(192\) 3.76123 + 6.51465i 0.271444 + 0.470154i
\(193\) −11.8483 20.5219i −0.852860 1.47720i −0.878616 0.477529i \(-0.841532\pi\)
0.0257554 0.999668i \(-0.491801\pi\)
\(194\) 3.64858 0.261953
\(195\) 3.91070 6.77354i 0.280051 0.485063i
\(196\) 5.81501 10.0719i 0.415358 0.719421i
\(197\) −8.93070 + 15.4684i −0.636286 + 1.10208i 0.349955 + 0.936767i \(0.386197\pi\)
−0.986241 + 0.165313i \(0.947136\pi\)
\(198\) 0.143352 + 0.248293i 0.0101876 + 0.0176454i
\(199\) −0.268331 + 0.464763i −0.0190215 + 0.0329462i −0.875379 0.483436i \(-0.839388\pi\)
0.856358 + 0.516383i \(0.172722\pi\)
\(200\) −20.1519 34.9041i −1.42495 2.46809i
\(201\) −2.92939 −0.206623
\(202\) −1.22279 −0.0860352
\(203\) 10.0414 + 17.3922i 0.704769 + 1.22070i
\(204\) −1.32395 + 2.29314i −0.0926947 + 0.160552i
\(205\) −21.3025 36.8971i −1.48783 2.57700i
\(206\) 4.57431 7.92294i 0.318707 0.552017i
\(207\) −0.0457382 + 0.0792209i −0.00317902 + 0.00550623i
\(208\) −0.142205 + 0.246307i −0.00986018 + 0.0170783i
\(209\) 9.38395 0.649102
\(210\) −13.0805 22.6560i −0.902637 1.56341i
\(211\) 3.48976 + 6.04443i 0.240245 + 0.416116i 0.960784 0.277298i \(-0.0894390\pi\)
−0.720539 + 0.693414i \(0.756106\pi\)
\(212\) −3.52418 + 6.10405i −0.242042 + 0.419228i
\(213\) −2.53248 −0.173523
\(214\) 6.51456 + 11.2835i 0.445326 + 0.771328i
\(215\) −39.9512 −2.72465
\(216\) 14.0453 0.955662
\(217\) −19.2979 + 11.0537i −1.31002 + 0.750373i
\(218\) 3.66770 0.248408
\(219\) −24.5506 −1.65897
\(220\) 8.02151 + 13.8937i 0.540810 + 0.936711i
\(221\) 1.15372 0.0776074
\(222\) −2.29818 + 3.98056i −0.154243 + 0.267157i
\(223\) 1.16130 + 2.01143i 0.0777662 + 0.134695i 0.902286 0.431138i \(-0.141888\pi\)
−0.824520 + 0.565833i \(0.808555\pi\)
\(224\) 11.5094 + 19.9348i 0.769002 + 1.33195i
\(225\) 1.78997 0.119331
\(226\) −4.71135 + 8.16030i −0.313395 + 0.542815i
\(227\) −6.02682 + 10.4388i −0.400014 + 0.692844i −0.993727 0.111832i \(-0.964328\pi\)
0.593713 + 0.804677i \(0.297661\pi\)
\(228\) −3.85859 + 6.68328i −0.255542 + 0.442611i
\(229\) −8.82591 15.2869i −0.583233 1.01019i −0.995093 0.0989416i \(-0.968454\pi\)
0.411861 0.911247i \(-0.364879\pi\)
\(230\) 1.38180 2.39335i 0.0911132 0.157813i
\(231\) 9.84927 + 17.0594i 0.648034 + 1.12243i
\(232\) −13.8887 −0.911839
\(233\) −11.0803 −0.725895 −0.362947 0.931810i \(-0.618229\pi\)
−0.362947 + 0.931810i \(0.618229\pi\)
\(234\) 0.0513661 + 0.0889686i 0.00335790 + 0.00581606i
\(235\) 20.1681 34.9322i 1.31562 2.27873i
\(236\) −0.650602 1.12687i −0.0423506 0.0733533i
\(237\) −2.48583 + 4.30558i −0.161472 + 0.279677i
\(238\) 1.92947 3.34193i 0.125069 0.216625i
\(239\) −5.37527 + 9.31025i −0.347698 + 0.602230i −0.985840 0.167688i \(-0.946370\pi\)
0.638142 + 0.769918i \(0.279703\pi\)
\(240\) −2.22449 −0.143591
\(241\) 5.38850 + 9.33316i 0.347104 + 0.601202i 0.985734 0.168313i \(-0.0538318\pi\)
−0.638630 + 0.769514i \(0.720498\pi\)
\(242\) −1.34462 2.32895i −0.0864354 0.149710i
\(243\) −0.637079 + 1.10345i −0.0408687 + 0.0707866i
\(244\) 14.8383 0.949923
\(245\) −19.8169 34.3238i −1.26605 2.19287i
\(246\) 14.2439 0.908159
\(247\) 3.36247 0.213949
\(248\) 0.0526696 15.3801i 0.00334452 0.976635i
\(249\) −19.0732 −1.20872
\(250\) −35.5452 −2.24808
\(251\) 9.81046 + 16.9922i 0.619231 + 1.07254i 0.989626 + 0.143665i \(0.0458889\pi\)
−0.370395 + 0.928874i \(0.620778\pi\)
\(252\) −0.636443 −0.0400922
\(253\) −1.04046 + 1.80213i −0.0654133 + 0.113299i
\(254\) −0.883132 1.52963i −0.0554126 0.0959775i
\(255\) 4.51184 + 7.81474i 0.282543 + 0.489378i
\(256\) −15.1803 −0.948771
\(257\) −6.27771 + 10.8733i −0.391593 + 0.678259i −0.992660 0.120940i \(-0.961409\pi\)
0.601067 + 0.799199i \(0.294743\pi\)
\(258\) 6.67833 11.5672i 0.415775 0.720143i
\(259\) −6.20349 + 10.7448i −0.385466 + 0.667646i
\(260\) 2.87427 + 4.97839i 0.178255 + 0.308747i
\(261\) 0.308413 0.534187i 0.0190903 0.0330654i
