Properties

Label 403.2.h.b.118.5
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.5
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.5

$q$-expansion

\(f(q)\) \(=\) \(q-1.51349 q^{2} +(1.68586 + 2.92000i) q^{3} +0.290659 q^{4} +(1.24235 - 2.15182i) q^{5} +(-2.55154 - 4.41940i) q^{6} +(-1.03520 - 1.79302i) q^{7} +2.58707 q^{8} +(-4.18427 + 7.24738i) q^{9} +O(q^{10})\) \(q-1.51349 q^{2} +(1.68586 + 2.92000i) q^{3} +0.290659 q^{4} +(1.24235 - 2.15182i) q^{5} +(-2.55154 - 4.41940i) q^{6} +(-1.03520 - 1.79302i) q^{7} +2.58707 q^{8} +(-4.18427 + 7.24738i) q^{9} +(-1.88029 + 3.25676i) q^{10} +(-2.30677 + 3.99544i) q^{11} +(0.490012 + 0.848726i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(1.56677 + 2.71372i) q^{14} +8.37775 q^{15} -4.49684 q^{16} +(1.97748 + 3.42510i) q^{17} +(6.33287 - 10.9688i) q^{18} +(3.35329 + 5.80806i) q^{19} +(0.361102 - 0.625447i) q^{20} +(3.49041 - 6.04557i) q^{21} +(3.49128 - 6.04707i) q^{22} -0.227498 q^{23} +(4.36145 + 7.55426i) q^{24} +(-0.586883 - 1.01651i) q^{25} +(0.756746 - 1.31072i) q^{26} -18.1013 q^{27} +(-0.300890 - 0.521158i) q^{28} -4.45086 q^{29} -12.6797 q^{30} +(5.05901 + 2.32517i) q^{31} +1.63178 q^{32} -15.5556 q^{33} +(-2.99290 - 5.18386i) q^{34} -5.14433 q^{35} +(-1.21620 + 2.10652i) q^{36} +(0.645467 + 1.11798i) q^{37} +(-5.07517 - 8.79046i) q^{38} -3.37173 q^{39} +(3.21406 - 5.56691i) q^{40} +(4.59513 - 7.95900i) q^{41} +(-5.28271 + 9.14992i) q^{42} +(1.49555 + 2.59037i) q^{43} +(-0.670484 + 1.16131i) q^{44} +(10.3967 + 18.0076i) q^{45} +0.344317 q^{46} -3.11747 q^{47} +(-7.58105 - 13.1308i) q^{48} +(1.35672 - 2.34992i) q^{49} +(0.888243 + 1.53848i) q^{50} +(-6.66753 + 11.5485i) q^{51} +(-0.145330 + 0.251718i) q^{52} +(3.23762 - 5.60773i) q^{53} +27.3962 q^{54} +(5.73164 + 9.92749i) q^{55} +(-2.67814 - 4.63867i) q^{56} +(-11.3064 + 19.5832i) q^{57} +6.73634 q^{58} +(-1.62720 - 2.81840i) q^{59} +2.43507 q^{60} -4.21429 q^{61} +(-7.65678 - 3.51912i) q^{62} +17.3262 q^{63} +6.52399 q^{64} +(1.24235 + 2.15182i) q^{65} +23.5433 q^{66} +(0.269832 - 0.467363i) q^{67} +(0.574773 + 0.995537i) q^{68} +(-0.383531 - 0.664295i) q^{69} +7.78591 q^{70} +(4.67631 - 8.09961i) q^{71} +(-10.8250 + 18.7495i) q^{72} +(1.94675 - 3.37187i) q^{73} +(-0.976909 - 1.69206i) q^{74} +(1.97881 - 3.42740i) q^{75} +(0.974665 + 1.68817i) q^{76} +9.55186 q^{77} +5.10308 q^{78} +(7.79892 + 13.5081i) q^{79} +(-5.58666 + 9.67638i) q^{80} +(-17.9635 - 31.1137i) q^{81} +(-6.95469 + 12.0459i) q^{82} +(6.02645 - 10.4381i) q^{83} +(1.01452 - 1.75720i) q^{84} +9.82692 q^{85} +(-2.26350 - 3.92050i) q^{86} +(-7.50354 - 12.9965i) q^{87} +(-5.96778 + 10.3365i) q^{88} -10.7386 q^{89} +(-15.7353 - 27.2544i) q^{90} +2.07040 q^{91} -0.0661245 q^{92} +(1.73931 + 18.6922i) q^{93} +4.71826 q^{94} +16.6639 q^{95} +(2.75096 + 4.76480i) q^{96} +3.72894 q^{97} +(-2.05339 + 3.55658i) q^{98} +(-19.3043 - 33.4360i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.51349 −1.07020 −0.535100 0.844788i \(-0.679726\pi\)
−0.535100 + 0.844788i \(0.679726\pi\)
\(3\) 1.68586 + 2.92000i 0.973334 + 1.68586i 0.685327 + 0.728236i \(0.259659\pi\)
0.288007 + 0.957628i \(0.407007\pi\)
\(4\) 0.290659 0.145330
\(5\) 1.24235 2.15182i 0.555597 0.962323i −0.442260 0.896887i \(-0.645823\pi\)
0.997857 0.0654356i \(-0.0208437\pi\)
\(6\) −2.55154 4.41940i −1.04166 1.80421i
\(7\) −1.03520 1.79302i −0.391269 0.677697i 0.601349 0.798987i \(-0.294630\pi\)
−0.992617 + 0.121290i \(0.961297\pi\)
\(8\) 2.58707 0.914669
\(9\) −4.18427 + 7.24738i −1.39476 + 2.41579i
\(10\) −1.88029 + 3.25676i −0.594601 + 1.02988i
\(11\) −2.30677 + 3.99544i −0.695517 + 1.20467i 0.274489 + 0.961590i \(0.411491\pi\)
−0.970006 + 0.243080i \(0.921842\pi\)
\(12\) 0.490012 + 0.848726i 0.141454 + 0.245006i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 1.56677 + 2.71372i 0.418736 + 0.725272i
\(15\) 8.37775 2.16313
\(16\) −4.49684 −1.12421
\(17\) 1.97748 + 3.42510i 0.479609 + 0.830708i 0.999726 0.0233871i \(-0.00744502\pi\)
−0.520117 + 0.854095i \(0.674112\pi\)
\(18\) 6.33287 10.9688i 1.49267 2.58538i
\(19\) 3.35329 + 5.80806i 0.769297 + 1.33246i 0.937945 + 0.346785i \(0.112727\pi\)
−0.168648 + 0.985676i \(0.553940\pi\)
\(20\) 0.361102 0.625447i 0.0807448 0.139854i
\(21\) 3.49041 6.04557i 0.761670 1.31925i
\(22\) 3.49128 6.04707i 0.744343 1.28924i
\(23\) −0.227498 −0.0474366 −0.0237183 0.999719i \(-0.507550\pi\)
−0.0237183 + 0.999719i \(0.507550\pi\)
\(24\) 4.36145 + 7.55426i 0.890278 + 1.54201i
\(25\) −0.586883 1.01651i −0.117377 0.203302i
\(26\) 0.756746 1.31072i 0.148410 0.257054i
\(27\) −18.1013 −3.48359
\(28\) −0.300890 0.521158i −0.0568630 0.0984895i
\(29\) −4.45086 −0.826504 −0.413252 0.910617i \(-0.635607\pi\)
−0.413252 + 0.910617i \(0.635607\pi\)
\(30\) −12.6797 −2.31498
\(31\) 5.05901 + 2.32517i 0.908625 + 0.417612i
\(32\) 1.63178 0.288461
\(33\) −15.5556 −2.70788
\(34\) −2.99290 5.18386i −0.513278 0.889024i
\(35\) −5.14433 −0.869551
\(36\) −1.21620 + 2.10652i −0.202700 + 0.351086i
\(37\) 0.645467 + 1.11798i 0.106114 + 0.183795i 0.914193 0.405279i \(-0.132826\pi\)
−0.808079 + 0.589074i \(0.799492\pi\)
\(38\) −5.07517 8.79046i −0.823302 1.42600i
\(39\) −3.37173 −0.539909
\(40\) 3.21406 5.56691i 0.508187 0.880207i
\(41\) 4.59513 7.95900i 0.717639 1.24299i −0.244294 0.969701i \(-0.578556\pi\)
0.961933 0.273285i \(-0.0881103\pi\)
\(42\) −5.28271 + 9.14992i −0.815140 + 1.41186i
\(43\) 1.49555 + 2.59037i 0.228069 + 0.395027i 0.957236 0.289309i \(-0.0934255\pi\)
−0.729167 + 0.684336i \(0.760092\pi\)
\(44\) −0.670484 + 1.16131i −0.101079 + 0.175074i
\(45\) 10.3967 + 18.0076i 1.54985 + 2.68441i
\(46\) 0.344317 0.0507667
\(47\) −3.11747 −0.454729 −0.227365 0.973810i \(-0.573011\pi\)
−0.227365 + 0.973810i \(0.573011\pi\)
\(48\) −7.58105 13.1308i −1.09423 1.89526i
\(49\) 1.35672 2.34992i 0.193818 0.335702i
\(50\) 0.888243 + 1.53848i 0.125617 + 0.217574i
\(51\) −6.66753 + 11.5485i −0.933640 + 1.61711i
\(52\) −0.145330 + 0.251718i −0.0201536 + 0.0349071i
\(53\) 3.23762 5.60773i 0.444722 0.770281i −0.553311 0.832975i \(-0.686636\pi\)
0.998033 + 0.0626940i \(0.0199692\pi\)
\(54\) 27.3962 3.72814
\(55\) 5.73164 + 9.92749i 0.772854 + 1.33862i
\(56\) −2.67814 4.63867i −0.357881 0.619868i
\(57\) −11.3064 + 19.5832i −1.49757 + 2.59386i
\(58\) 6.73634 0.884525
\(59\) −1.62720 2.81840i −0.211844 0.366924i 0.740448 0.672114i \(-0.234614\pi\)
−0.952292 + 0.305190i \(0.901280\pi\)
\(60\) 2.43507 0.314367
\(61\) −4.21429 −0.539585 −0.269793 0.962918i \(-0.586955\pi\)
−0.269793 + 0.962918i \(0.586955\pi\)
\(62\) −7.65678 3.51912i −0.972411 0.446929i
\(63\) 17.3262 2.18290
\(64\) 6.52399 0.815498
\(65\) 1.24235 + 2.15182i 0.154095 + 0.266900i
\(66\) 23.5433 2.89798
\(67\) 0.269832 0.467363i 0.0329653 0.0570975i −0.849072 0.528277i \(-0.822838\pi\)
0.882037 + 0.471179i \(0.156172\pi\)
\(68\) 0.574773 + 0.995537i 0.0697015 + 0.120727i
\(69\) −0.383531 0.664295i −0.0461717 0.0799717i
\(70\) 7.78591 0.930594
\(71\) 4.67631 8.09961i 0.554976 0.961247i −0.442929 0.896557i \(-0.646061\pi\)
0.997905 0.0646907i \(-0.0206061\pi\)
\(72\) −10.8250 + 18.7495i −1.27574 + 2.20965i