\(262\) 5.12044 + 8.86887i 0.316342 + 0.547921i
\(263\) −28.1587 −1.73634 −0.868170 0.496266i \(-0.834704\pi\)
−0.868170 + 0.496266i \(0.834704\pi\)
\(264\) −13.6230 −0.838435
\(265\) 12.0100 + 20.8019i 0.737766 + 1.27785i
\(266\) 5.62336 9.73995i 0.344790 0.597194i
\(267\) 2.09805 + 3.63392i 0.128398 + 0.222392i
\(268\) 1.07651 1.86458i 0.0657586 0.113897i
\(269\) −3.10195 + 5.37274i −0.189129 + 0.327582i −0.944960 0.327185i \(-0.893900\pi\)
0.755831 + 0.654767i \(0.227233\pi\)
\(270\) 9.42255 16.3203i 0.573438 0.993224i
\(271\) −1.44701 −0.0878995 −0.0439497 0.999034i \(-0.513994\pi\)
−0.0439497 + 0.999034i \(0.513994\pi\)
\(272\) −0.164065 0.284169i −0.00994789 0.0172302i
\(273\) 3.52920 + 6.11275i 0.213597 + 0.369961i
\(274\) 1.42449 2.46729i 0.0860567 0.149055i
\(275\) 40.7187 2.45543
\(276\) −0.855657 1.48204i −0.0515045 0.0892084i
\(277\) 20.3836 1.22473 0.612367 0.790574i \(-0.290218\pi\)
0.612367 + 0.790574i \(0.290218\pi\)
\(278\) −8.58299 −0.514774
\(279\) 0.590378 + 0.343556i 0.0353450 + 0.0205681i
\(280\) 48.8363 2.91853
\(281\) 20.0622 1.19681 0.598405 0.801194i \(-0.295801\pi\)
0.598405 + 0.801194i \(0.295801\pi\)
\(282\) 6.74270 + 11.6787i 0.401522 + 0.695457i
\(283\) 21.1954 1.25994 0.629968 0.776621i \(-0.283068\pi\)
0.629968 + 0.776621i \(0.283068\pi\)
\(284\) 0.930658 1.61195i 0.0552244 0.0956514i
\(285\) 13.1496 + 22.7758i 0.778916 + 1.34912i
\(286\) 1.16849 + 2.02388i 0.0690940 + 0.119674i
\(287\) 38.4487 2.26956
\(288\) 0.353500 0.612280i 0.0208302 0.0360790i
\(289\) 7.83447 13.5697i 0.460851 0.798218i
\(290\) −9.31750 + 16.1384i −0.547142 + 0.947679i
\(291\) −3.84974 6.66795i −0.225676 0.390882i
\(292\) 9.02204 15.6266i 0.527975 0.914479i
\(293\) −0.263737 0.456805i −0.0154077 0.0266868i 0.858219 0.513284i \(-0.171571\pi\)
−0.873626 + 0.486597i \(0.838238\pi\)
\(294\) 13.2505 0.772786
\(295\) −4.43434 −0.258177
\(296\) −4.29016 7.43077i −0.249360 0.431905i
\(297\) −7.09495 + 12.2888i −0.411691 + 0.713070i
\(298\) 7.63525 + 13.2246i 0.442298 + 0.766083i
\(299\) −0.372819 + 0.645742i −0.0215607 + 0.0373442i
\(300\) −16.7431 + 29.0000i −0.966666 + 1.67431i
\(301\) 18.0269 31.2235i 1.03905 1.79969i
\(302\) −14.0126 −0.806335
\(303\) 1.29021 + 2.23471i 0.0741205 + 0.128381i
\(304\) −0.478161 0.828199i −0.0274244 0.0475005i
\(305\) 25.2835 43.7923i 1.44773 2.50754i
\(306\) −0.118524 −0.00677555
\(307\) −5.06752 8.77720i −0.289219 0.500941i 0.684405 0.729102i \(-0.260062\pi\)
−0.973623 + 0.228161i \(0.926729\pi\)
\(308\) −14.4780 −0.824958
\(309\) −19.3061 −1.09828
\(310\) −17.8360 10.3792i −1.01301 0.589498i
\(311\) −23.4109 −1.32751 −0.663756 0.747949i \(-0.731039\pi\)
−0.663756 + 0.747949i \(0.731039\pi\)
\(312\) −4.88139 −0.276354
\(313\) 13.4826 + 23.3526i 0.762083 + 1.31997i 0.941775 + 0.336244i \(0.109157\pi\)
−0.179692 + 0.983723i \(0.557510\pi\)
\(314\) 12.7455 0.719270
\(315\) −1.08446 + 1.87834i −0.0611024 + 0.105833i
\(316\) −1.82702 3.16450i −0.102778 0.178017i
\(317\) 9.08022 + 15.7274i 0.509996 + 0.883339i 0.999933 + 0.0115811i \(0.00368647\pi\)
−0.489937 + 0.871758i \(0.662980\pi\)
\(318\) −8.03046 −0.450326
\(319\) 7.01585 12.1518i 0.392812 0.680371i
\(320\) −9.42079 + 16.3173i −0.526638 + 0.912164i
\(321\) 13.7475 23.8113i 0.767310 1.32902i
\(322\) 1.24700 + 2.15987i 0.0694926 + 0.120365i
\(323\) −1.93967 + 3.35960i −0.107926 + 0.186933i
\(324\) −6.07376 10.5201i −0.337431 0.584448i
\(325\) 14.5904 0.809327
\(326\) 1.30864 0.0724787
\(327\) −3.86991 6.70289i −0.214007 0.370671i
\(328\) −13.2950 + 23.0277i −0.734096 + 1.27149i
\(329\) 18.2006 + 31.5244i 1.00343 + 1.73800i
\(330\) −9.13921 + 15.8296i −0.503097 + 0.871389i
\(331\) 7.65564 13.2600i 0.420792 0.728833i −0.575225 0.817995i \(-0.695085\pi\)
0.996017 + 0.0891618i \(0.0284188\pi\)
\(332\) 7.00919 12.1403i 0.384679 0.666284i
\(333\) 0.381069 0.0208825
\(334\) −0.822302 1.42427i −0.0449944 0.0779325i
\(335\) −3.66863 6.35425i −0.200439 0.347170i
\(336\) 1.00374 1.73853i 0.0547587 0.0948448i
\(337\) −11.1650 −0.608196 −0.304098 0.952641i \(-0.598355\pi\)
−0.304098 + 0.952641i \(0.598355\pi\)
\(338\) 0.418693 + 0.725198i 0.0227739 + 0.0394455i
\(339\) 19.8845 1.07998
\(340\) −6.63220 −0.359681
\(341\) 13.4300 + 7.81528i 0.727277 + 0.423221i
\(342\) −0.345433 −0.0186789
\(343\) 7.80706 0.421542
\(344\) 12.4669 + 21.5933i 0.672170 + 1.16423i
\(345\) −5.83195 −0.313981
\(346\) 1.19054 2.06208i 0.0640040 0.110858i
\(347\) 17.1043 + 29.6255i 0.918208 + 1.59038i 0.802136 + 0.597141i \(0.203697\pi\)
0.116072 + 0.993241i \(0.462970\pi\)
\(348\) 5.76971 + 9.99342i 0.309289 + 0.535704i
\(349\) 10.2919 0.550915 0.275458 0.961313i \(-0.411171\pi\)
0.275458 + 0.961313i \(0.411171\pi\)
\(350\) 24.4008 42.2634i 1.30428 2.25907i
\(351\) −2.54227 + 4.40334i −0.135696 + 0.235033i
\(352\) 8.04150 13.9283i 0.428613 0.742380i
\(353\) 0.0801093 + 0.138753i 0.00426379 + 0.00738510i 0.868149 0.496303i \(-0.165309\pi\)
−0.863886 + 0.503688i \(0.831976\pi\)
\(354\) 0.741255 1.28389i 0.0393972 0.0682380i
\(355\) −3.17157 5.49332i −0.168329 0.291555i
\(356\) −3.08403 −0.163453
\(357\) −8.14339 −0.430994
\(358\) −8.56535 14.8356i −0.452693 0.784087i
\(359\) 1.27797 2.21351i 0.0674487 0.116825i −0.830329 0.557274i \(-0.811847\pi\)
0.897778 + 0.440449i \(0.145181\pi\)
\(360\) −0.749983 1.29901i −0.0395276 0.0684637i
\(361\) 3.84691 6.66304i 0.202469 0.350686i
\(362\) −5.74100 + 9.94371i −0.301740 + 0.522630i
\(363\) −2.83751 + 4.91471i −0.148931 + 0.257955i
\(364\) −5.18775 −0.271912
\(365\) −30.7460 53.2536i −1.60932 2.78742i
\(366\) 8.45290 + 14.6409i 0.441840 + 0.765290i
\(367\) −14.0952 + 24.4135i −0.735762 + 1.27438i 0.218627 + 0.975809i \(0.429842\pi\)
−0.954388 + 0.298568i \(0.903491\pi\)
\(368\) 0.212068 0.0110548
\(369\) −0.590460 1.02271i −0.0307381 0.0532400i
\(370\) −11.5125 −0.598507
\(371\) −21.6767 −1.12540
\(372\) −11.0884 + 6.35134i −0.574905 + 0.329302i
\(373\) −24.1839 −1.25219 −0.626097 0.779745i \(-0.715349\pi\)
−0.626097 + 0.779745i \(0.715349\pi\)
\(374\) −2.69620 −0.139417
\(375\) 37.5050 + 64.9606i 1.93675 + 3.35455i
\(376\) −25.1741 −1.29826
\(377\) 2.51393 4.35425i 0.129474 0.224255i
\(378\) 8.50334 + 14.7282i 0.437365 + 0.757538i
\(379\) 6.58924 + 11.4129i 0.338467 + 0.586241i 0.984145 0.177368i \(-0.0567584\pi\)
−0.645678 + 0.763610i \(0.723425\pi\)
\(380\) −19.3293 −0.991573
\(381\) −1.86365 + 3.22793i −0.0954775 + 0.165372i
\(382\) −3.00346 + 5.20215i −0.153671 + 0.266165i
\(383\) −1.86301 + 3.22682i −0.0951952 + 0.164883i −0.909690 0.415288i \(-0.863681\pi\)
0.814495 + 0.580171i \(0.197014\pi\)
\(384\) 7.03404 + 12.1833i 0.358954 + 0.621727i
\(385\) −24.6695 + 42.7289i −1.25728 + 2.17767i
\(386\) 9.92161 + 17.1847i 0.504997 + 0.874680i
\(387\) −1.10736 −0.0562903
\(388\) 5.65894 0.287289
\(389\) −6.02389 10.4337i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(390\) −3.27477 + 5.67207i −0.165824 + 0.287216i
\(391\) −0.430128 0.745003i −0.0217525 0.0376764i
\(392\) −12.3678 + 21.4217i −0.624669 + 1.08196i
\(393\) 10.8055 18.7157i 0.545067 0.944083i
\(394\) 7.47844 12.9530i 0.376759 0.652565i
\(395\) −12.4525 −0.626556
\(396\) 0.222339 + 0.385102i 0.0111730 + 0.0193521i
\(397\) 16.5205 + 28.6143i 0.829140 + 1.43611i 0.898714 + 0.438536i \(0.144503\pi\)
−0.0695737 + 0.997577i \(0.522164\pi\)
\(398\) 0.224697 0.389186i 0.0112630 0.0195081i
\(399\) −23.7336 −1.18817
\(400\) −2.07483 3.59371i −0.103741 0.179685i
\(401\) −23.6856 −1.18280 −0.591401 0.806378i \(-0.701425\pi\)
−0.591401 + 0.806378i \(0.701425\pi\)
\(402\) 2.45303 0.122346
\(403\) 4.81226 + 2.80038i 0.239716 + 0.139497i
\(404\) −1.89654 −0.0943566
\(405\) −41.3973 −2.05705
\(406\) −8.40854 14.5640i −0.417309 0.722800i