\(73\) 1.94675 3.37187i 0.227850 0.394648i −0.729321 0.684172i \(-0.760164\pi\)
0.957171 + 0.289524i \(0.0934970\pi\)
\(74\) −0.976909 1.69206i −0.113563 0.196698i
\(75\) 1.97881 3.42740i 0.228493 0.395762i
\(76\) 0.974665 + 1.68817i 0.111802 + 0.193646i
\(77\) 9.55186 1.08854
\(78\) 5.10308 0.577811
\(79\) 7.79892 + 13.5081i 0.877447 + 1.51978i 0.854133 + 0.520055i \(0.174088\pi\)
0.0233142 + 0.999728i \(0.492578\pi\)
\(80\) −5.58666 + 9.67638i −0.624607 + 1.08185i
\(81\) −17.9635 31.1137i −1.99594 3.45707i
\(82\) −6.95469 + 12.0459i −0.768017 + 1.33025i
\(83\) 6.02645 10.4381i 0.661489 1.14573i −0.318735 0.947844i \(-0.603258\pi\)
0.980224 0.197889i \(-0.0634086\pi\)
\(84\) 1.01452 1.75720i 0.110693 0.191726i
\(85\) 9.82692 1.06588
\(86\) −2.26350 3.92050i −0.244080 0.422758i
\(87\) −7.50354 12.9965i −0.804464 1.39337i
\(88\) −5.96778 + 10.3365i −0.636167 + 1.10187i
\(89\) −10.7386 −1.13829 −0.569144 0.822238i \(-0.692725\pi\)
−0.569144 + 0.822238i \(0.692725\pi\)
\(90\) −15.7353 27.2544i −1.65865 2.87286i
\(91\) 2.07040 0.217037
\(92\) −0.0661245 −0.00689395
\(93\) 1.73931 + 18.6922i 0.180358 + 1.93829i
\(94\) 4.71826 0.486651
\(95\) 16.6639 1.70968
\(96\) 2.75096 + 4.76480i 0.280768 + 0.486305i
\(97\) 3.72894 0.378616 0.189308 0.981918i \(-0.439376\pi\)
0.189308 + 0.981918i \(0.439376\pi\)
\(98\) −2.05339 + 3.55658i −0.207424 + 0.359269i
\(99\) −19.3043 33.4360i −1.94015 3.36045i
\(100\) −0.170583 0.295459i −0.0170583 0.0295459i
\(101\) −3.42045 −0.340348 −0.170174 0.985414i \(-0.554433\pi\)
−0.170174 + 0.985414i \(0.554433\pi\)
\(102\) 10.0912 17.4786i 0.999183 1.73064i
\(103\) 6.30533 10.9212i 0.621283 1.07609i −0.367965 0.929840i \(-0.619945\pi\)
0.989247 0.146253i \(-0.0467214\pi\)
\(104\) −1.29354 + 2.24047i −0.126842 + 0.219696i
\(105\) −8.67264 15.0215i −0.846363 1.46594i
\(106\) −4.90012 + 8.48726i −0.475942 + 0.824355i
\(107\) −4.00423 6.93552i −0.387103 0.670482i 0.604955 0.796259i \(-0.293191\pi\)
−0.992059 + 0.125777i \(0.959858\pi\)
\(108\) −5.26131 −0.506270
\(109\) −6.40774 −0.613750 −0.306875 0.951750i \(-0.599283\pi\)
−0.306875 + 0.951750i \(0.599283\pi\)
\(110\) −8.67480 15.0252i −0.827109 1.43260i
\(111\) −2.17634 + 3.76953i −0.206569 + 0.357788i
\(112\) 4.65512 + 8.06291i 0.439868 + 0.761873i
\(113\) −2.09670 + 3.63160i −0.197241 + 0.341632i −0.947633 0.319362i \(-0.896532\pi\)
0.750392 + 0.660993i \(0.229865\pi\)
\(114\) 17.1121 29.6390i 1.60270 2.77595i
\(115\) −0.282633 + 0.489535i −0.0263557 + 0.0456493i
\(116\) −1.29368 −0.120116
\(117\) −4.18427 7.24738i −0.386836 0.670020i
\(118\) 2.46276 + 4.26563i 0.226716 + 0.392683i
\(119\) 4.09417 7.09131i 0.375312 0.650060i
\(120\) 21.6739 1.97854
\(121\) −5.14236 8.90682i −0.467487 0.809711i
\(122\) 6.37830 0.577464
\(123\) 30.9870 2.79401
\(124\) 1.47045 + 0.675832i 0.132050 + 0.0606915i
\(125\) 9.50707 0.850338
\(126\) −26.2231 −2.33614
\(127\) 6.94088 + 12.0220i 0.615904 + 1.06678i 0.990225 + 0.139478i \(0.0445424\pi\)
−0.374321 + 0.927299i \(0.622124\pi\)
\(128\) −13.1376 −1.16121
\(129\) −5.04258 + 8.73401i −0.443975 + 0.768987i
\(130\) −1.88029 3.25676i −0.164913 0.285637i
\(131\) 10.0475 + 17.4027i 0.877851 + 1.52048i 0.853694 + 0.520775i \(0.174357\pi\)
0.0241576 + 0.999708i \(0.492310\pi\)
\(132\) −4.52138 −0.393535
\(133\) 6.94264 12.0250i 0.602003 1.04270i
\(134\) −0.408389 + 0.707351i −0.0352795 + 0.0611058i
\(135\) −22.4882 + 38.9507i −1.93547 + 3.35234i
\(136\) 5.11589 + 8.86098i 0.438684 + 0.759823i
\(137\) −0.619096 + 1.07231i −0.0528930 + 0.0916133i −0.891260 0.453493i \(-0.850178\pi\)
0.838367 + 0.545107i \(0.183511\pi\)
\(138\) 0.580471 + 1.00540i 0.0494130 + 0.0855858i
\(139\) −1.63014 −0.138267 −0.0691335 0.997607i \(-0.522023\pi\)
−0.0691335 + 0.997607i \(0.522023\pi\)
\(140\) −1.49525 −0.126372
\(141\) −5.25562 9.10300i −0.442603 0.766611i
\(142\) −7.07757 + 12.2587i −0.593936 + 1.02873i
\(143\) −2.30677 3.99544i −0.192902 0.334115i
\(144\) 18.8160 32.5903i 1.56800 2.71585i
\(145\) −5.52954 + 9.57744i −0.459203 + 0.795364i
\(146\) −2.94640 + 5.10331i −0.243845 + 0.422353i
\(147\) 9.14901 0.754598
\(148\) 0.187611 + 0.324952i 0.0154215 + 0.0267109i
\(149\) −10.4825 18.1562i −0.858759 1.48741i −0.873113 0.487517i \(-0.837903\pi\)
0.0143541 0.999897i \(-0.495431\pi\)
\(150\) −2.99491 + 5.18734i −0.244534 + 0.423545i
\(151\) −0.0776759 −0.00632118 −0.00316059 0.999995i \(-0.501006\pi\)
−0.00316059 + 0.999995i \(0.501006\pi\)
\(152\) 8.67520 + 15.0259i 0.703652 + 1.21876i
\(153\) −33.0973 −2.67576
\(154\) −14.4567 −1.16495
\(155\) 11.2884 7.99740i 0.906708 0.642366i
\(156\) −0.980025 −0.0784648
\(157\) 1.52670 0.121844 0.0609220 0.998143i \(-0.480596\pi\)
0.0609220 + 0.998143i \(0.480596\pi\)
\(158\) −11.8036 20.4444i −0.939045 1.62647i
\(159\) 21.8328 1.73145
\(160\) 2.02725 3.51129i 0.160268 0.277592i
\(161\) 0.235506 + 0.407908i 0.0185605 + 0.0321477i
\(162\) 27.1876 + 47.0903i 2.13606 + 3.69976i
\(163\) 20.0274 1.56867 0.784334 0.620338i \(-0.213005\pi\)
0.784334 + 0.620338i \(0.213005\pi\)
\(164\) 1.33562 2.31336i 0.104294 0.180643i
\(165\) −19.3255 + 33.4728i −1.50449 + 2.60585i
\(166\) −9.12099 + 15.7980i −0.707926 + 1.22616i
\(167\) 10.6277 + 18.4076i 0.822392 + 1.42443i 0.903896 + 0.427752i \(0.140694\pi\)
−0.0815038 + 0.996673i \(0.525972\pi\)
\(168\) 9.02995 15.6403i 0.696676 1.20668i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −14.8730 −1.14070
\(171\) −56.1243 −4.29193
\(172\) 0.434695 + 0.752915i 0.0331452 + 0.0574092i
\(173\) −9.27090 + 16.0577i −0.704853 + 1.22084i 0.261891 + 0.965097i \(0.415654\pi\)
−0.966744 + 0.255744i \(0.917679\pi\)
\(174\) 11.3566 + 19.6701i 0.860938 + 1.49119i
\(175\) −1.21508 + 2.10458i −0.0918516 + 0.159092i
\(176\) 10.3732 17.9668i 0.781906 1.35430i
\(177\) 5.48649 9.50288i 0.412390 0.714280i
\(178\) 16.2528 1.21820
\(179\) −11.0054 19.0620i −0.822584 1.42476i −0.903751 0.428058i \(-0.859198\pi\)
0.0811670 0.996701i \(-0.474135\pi\)
\(180\) 3.02190 + 5.23408i 0.225239 + 0.390125i
\(181\) 0.0848474 0.146960i 0.00630665 0.0109234i −0.862855 0.505452i \(-0.831326\pi\)
0.869162 + 0.494528i \(0.164659\pi\)
\(182\) −3.13353 −0.232273
\(183\) −7.10473 12.3057i −0.525196 0.909667i
\(184\) −0.588554 −0.0433888
\(185\) 3.20759 0.235827
\(186\) −2.63243 28.2906i −0.193019 2.07436i
\(187\) −18.2464 −1.33431
\(188\) −0.906121 −0.0660856
\(189\) 18.7384 + 32.4559i 1.36302 + 2.36082i
\(190\) −25.2206 −1.82970
\(191\) 7.08863 12.2779i 0.512915 0.888395i −0.486972 0.873417i \(-0.661899\pi\)
0.999888 0.0149782i \(-0.00476787\pi\)
\(192\) 10.9986 + 19.0501i 0.793752 + 1.37482i
\(193\) 3.40474 + 5.89718i 0.245079 + 0.424489i 0.962154 0.272507i \(-0.0878529\pi\)
−0.717075 + 0.696996i \(0.754520\pi\)
\(194\) −5.64372 −0.405195
\(195\) −4.18888 + 7.25535i −0.299972 + 0.519566i
\(196\) 0.394345 0.683025i 0.0281675 0.0487875i
\(197\) 11.7086 20.2799i 0.834205 1.44489i −0.0604713 0.998170i \(-0.519260\pi\)
0.894676 0.446715i \(-0.147406\pi\)
\(198\) 29.2169 + 50.6052i 2.07636 + 3.59635i
\(199\) 3.85860 6.68330i 0.273529 0.473766i −0.696234 0.717815i \(-0.745142\pi\)