\(407\) 8.66865 0.429689
\(408\) 2.81587 4.87723i 0.139406 0.241459i
\(409\) −17.7737 30.7849i −0.878851 1.52222i −0.852603 0.522560i \(-0.824977\pi\)
−0.0262488 0.999655i \(-0.508356\pi\)
\(410\) 17.8384 + 30.8971i 0.880977 + 1.52590i
\(411\) −6.01213 −0.296556
\(412\) 7.09475 12.2885i 0.349533 0.605410i
\(413\) 2.00088 3.46562i 0.0984567 0.170532i
\(414\) 0.0383005 0.0663384i 0.00188237 0.00326036i
\(415\) −23.8865 41.3726i −1.17254 2.03090i
\(416\) 2.88144 4.99080i 0.141274 0.244694i
\(417\) 9.05622 + 15.6858i 0.443485 + 0.768138i
\(418\) −7.85799 −0.384347
\(419\) 23.4933 1.14772 0.573860 0.818953i \(-0.305445\pi\)
0.573860 + 0.818953i \(0.305445\pi\)
\(420\) −20.2878 35.1395i −0.989942 1.71463i
\(421\) 10.3395 17.9085i 0.503914 0.872805i −0.496076 0.868279i \(-0.665226\pi\)
0.999990 0.00452547i \(-0.00144051\pi\)
\(422\) −2.92227 5.06153i −0.142254 0.246391i
\(423\) 0.559017 0.968246i 0.0271803 0.0470777i
\(424\) 7.49549 12.9826i 0.364013 0.630490i
\(425\) −8.41657 + 14.5779i −0.408263 + 0.707133i
\(426\) 2.12067 0.102747
\(427\) 22.8170 + 39.5202i 1.10419 + 1.91252i
\(428\) 10.1041 + 17.5008i 0.488399 + 0.845932i
\(429\) 2.46582 4.27093i 0.119051 0.206202i
\(430\) 33.4546 1.61332
\(431\) −1.66248 2.87950i −0.0800787 0.138700i 0.823205 0.567745i \(-0.192184\pi\)
−0.903284 + 0.429044i \(0.858851\pi\)
\(432\) 1.44610 0.0695755
\(433\) −29.7410 −1.42926 −0.714630 0.699502i \(-0.753405\pi\)
−0.714630 + 0.699502i \(0.753405\pi\)
\(434\) 16.1598 9.25620i 0.775693 0.444312i
\(435\) 39.3249 1.88548
\(436\) 5.68859 0.272434
\(437\) −1.25359 2.17129i −0.0599675 0.103867i
\(438\) 20.5583 0.982313
\(439\) −12.0902 + 20.9409i −0.577034 + 0.999453i 0.418783 + 0.908086i \(0.362457\pi\)
−0.995817 + 0.0913666i \(0.970876\pi\)
\(440\) −17.0608 29.5501i −0.813340 1.40875i
\(441\) −0.549280 0.951381i −0.0261562 0.0453039i
\(442\) −0.966106 −0.0459530
\(443\) 8.41160 14.5693i 0.399647 0.692209i −0.594035 0.804439i \(-0.702466\pi\)
0.993682 + 0.112230i \(0.0357993\pi\)
\(444\) −3.56447 + 6.17384i −0.169162 + 0.292997i
\(445\) −5.25499 + 9.10191i −0.249111 + 0.431472i
\(446\) −0.972454 1.68434i −0.0460470 0.0797558i
\(447\) 16.1124 27.9076i 0.762092 1.31998i
\(448\) −8.50175 14.7255i −0.401670 0.695713i
\(449\) 27.2969 1.28822 0.644109 0.764934i \(-0.277228\pi\)
0.644109 + 0.764934i \(0.277228\pi\)
\(450\) −1.49890 −0.0706587
\(451\) −13.4319 23.2647i −0.632484 1.09549i
\(452\) −7.30730 + 12.6566i −0.343707 + 0.595317i
\(453\) 14.7852 + 25.6087i 0.694669 + 1.20320i
\(454\) 5.04677 8.74126i 0.236857 0.410248i
\(455\) −8.83961 + 15.3107i −0.414408 + 0.717775i
\(456\) 8.20676 14.2145i 0.384317 0.665656i
\(457\) 0.511763 0.0239393 0.0119696 0.999928i \(-0.496190\pi\)
0.0119696 + 0.999928i \(0.496190\pi\)
\(458\) 7.39069 + 12.8011i 0.345344 + 0.598154i
\(459\) −2.93306 5.08021i −0.136903 0.237124i
\(460\) 2.14317 3.71208i 0.0999259 0.173077i
\(461\) 6.73481 0.313671 0.156836 0.987625i \(-0.449871\pi\)
0.156836 + 0.987625i \(0.449871\pi\)
\(462\) −8.24764 14.2853i −0.383715 0.664614i
\(463\) 9.38450 0.436135 0.218067 0.975934i \(-0.430025\pi\)
0.218067 + 0.975934i \(0.430025\pi\)
\(464\) −1.42998 −0.0663850
\(465\) −0.149130 + 43.5475i −0.00691574 + 2.01947i
\(466\) 9.27849 0.429818
\(467\) 16.5236 0.764622 0.382311 0.924034i \(-0.375128\pi\)
0.382311 + 0.924034i \(0.375128\pi\)
\(468\) 0.0796687 + 0.137990i 0.00368269 + 0.00637860i
\(469\) 6.62148 0.305751
\(470\) −16.8885 + 29.2518i −0.779009 + 1.34928i
\(471\) −13.4482 23.2930i −0.619662 1.07329i
\(472\) 1.38375 + 2.39673i 0.0636923 + 0.110318i
\(473\) −25.1905 −1.15826
\(474\) 2.08160 3.60543i 0.0956109 0.165603i
\(475\) −24.5298 + 42.4868i −1.12550 + 1.94943i
\(476\) 2.99260 5.18333i 0.137166 0.237578i
\(477\) 0.332890 + 0.576583i 0.0152420 + 0.0263999i
\(478\) 4.50118 7.79627i 0.205879 0.356593i
\(479\) −1.66727 2.88779i −0.0761794 0.131947i 0.825419 0.564520i \(-0.190939\pi\)
−0.901599 + 0.432574i \(0.857606\pi\)
\(480\) 45.0738 2.05733
\(481\) 3.10616 0.141629
\(482\) −4.51226 7.81546i −0.205528 0.355984i
\(483\) 2.63151 4.55790i 0.119738 0.207392i
\(484\) −2.08550 3.61220i −0.0947955 0.164191i
\(485\) 9.64249 16.7013i 0.437843 0.758366i
\(486\) 0.533481 0.924017i 0.0241992 0.0419143i
\(487\) 10.1354 17.5549i 0.459277 0.795490i −0.539646 0.841892i \(-0.681442\pi\)
0.998923 + 0.0464015i \(0.0147754\pi\)
\(488\) −31.5592 −1.42862
\(489\) −1.38079 2.39160i −0.0624415 0.108152i
\(490\) 16.5944 + 28.7423i 0.749656 + 1.29844i
\(491\) −11.7204 + 20.3003i −0.528934 + 0.916141i 0.470496 + 0.882402i \(0.344075\pi\)
−0.999431 + 0.0337392i \(0.989258\pi\)
\(492\) 22.0923 0.995998
\(493\) 2.90036 + 5.02357i 0.130626 + 0.226250i
\(494\) −2.81568 −0.126684
\(495\) 1.51541 0.0681125
\(496\) 0.00542284 1.58352i 0.000243493 0.0711023i
\(497\) 5.72434 0.256772
\(498\) 15.9717 0.715707
\(499\) −4.49905 7.79258i −0.201405 0.348844i 0.747576 0.664176i \(-0.231217\pi\)
−0.948981 + 0.315332i \(0.897884\pi\)
\(500\) −55.1306 −2.46552
\(501\) −1.73528 + 3.00559i −0.0775266 + 0.134280i
\(502\) −8.21515 14.2290i −0.366660 0.635074i
\(503\) 15.1227 + 26.1933i 0.674287 + 1.16790i 0.976677 + 0.214715i \(0.0688823\pi\)
−0.302390 + 0.953184i \(0.597784\pi\)
\(504\) 1.35364 0.0602958
\(505\) −3.23160 + 5.59729i −0.143804 + 0.249076i
\(506\) 0.871269 1.50908i 0.0387326 0.0670868i
\(507\) 0.883556 1.53036i 0.0392401 0.0679658i
\(508\) −1.36974 2.37245i −0.0607722 0.105261i
\(509\) 6.70207 11.6083i 0.297064 0.514530i −0.678399 0.734694i \(-0.737326\pi\)
0.975463 + 0.220164i \(0.0706592\pi\)
\(510\) −3.77816 6.54396i −0.167300 0.289771i
\(511\) 55.4932 2.45487
\(512\) −3.21031 −0.141877
\(513\) −8.54830 14.8061i −0.377417 0.653705i
\(514\) 5.25687 9.10516i 0.231871 0.401612i
\(515\) −24.1780 41.8776i −1.06541 1.84535i
\(516\) 10.3581 17.9407i 0.455989 0.789797i
\(517\) 12.7166 22.0259i 0.559277 0.968696i
\(518\) 5.19471 8.99751i 0.228243 0.395328i
\(519\) −5.02474 −0.220561
\(520\) −6.11323 10.5884i −0.268083 0.464333i
\(521\) 1.96817 + 3.40897i 0.0862271 + 0.149350i 0.905913 0.423463i \(-0.139186\pi\)
−0.819686 + 0.572813i \(0.805852\pi\)
\(522\) −0.258261 + 0.447321i −0.0113038 + 0.0195787i
\(523\) −6.28091 −0.274645 −0.137323 0.990526i \(-0.543850\pi\)
−0.137323 + 0.990526i \(0.543850\pi\)
\(524\) 7.94180 + 13.7556i 0.346939 + 0.600916i
\(525\) −102.985 −4.49461
\(526\) 23.5797 1.02812
\(527\) −5.57399 + 3.19274i −0.242807 + 0.139078i
\(528\) −1.40261 −0.0610409
\(529\) −22.4440 −0.975827
\(530\) −10.0570 17.4192i −0.436847 0.756642i
\(531\) −0.122910 −0.00533385
\(532\) 8.72182 15.1066i 0.378139 0.654956i
\(533\) −4.81293 8.33625i −0.208471 0.361083i
\(534\) −1.75687 3.04299i −0.0760274 0.131683i
\(535\) 68.8669 2.97738
\(536\) −2.28961 + 3.96573i −0.0988963 + 0.171293i
\(537\) −18.0752 + 31.3072i −0.780003 + 1.35101i
\(538\) 2.59753 4.49905i 0.111987 0.193968i
\(539\) −12.4951 21.6422i −0.538204 0.932197i
\(540\) 14.6144 25.3128i 0.628902 1.08929i
\(541\) 0.630481 + 1.09203i 0.0271065 + 0.0469498i 0.879260 0.476341i \(-0.158037\pi\)
−0.852154 + 0.523291i \(0.824704\pi\)
\(542\) 1.21170 0.0520472
\(543\) 24.2301 1.03981
\(544\) 3.32436 + 5.75796i 0.142531 + 0.246871i
\(545\) 9.69301 16.7888i 0.415203 0.719153i
\(546\) −2.95530 5.11873i −0.126475 0.219062i
\(547\) −7.17125 + 12.4210i −0.306620 + 0.531082i −0.977621 0.210375i \(-0.932532\pi\)
0.671000 + 0.741457i \(0.265865\pi\)
\(548\) 2.20939 3.82677i 0.0943803 0.163471i
\(549\) 0.700804 1.21383i 0.0299096 0.0518049i
\(550\) −34.0973 −1.45391
\(551\) 8.45299 + 14.6410i 0.360110 + 0.623728i
\(552\) 1.81988 + 3.15212i 0.0774591 + 0.134163i
\(553\) 5.61887 9.73217i 0.238939 0.413854i
\(554\) −17.0690 −0.725191