0.969763 + 0.244049i \(0.0784756\pi\)
\(200\) −1.51831 2.62979i −0.107361 0.185954i
\(201\) 1.81960 0.128345
\(202\) 5.17683 0.364240
\(203\) 4.60753 + 7.98047i 0.323385 + 0.560119i
\(204\) −1.93798 + 3.35668i −0.135686 + 0.235015i
\(205\) −11.4175 19.7758i −0.797436 1.38120i
\(206\) −9.54307 + 16.5291i −0.664897 + 1.15164i
\(207\) 0.951914 1.64876i 0.0661626 0.114597i
\(208\) 2.24842 3.89437i 0.155900 0.270026i
\(209\) −30.9410 −2.14024
\(210\) 13.1260 + 22.7349i 0.905779 + 1.56885i
\(211\) 2.07315 + 3.59080i 0.142721 + 0.247201i 0.928520 0.371281i \(-0.121081\pi\)
−0.785799 + 0.618482i \(0.787748\pi\)
\(212\) 0.941046 1.62994i 0.0646313 0.111945i
\(213\) 31.5345 2.16071
\(214\) 6.06037 + 10.4969i 0.414278 + 0.717551i
\(215\) 7.43200 0.506858
\(216\) −46.8294 −3.18633
\(217\) −1.06802 11.4779i −0.0725018 0.779171i
\(218\) 9.69806 0.656836
\(219\) 13.1278 0.887097
\(220\) 1.66596 + 2.88552i 0.112319 + 0.194542i
\(221\) −3.95496 −0.266039
\(222\) 3.29387 5.70515i 0.221070 0.382905i
\(223\) 5.43039 + 9.40572i 0.363646 + 0.629853i 0.988558 0.150842i \(-0.0481984\pi\)
−0.624912 + 0.780695i \(0.714865\pi\)
\(224\) −1.68922 2.92581i −0.112866 0.195489i
\(225\) 9.82272 0.654848
\(226\) 3.17334 5.49639i 0.211088 0.365615i
\(227\) −1.07379 + 1.85985i −0.0712696 + 0.123443i −0.899458 0.437007i \(-0.856038\pi\)
0.828188 + 0.560450i \(0.189372\pi\)
\(228\) −3.28630 + 5.69205i −0.217641 + 0.376965i
\(229\) −8.06398 13.9672i −0.532883 0.922980i −0.999263 0.0383953i \(-0.987775\pi\)
0.466380 0.884584i \(-0.345558\pi\)
\(230\) 0.427763 0.740907i 0.0282058 0.0488540i
\(231\) 16.1031 + 27.8914i 1.05951 + 1.83512i
\(232\) −11.5147 −0.755977
\(233\) −9.52903 −0.624268 −0.312134 0.950038i \(-0.601044\pi\)
−0.312134 + 0.950038i \(0.601044\pi\)
\(234\) 6.33287 + 10.9688i 0.413992 + 0.717056i
\(235\) −3.87299 + 6.70822i −0.252646 + 0.437596i
\(236\) −0.472962 0.819195i −0.0307872 0.0533250i
\(237\) −26.2958 + 45.5457i −1.70810 + 2.95851i
\(238\) −6.19650 + 10.7327i −0.401659 + 0.695694i
\(239\) −4.49601 + 7.78732i −0.290823 + 0.503720i −0.974005 0.226528i \(-0.927262\pi\)
0.683182 + 0.730248i \(0.260596\pi\)
\(240\) −37.6734 −2.43181
\(241\) 10.6597 + 18.4631i 0.686649 + 1.18931i 0.972915 + 0.231161i \(0.0742525\pi\)
−0.286266 + 0.958150i \(0.592414\pi\)
\(242\) 7.78292 + 13.4804i 0.500305 + 0.866554i
\(243\) 33.4160 57.8783i 2.14364 3.71289i
\(244\) −1.22492 −0.0784177
\(245\) −3.37106 5.83885i −0.215369 0.373031i
\(246\) −46.8987 −2.99015
\(247\) −6.70657 −0.426729
\(248\) 13.0880 + 6.01538i 0.831091 + 0.381977i
\(249\) 40.6391 2.57540
\(250\) −14.3889 −0.910032
\(251\) −0.497471 0.861645i −0.0314001 0.0543866i 0.849898 0.526947i \(-0.176663\pi\)
−0.881298 + 0.472560i \(0.843330\pi\)
\(252\) 5.03603 0.317240
\(253\) 0.524785 0.908955i 0.0329930 0.0571455i
\(254\) −10.5050 18.1952i −0.659141 1.14167i
\(255\) 16.5668 + 28.6946i 1.03746 + 1.79693i
\(256\) 6.83563 0.427227
\(257\) −13.1651 + 22.8026i −0.821216 + 1.42239i 0.0835617 + 0.996503i \(0.473370\pi\)
−0.904777 + 0.425885i \(0.859963\pi\)
\(258\) 7.63191 13.2189i 0.475142 0.822970i
\(259\) 1.33637 2.31467i 0.0830382 0.143826i
\(260\) 0.361102 + 0.625447i 0.0223946 + 0.0387885i
\(261\) 18.6236 32.2571i 1.15277 1.99666i
\(262\) −15.2068 26.3389i −0.939477 1.62722i
\(263\) 6.63694 0.409251 0.204626 0.978840i \(-0.434402\pi\)
0.204626 + 0.978840i \(0.434402\pi\)
\(264\) −40.2435 −2.47681
\(265\) −8.04454 13.9336i −0.494172 0.855932i
\(266\) −10.5076 + 18.1998i −0.644264 + 1.11590i
\(267\) −18.1038 31.3567i −1.10793 1.91900i
\(268\) 0.0784293 0.135844i 0.00479083 0.00829797i
\(269\) 6.97798 12.0862i 0.425455 0.736910i −0.571008 0.820945i \(-0.693447\pi\)
0.996463 + 0.0840350i \(0.0267808\pi\)
\(270\) 34.0357 58.9516i 2.07135 3.58768i
\(271\) −9.87890 −0.600101 −0.300050 0.953923i \(-0.597003\pi\)
−0.300050 + 0.953923i \(0.597003\pi\)
\(272\) −8.89240 15.4021i −0.539181 0.933889i
\(273\) 3.49041 + 6.04557i 0.211249 + 0.365894i
\(274\) 0.936998 1.62293i 0.0566061 0.0980447i
\(275\) 5.41521 0.326550
\(276\) −0.111477 0.193084i −0.00671012 0.0116223i
\(277\) 21.2475 1.27664 0.638318 0.769772i \(-0.279630\pi\)
0.638318 + 0.769772i \(0.279630\pi\)
\(278\) 2.46721 0.147974
\(279\) −38.0196 + 26.9354i −2.27618 + 1.61258i
\(280\) −13.3088 −0.795351
\(281\) −7.20545 −0.429841 −0.214921 0.976632i \(-0.568949\pi\)
−0.214921 + 0.976632i \(0.568949\pi\)
\(282\) 7.95434 + 13.7773i 0.473674 + 0.820428i
\(283\) −8.50797 −0.505747 −0.252873 0.967499i \(-0.581376\pi\)
−0.252873 + 0.967499i \(0.581376\pi\)
\(284\) 1.35922 2.35423i 0.0806546 0.139698i
\(285\) 28.0930 + 48.6585i 1.66409 + 2.88228i
\(286\) 3.49128 + 6.04707i 0.206443 + 0.357571i
\(287\) −19.0275 −1.12316
\(288\) −6.82781 + 11.8261i −0.402333 + 0.696861i
\(289\) 0.679143 1.17631i 0.0399496 0.0691947i
\(290\) 8.36892 14.4954i 0.491440 0.851199i
\(291\) 6.28648 + 10.8885i 0.368520 + 0.638295i
\(292\) 0.565842 0.980067i 0.0331134 0.0573541i
\(293\) −0.756852 1.31091i −0.0442158 0.0765839i 0.843071 0.537803i \(-0.180746\pi\)
−0.887286 + 0.461219i \(0.847412\pi\)
\(294\) −13.8470 −0.807571
\(295\) −8.08625 −0.470800
\(296\) 1.66987 + 2.89230i 0.0970592 + 0.168112i
\(297\) 41.7555 72.3226i 2.42290 4.19658i
\(298\) 15.8652 + 27.4793i 0.919045 + 1.59183i
\(299\) 0.113749 0.197019i 0.00657828 0.0113939i
\(300\) 0.575160 0.996206i 0.0332069 0.0575160i
\(301\) 3.09638 5.36309i 0.178473 0.309123i
\(302\) 0.117562 0.00676493
\(303\) −5.76642 9.98773i −0.331272 0.573780i
\(304\) −15.0792 26.1179i −0.864850 1.49796i
\(305\) −5.23564 + 9.06840i −0.299792 + 0.519255i
\(306\) 50.0925 2.86360
\(307\) −13.8161 23.9302i −0.788527 1.36577i −0.926869 0.375384i \(-0.877511\pi\)
0.138342 0.990384i \(-0.455823\pi\)
\(308\) 2.77634 0.158197
\(309\) 42.5197 2.41886
\(310\) −17.0849 + 12.1040i −0.970359 + 0.687461i
\(311\) 0.509613 0.0288975 0.0144488 0.999896i \(-0.495401\pi\)
0.0144488 + 0.999896i \(0.495401\pi\)
\(312\) −8.72291 −0.493837
\(313\) 4.14898 + 7.18624i 0.234514 + 0.406190i 0.959131 0.282961i \(-0.0913168\pi\)
−0.724617 + 0.689152i \(0.757983\pi\)
\(314\) −2.31065 −0.130398
\(315\) 21.5253 37.2829i 1.21281 2.10065i
\(316\) 2.26683 + 3.92626i 0.127519 + 0.220870i
\(317\) −5.13601 8.89583i −0.288467 0.499640i 0.684977 0.728565i \(-0.259812\pi\)
−0.973444 + 0.228925i \(0.926479\pi\)
\(318\) −33.0437 −1.85300
\(319\) 10.2671 17.7831i 0.574847 0.995665i
\(320\) 8.10510 14.0384i 0.453089 0.784772i
\(321\) 13.5012 23.3847i 0.753561 1.30521i
\(322\) −0.356436 0.617366i −0.0198634 0.0344044i
\(323\) −13.2621 + 22.9707i −0.737924 + 1.27812i
\(324\) −5.22125 9.04348i −0.290070 0.502415i
\(325\) 1.17377 0.0651088
\(326\) −30.3114 −1.67879
\(327\) −10.8026 18.7106i −0.597384 1.03470i
\(328\) 11.8879 20.5905i 0.656402 1.13692i
\(329\) 3.22720 + 5.58967i 0.177921 + 0.308168i
\(330\) 29.2491 50.6608i 1.61011 2.78879i
\(331\) 13.0318 22.5717i 0.716290 1.24065i −0.246169 0.969227i \(-0.579172\pi\)
0.962460 0.271424i \(-0.0874947\pi\)
\(332\) 1.75165 3.03394i 0.0961341 0.166509i
\(333\) −10.8032 −0.592014
\(334\) −16.0849 27.8598i −0.880125 1.52442i