\(555\) 12.1473 + 21.0397i 0.515623 + 0.893085i
\(556\) −13.3122 −0.564563
\(557\) −5.94358 −0.251838 −0.125919 0.992041i \(-0.540188\pi\)
−0.125919 + 0.992041i \(0.540188\pi\)
\(558\) −0.494374 0.287689i −0.0209285 0.0121788i
\(559\) −9.02627 −0.381771
\(560\) 5.02817 0.212479
\(561\) 2.84486 + 4.92744i 0.120110 + 0.208037i
\(562\) −16.7998 −0.708657
\(563\) 9.46829 16.3996i 0.399041 0.691159i −0.594567 0.804046i \(-0.702677\pi\)
0.993608 + 0.112887i \(0.0360098\pi\)
\(564\) 10.4579 + 18.1137i 0.440358 + 0.762723i
\(565\) 24.9024 + 43.1322i 1.04765 + 1.81459i
\(566\) −17.7487 −0.746035
\(567\) 18.6794 32.3537i 0.784461 1.35873i
\(568\) −1.97940 + 3.42841i −0.0830536 + 0.143853i
\(569\) 4.70474 8.14884i 0.197233 0.341617i −0.750397 0.660987i \(-0.770138\pi\)
0.947630 + 0.319370i \(0.103471\pi\)
\(570\) −11.0113 19.0721i −0.461213 0.798844i
\(571\) −18.1155 + 31.3770i −0.758111 + 1.31309i 0.185701 + 0.982606i \(0.440544\pi\)
−0.943813 + 0.330481i \(0.892789\pi\)
\(572\) 1.81232 + 3.13903i 0.0757769 + 0.131249i
\(573\) 12.6762 0.529557
\(574\) −32.1964 −1.34385
\(575\) −5.43957 9.42161i −0.226846 0.392908i
\(576\) −0.261124 + 0.452280i −0.0108802 + 0.0188450i
\(577\) 0.0752435 + 0.130326i 0.00313243 + 0.00542552i 0.867587 0.497285i \(-0.165670\pi\)
−0.864455 + 0.502710i \(0.832336\pi\)
\(578\) −6.56047 + 11.3631i −0.272880 + 0.472642i
\(579\) 20.9373 36.2645i 0.870124 1.50710i
\(580\) −14.4514 + 25.0306i −0.600063 + 1.03934i
\(581\) 43.1125 1.78861
\(582\) 3.22372 + 5.58365i 0.133628 + 0.231450i
\(583\) 7.57266 + 13.1162i 0.313628 + 0.543219i
\(584\) −19.1888 + 33.2359i −0.794037 + 1.37531i
\(585\) 0.543002 0.0224504
\(586\) 0.220849 + 0.382522i 0.00912320 + 0.0158018i
\(587\) 35.1844 1.45222 0.726108 0.687581i \(-0.241327\pi\)
0.726108 + 0.687581i \(0.241327\pi\)
\(588\) 20.5515 0.847532
\(589\) −16.2452 + 9.30513i −0.669371 + 0.383411i
\(590\) 3.71326 0.152872
\(591\) −31.5631 −1.29833
\(592\) −0.441713 0.765069i −0.0181543 0.0314441i
\(593\) −7.69506 −0.315998 −0.157999 0.987439i \(-0.550504\pi\)
−0.157999 + 0.987439i \(0.550504\pi\)
\(594\) 5.94122 10.2905i 0.243771 0.422224i
\(595\) −10.1984 17.6642i −0.418094 0.724160i
\(596\) 11.8423 + 20.5114i 0.485078 + 0.840180i
\(597\) −0.948342 −0.0388131
\(598\) 0.312194 0.540735i 0.0127666 0.0221123i
\(599\) 5.81768 10.0765i 0.237704 0.411715i −0.722351 0.691526i \(-0.756939\pi\)
0.960055 + 0.279811i \(0.0902719\pi\)
\(600\) 35.6106 61.6794i 1.45380 2.51805i
\(601\) −20.1823 34.9568i −0.823255 1.42592i −0.903246 0.429123i \(-0.858823\pi\)
0.0799911 0.996796i \(-0.474511\pi\)
\(602\) −15.0955 + 26.1461i −0.615245 + 1.06564i
\(603\) −0.101686 0.176126i −0.00414099 0.00717241i
\(604\) −21.7335 −0.884325
\(605\) −14.2143 −0.577892
\(606\) −1.08040 1.87131i −0.0438883 0.0760168i
\(607\) −9.55423 + 16.5484i −0.387794 + 0.671679i −0.992153 0.125033i \(-0.960096\pi\)
0.604358 + 0.796713i \(0.293430\pi\)
\(608\) 9.68874 + 16.7814i 0.392930 + 0.680575i
\(609\) −17.7443 + 30.7340i −0.719035 + 1.24541i
\(610\) −21.1721 + 36.6711i −0.857232 + 1.48477i
\(611\) 4.55664 7.89233i 0.184342 0.319289i
\(612\) −0.183830 −0.00743089
\(613\) 2.84581 + 4.92909i 0.114941 + 0.199084i 0.917756 0.397144i \(-0.129999\pi\)
−0.802815 + 0.596228i \(0.796665\pi\)
\(614\) 4.24347 + 7.34991i 0.171253 + 0.296618i
\(615\) 37.6439 65.2012i 1.51795 2.62917i
\(616\) 30.7928 1.24068
\(617\) 1.21982 + 2.11278i 0.0491079 + 0.0850574i 0.889534 0.456868i \(-0.151029\pi\)
−0.840427 + 0.541925i \(0.817696\pi\)
\(618\) 16.1666 0.650318
\(619\) 29.6368 1.19120 0.595601 0.803281i \(-0.296914\pi\)
0.595601 + 0.803281i \(0.296914\pi\)
\(620\) −27.6635 16.0981i −1.11099 0.646516i
\(621\) 3.79123 0.152137
\(622\) 19.6040 0.786048
\(623\) −4.74235 8.21398i −0.189998 0.329086i
\(624\) −0.502586 −0.0201195
\(625\) −57.4633 + 99.5294i −2.29853 + 3.98118i