\(335\) −0.670454 1.16126i −0.0366308 0.0634465i
\(336\) −15.6958 + 27.1859i −0.856276 + 1.48311i
\(337\) −6.86791 −0.374119 −0.187059 0.982349i \(-0.559896\pi\)
−0.187059 + 0.982349i \(0.559896\pi\)
\(338\) 0.756746 + 1.31072i 0.0411616 + 0.0712939i
\(339\) −14.1390 −0.767926
\(340\) 2.85629 0.154904
\(341\) −20.9600 + 14.8494i −1.13505 + 0.804137i
\(342\) 84.9437 4.59323
\(343\) −20.1107 −1.08588
\(344\) 3.86910 + 6.70147i 0.208608 + 0.361319i
\(345\) −1.90592 −0.102611
\(346\) 14.0314 24.3032i 0.754335 1.30655i
\(347\) −0.184403 0.319396i −0.00989929 0.0171461i 0.861033 0.508549i \(-0.169818\pi\)
−0.870933 + 0.491402i \(0.836484\pi\)
\(348\) −2.18098 3.77756i −0.116913 0.202499i
\(349\) −14.9318 −0.799279 −0.399640 0.916672i \(-0.630865\pi\)
−0.399640 + 0.916672i \(0.630865\pi\)
\(350\) 1.83902 3.18527i 0.0982996 0.170260i
\(351\) 9.05064 15.6762i 0.483087 0.836732i
\(352\) −3.76414 + 6.51968i −0.200629 + 0.347500i
\(353\) 10.2030 + 17.6721i 0.543050 + 0.940591i 0.998727 + 0.0504455i \(0.0160641\pi\)
−0.455676 + 0.890146i \(0.650603\pi\)
\(354\) −8.30376 + 14.3825i −0.441340 + 0.764423i
\(355\) −11.6193 20.1252i −0.616687 1.06813i
\(356\) −3.12127 −0.165427
\(357\) 27.6089 1.46122
\(358\) 16.6566 + 28.8501i 0.880331 + 1.52478i
\(359\) −0.527237 + 0.913201i −0.0278265 + 0.0481969i −0.879603 0.475708i \(-0.842192\pi\)
0.851777 + 0.523905i \(0.175525\pi\)
\(360\) 26.8970 + 46.5870i 1.41760 + 2.45535i
\(361\) −12.9891 + 22.4977i −0.683635 + 1.18409i
\(362\) −0.128416 + 0.222423i −0.00674939 + 0.0116903i
\(363\) 17.3386 30.0314i 0.910042 1.57624i
\(364\) 0.601781 0.0315419
\(365\) −4.83711 8.37812i −0.253186 0.438531i
\(366\) 10.7529 + 18.6247i 0.562066 + 0.973526i
\(367\) −3.27934 + 5.67998i −0.171180 + 0.296493i −0.938833 0.344374i \(-0.888091\pi\)
0.767653 + 0.640866i \(0.221425\pi\)
\(368\) 1.02302 0.0533287
\(369\) 38.4546 + 66.6052i 2.00186 + 3.46733i
\(370\) −4.85466 −0.252382
\(371\) −13.4063 −0.696023
\(372\) 0.505547 + 5.43308i 0.0262114 + 0.281692i
\(373\) −28.6295 −1.48238 −0.741189 0.671296i \(-0.765738\pi\)
−0.741189 + 0.671296i \(0.765738\pi\)
\(374\) 27.6157 1.42797
\(375\) 16.0276 + 27.7607i 0.827663 + 1.43355i
\(376\) −8.06511 −0.415926
\(377\) 2.22543 3.85456i 0.114615 0.198520i
\(378\) −28.3605 49.1218i −1.45871 2.52655i
\(379\) −2.09363 3.62626i −0.107542 0.186269i 0.807232 0.590235i \(-0.200965\pi\)
−0.914774 + 0.403966i \(0.867631\pi\)
\(380\) 4.84351 0.248467
\(381\) −23.4028 + 40.5348i −1.19896 + 2.07666i
\(382\) −10.7286 + 18.5825i −0.548922 + 0.950762i
\(383\) −2.03964 + 3.53276i −0.104221 + 0.180515i −0.913420 0.407019i \(-0.866568\pi\)
0.809199 + 0.587535i \(0.199901\pi\)
\(384\) −22.1481 38.3617i −1.13024 1.95764i
\(385\) 11.8668 20.5539i 0.604787 1.04752i
\(386\) −5.15305 8.92534i −0.262283 0.454288i
\(387\) −25.0311 −1.27240
\(388\) 1.08385 0.0550242
\(389\) 1.52561 + 2.64244i 0.0773517 + 0.133977i 0.902107 0.431513i \(-0.142020\pi\)
−0.824755 + 0.565490i \(0.808687\pi\)
\(390\) 6.33983 10.9809i 0.321030 0.556040i
\(391\) −0.449873 0.779203i −0.0227510 0.0394060i
\(392\) 3.50995 6.07941i 0.177279 0.307056i
\(393\) −33.8773 + 58.6773i −1.70889 + 2.95988i
\(394\) −17.7209 + 30.6935i −0.892767 + 1.54632i
\(395\) 38.7561 1.95003
\(396\) −5.61098 9.71850i −0.281962 0.488373i
\(397\) 0.627543 + 1.08694i 0.0314955 + 0.0545518i 0.881344 0.472476i \(-0.156640\pi\)
−0.849848 + 0.527028i \(0.823306\pi\)
\(398\) −5.83997 + 10.1151i −0.292731 + 0.507025i
\(399\) 46.8174 2.34380
\(400\) 2.63912 + 4.57109i 0.131956 + 0.228554i