\(626\) −11.2902 19.5551i −0.451246 0.781580i
\(627\) 8.29124 + 14.3609i 0.331120 + 0.573517i
\(628\) 19.7683 0.788840
\(629\) −1.79181 + 3.10351i −0.0714443 + 0.123745i
\(630\) 0.908112 1.57290i 0.0361801 0.0626657i
\(631\) 0.837471 1.45054i 0.0333392 0.0577452i −0.848874 0.528595i \(-0.822719\pi\)
0.882214 + 0.470849i \(0.156053\pi\)
\(632\) 3.88586 + 6.73050i 0.154571 + 0.267725i
\(633\) −6.16679 + 10.6812i −0.245108 + 0.424539i
\(634\) −7.60365 13.1699i −0.301980 0.523044i
\(635\) −9.33579 −0.370479
\(636\) −12.4552 −0.493882
\(637\) −4.47727 7.75486i −0.177396 0.307259i
\(638\) −5.87498 + 10.1758i −0.232593 + 0.402862i
\(639\) −0.0879090 0.152263i −0.00347763 0.00602343i
\(640\) −17.6182 + 30.5156i −0.696421 + 1.20624i
\(641\) −2.15900 + 3.73950i −0.0852754 + 0.147701i −0.905509 0.424328i \(-0.860510\pi\)
0.820233 + 0.572029i \(0.193844\pi\)
\(642\) −11.5120 + 19.9393i −0.454341 + 0.786941i
\(643\) 39.2702 1.54867 0.774333 0.632778i \(-0.218085\pi\)
0.774333 + 0.632778i \(0.218085\pi\)
\(644\) 1.93410 + 3.34995i 0.0762140 + 0.132007i
\(645\) −35.2991 61.1398i −1.38990 2.40738i
\(646\) 1.62425 2.81328i 0.0639052 0.110687i
\(647\) −27.1603 −1.06778 −0.533891 0.845554i \(-0.679271\pi\)
−0.533891 + 0.845554i \(0.679271\pi\)
\(648\) 12.9182 + 22.3749i 0.507473 + 0.878969i
\(649\) −2.79599 −0.109752
\(650\) −12.2178 −0.479220
\(651\) −33.9669 19.7662i −1.33127 0.774698i
\(652\) 2.02970 0.0794890
\(653\) −40.9577 −1.60280 −0.801400 0.598129i \(-0.795911\pi\)
−0.801400 + 0.598129i \(0.795911\pi\)
\(654\) 3.24061 + 5.61291i 0.126718 + 0.219482i
\(655\) 54.1294 2.11501
\(656\) −1.36885 + 2.37092i −0.0534447 + 0.0925689i
\(657\) −0.852213 1.47608i −0.0332480 0.0575872i
\(658\) −15.2410 26.3981i −0.594155 1.02911i
\(659\) −8.47471 −0.330128 −0.165064 0.986283i \(-0.552783\pi\)
−0.165064 + 0.986283i \(0.552783\pi\)
\(660\) −14.1749 + 24.5516i −0.551757 + 0.955672i
\(661\) 4.32047 7.48328i 0.168047 0.291066i −0.769686 0.638422i \(-0.779587\pi\)
0.937733 + 0.347357i \(0.112921\pi\)
\(662\) −6.41073 + 11.1037i −0.249160 + 0.431558i
\(663\) 1.01937 + 1.76561i 0.0395892 + 0.0685704i
\(664\) −14.9077 + 25.8209i −0.578530 + 1.00204i
\(665\) −29.7229 51.4816i −1.15261 1.99637i
\(666\) −0.319102 −0.0123650
\(667\) −3.74896 −0.145160
\(668\) −1.27539 2.20904i −0.0493463 0.0854703i
\(669\) −2.05214 + 3.55441i −0.0793404 + 0.137422i
\(670\) 3.07206 + 5.32096i 0.118684 + 0.205567i
\(671\) 15.9420 27.6124i 0.615436 1.06597i
\(672\) −20.3383 + 35.2270i −0.784568 + 1.35891i
\(673\) 15.4873 26.8249i 0.596993 1.03402i −0.396269 0.918134i \(-0.629695\pi\)
0.993262 0.115888i \(-0.0369713\pi\)
\(674\) 9.34941 0.360126
\(675\) −37.0926 64.2463i −1.42770 2.47284i
\(676\) 0.649392 + 1.12478i 0.0249766 + 0.0432608i
\(677\) 5.98801 10.3715i 0.230138 0.398610i −0.727711 0.685884i \(-0.759416\pi\)
0.957848 + 0.287274i \(0.0927490\pi\)
\(678\) −16.6510 −0.639477
\(679\) 8.70182 + 15.0720i 0.333945 + 0.578410i
\(680\) 14.1059 0.540935
\(681\) −21.3001 −0.816222
\(682\) −11.2461 6.54441i −0.430636 0.250598i
\(683\) −50.5559 −1.93447 −0.967234 0.253888i \(-0.918291\pi\)
−0.967234 + 0.253888i \(0.918291\pi\)
\(684\) −0.535767 −0.0204855
\(685\) −7.52932 13.0412i −0.287680 0.498277i
\(686\) −6.53753 −0.249604
\(687\) 15.5964 27.0137i 0.595038 1.03064i
\(688\) 1.28359 + 2.22324i 0.0489362 + 0.0847601i
\(689\) 2.71344 + 4.69982i 0.103374 + 0.179049i
\(690\) 4.88359 0.185915
\(691\) −2.55778 + 4.43021i −0.0973027 + 0.168533i −0.910567 0.413361i \(-0.864355\pi\)
0.813265 + 0.581894i \(0.197688\pi\)
\(692\) 1.84653 3.19829i 0.0701946 0.121581i
\(693\) −0.683786 + 1.18435i −0.0259749 + 0.0449898i
\(694\) −14.3229 24.8080i −0.543690 0.941699i
\(695\) −22.6832 + 39.2884i −0.860422 + 1.49030i
\(696\) −12.2715 21.2548i −0.465148 0.805661i
\(697\) 11.1055 0.420652
\(698\) −8.61833 −0.326209
\(699\) −9.79006 16.9569i −0.370294 0.641368i
\(700\) 37.8456 65.5505i 1.43043 2.47757i
\(701\) −11.0044 19.0602i −0.415632 0.719895i 0.579863 0.814714i \(-0.303106\pi\)
−0.995495 + 0.0948188i \(0.969773\pi\)
\(702\) 2.12886 3.68730i 0.0803487 0.139168i
\(703\) −5.22218 + 9.04508i −0.196958 + 0.341141i
\(704\) −5.94011 + 10.2886i −0.223876 + 0.387765i
\(705\) 71.2787 2.68451
\(706\) −0.0670824 0.116190i −0.00252468 0.00437288i
\(707\) −2.91634 5.05125i −0.109680 0.189972i
\(708\) 1.14969 1.99131i 0.0432078 0.0748381i
\(709\) 24.0908 0.904748 0.452374 0.891828i \(-0.350577\pi\)
0.452374 + 0.891828i \(0.350577\pi\)
\(710\) 2.65583 + 4.60003i 0.0996714 + 0.172636i
\(711\) −0.345158 −0.0129444
\(712\) 6.55935 0.245822
\(713\) 0.0142170 4.15152i 0.000532432 0.155476i
\(714\) 6.81916 0.255201
\(715\) 12.3523 0.461951
\(716\) −13.2849 23.0100i −0.496478 0.859926i
\(717\) −18.9974 −0.709471
\(718\) −1.07015 + 1.85356i −0.0399378 + 0.0691743i
\(719\) 2.69660 + 4.67065i 0.100566 + 0.174186i 0.911918 0.410372i \(-0.134601\pi\)
−0.811352 + 0.584558i \(0.801268\pi\)
\(720\) −0.0772179 0.133745i −0.00287774 0.00498439i
\(721\) 43.6388 1.62519
\(722\) −3.22135 + 5.57954i −0.119886 + 0.207649i
\(723\) −9.52208 + 16.4927i −0.354130 + 0.613371i
\(724\) −8.90429 + 15.4227i −0.330925 + 0.573179i
\(725\) 36.6791 + 63.5300i 1.36223 + 2.35945i
\(726\) 2.37609 4.11551i 0.0881850 0.152741i
\(727\) −14.4282 24.9904i −0.535113 0.926843i −0.999158 0.0410310i \(-0.986936\pi\)
0.464045 0.885812i \(-0.346398\pi\)
\(728\) 11.0337 0.408937
\(729\) 25.8074 0.955830
\(730\) 25.7463 + 44.5938i 0.952912 + 1.65049i
\(731\) 5.20688 9.01858i 0.192583 0.333564i
\(732\) 13.1104 + 22.7080i 0.484576 + 0.839310i
\(733\) −3.04248 + 5.26973i −0.112377 + 0.194642i −0.916728 0.399512i \(-0.869180\pi\)
0.804351 + 0.594154i \(0.202513\pi\)
\(734\) 11.8031 20.4436i 0.435660 0.754585i
\(735\) 35.0186 60.6540i 1.29168 2.23725i
\(736\) −4.29702 −0.158390
\(737\) −2.31319 4.00656i −0.0852073 0.147583i
\(738\) 0.494443 + 0.856400i 0.0182007 + 0.0315245i
\(739\) 19.9983 34.6381i 0.735650 1.27418i −0.218787 0.975773i \(-0.570210\pi\)
0.954437 0.298411i \(-0.0964566\pi\)
\(740\) −17.8559 −0.656396
\(741\) 2.97093 + 5.14580i 0.109140 + 0.189036i
\(742\) 18.1518 0.666372
\(743\) −31.9389 −1.17172 −0.585862 0.810411i \(-0.699244\pi\)
−0.585862 + 0.810411i \(0.699244\pi\)
\(744\) 23.5836 13.5085i 0.864617 0.495247i
\(745\) 80.7140 2.95713
\(746\) 20.2513 0.741451
\(747\) −0.662081 1.14676i −0.0242243 0.0419577i
\(748\) −4.18181 −0.152902
\(749\) −31.0743 + 53.8223i −1.13543 + 1.96662i
\(750\) −31.4062 54.3971i −1.14679 1.98630i
\(751\) 6.94224 + 12.0243i 0.253326 + 0.438773i 0.964439 0.264304i \(-0.0851422\pi\)
−0.711114 + 0.703077i \(0.751809\pi\)
\(752\) −2.59192 −0.0945174
\(753\) −17.3362 + 30.0271i −0.631766 + 1.09425i
\(754\) −2.10513 + 3.64619i −0.0766642 + 0.132786i
\(755\) −37.0326 + 64.1424i −1.34775 + 2.33438i
\(756\) 13.1887 + 22.8435i 0.479667 + 0.830808i
\(757\) 20.8327 36.0833i 0.757178 1.31147i −0.187106 0.982340i \(-0.559911\pi\)
0.944284 0.329132i \(-0.106756\pi\)
\(758\) −5.51774 9.55700i −0.200413 0.347126i
\(759\) −3.67722 −0.133475
\(760\) 41.1111 1.49126
\(761\) 11.4653 + 19.8585i 0.415616 + 0.719869i 0.995493 0.0948356i \(-0.0302325\pi\)
−0.579876 + 0.814704i \(0.696899\pi\)
\(762\) 1.56059 2.70303i 0.0565343 0.0979203i
\(763\) 8.74741 + 15.1510i 0.316678 + 0.548502i
\(764\) −4.65837 + 8.06853i −0.168534 + 0.291909i
\(765\) −0.313235 + 0.542539i −0.0113250 + 0.0196156i
\(766\) 1.56006 2.70210i 0.0563671 0.0976307i
\(767\) −1.00186 −0.0361751
\(768\) −13.4127 23.2314i −0.483988 0.838292i
\(769\) −20.1493 34.8996i −0.726601 1.25851i −0.958312 0.285725i \(-0.907765\pi\)
0.231710 0.972785i \(-0.425568\pi\)
\(770\) 20.6579 35.7806i 0.744460 1.28944i
\(771\) −22.1868 −0.799039