\(401\) 31.0198 1.54905 0.774527 0.632540i \(-0.217988\pi\)
0.774527 + 0.632540i \(0.217988\pi\)
\(402\) −2.75395 −0.137355
\(403\) −4.54316 + 3.21865i −0.226311 + 0.160332i
\(404\) −0.994187 −0.0494626
\(405\) −89.2679 −4.43576
\(406\) −6.97346 12.0784i −0.346087 0.599440i
\(407\) −5.95577 −0.295216
\(408\) −17.2494 + 29.8768i −0.853972 + 1.47912i
\(409\) 13.8765 + 24.0348i 0.686149 + 1.18845i 0.973074 + 0.230492i \(0.0740337\pi\)
−0.286925 + 0.957953i \(0.592633\pi\)
\(410\) 17.2804 + 29.9305i 0.853417 + 1.47816i
\(411\) −4.17485 −0.205930
\(412\) 1.83270 3.17434i 0.0902908 0.156388i
\(413\) −3.36896 + 5.83521i −0.165776 + 0.287132i
\(414\) −1.44071 + 2.49539i −0.0708073 + 0.122642i
\(415\) −14.9740 25.9357i −0.735043 1.27313i
\(416\) −0.815890 + 1.41316i −0.0400023 + 0.0692860i
\(417\) −2.74820 4.76003i −0.134580 0.233099i
\(418\) 46.8290 2.29048
\(419\) 13.2957 0.649539 0.324770 0.945793i \(-0.394713\pi\)
0.324770 + 0.945793i \(0.394713\pi\)
\(420\) −2.52079 4.36613i −0.123002 0.213045i
\(421\) 18.4570 31.9684i 0.899537 1.55804i 0.0714506 0.997444i \(-0.477237\pi\)
0.828087 0.560600i \(-0.189429\pi\)
\(422\) −3.13769 5.43464i −0.152740 0.264554i
\(423\) 13.0443 22.5934i 0.634237 1.09853i
\(424\) 8.37597 14.5076i 0.406773 0.704552i
\(425\) 2.32110 4.02026i 0.112590 0.195011i
\(426\) −47.7273 −2.31239
\(427\) 4.36263 + 7.55630i 0.211123 + 0.365675i
\(428\) −1.16387 2.01588i −0.0562576 0.0974410i
\(429\) 7.77779 13.4715i 0.375515 0.650412i
\(430\) −11.2483 −0.542440
\(431\) −8.32396 14.4175i −0.400951 0.694467i 0.592890 0.805283i \(-0.297987\pi\)
−0.993841 + 0.110816i \(0.964654\pi\)
\(432\) 81.3985 3.91629
\(433\) 39.9660 1.92064 0.960322 0.278893i \(-0.0899674\pi\)
0.960322 + 0.278893i \(0.0899674\pi\)
\(434\) 1.61644 + 17.3717i 0.0775915 + 0.833870i
\(435\) −37.2882 −1.78783
\(436\) −1.86247 −0.0891961
\(437\) −0.762866 1.32132i −0.0364928 0.0632075i
\(438\) −19.8689 −0.949372
\(439\) −6.69445 + 11.5951i −0.319509 + 0.553405i −0.980386 0.197089i \(-0.936851\pi\)
0.660877 + 0.750494i \(0.270184\pi\)
\(440\) 14.8282 + 25.6832i 0.706906 + 1.22440i
\(441\) 11.3538 + 19.6654i 0.540658 + 0.936447i
\(442\) 5.98580 0.284716
\(443\) −17.8174 + 30.8606i −0.846530 + 1.46623i 0.0377563 + 0.999287i \(0.487979\pi\)
−0.884286 + 0.466946i \(0.845354\pi\)
\(444\) −0.632573 + 1.09565i −0.0300206 + 0.0519972i
\(445\) −13.3411 + 23.1075i −0.632430 + 1.09540i
\(446\) −8.21886 14.2355i −0.389174 0.674070i
\(447\) 35.3441 61.2178i 1.67172 2.89550i
\(448\) −6.75363 11.6976i −0.319079 0.552661i
\(449\) −24.1648 −1.14041 −0.570204 0.821503i \(-0.693136\pi\)
−0.570204 + 0.821503i \(0.693136\pi\)
\(450\) −14.8666 −0.700819
\(451\) 21.1998 + 36.7191i 0.998259 + 1.72904i
\(452\) −0.609427 + 1.05556i −0.0286650 + 0.0496493i
\(453\) −0.130951 0.226814i −0.00615262 0.0106566i
\(454\) 1.62517 2.81487i 0.0762728 0.132108i
\(455\) 2.57217 4.45512i 0.120585 0.208859i
\(456\) −29.2504 + 50.6632i −1.36978 + 2.37252i
\(457\) 22.0308 1.03056 0.515279 0.857022i \(-0.327688\pi\)
0.515279 + 0.857022i \(0.327688\pi\)
\(458\) 12.2048 + 21.1393i 0.570291 + 0.987774i
\(459\) −35.7949 61.9986i −1.67076 2.89385i
\(460\) −0.0821499 + 0.142288i −0.00383026 + 0.00663421i
\(461\) −5.24478 −0.244274 −0.122137 0.992513i \(-0.538975\pi\)
−0.122137 + 0.992513i \(0.538975\pi\)
\(462\) −24.3720 42.2135i −1.13389 1.96395i
\(463\) 31.5239 1.46504 0.732520 0.680745i \(-0.238344\pi\)
0.732520 + 0.680745i \(0.238344\pi\)
\(464\) 20.0148 0.929163
\(465\) 42.3832 + 19.4797i 1.96547 + 0.903349i
\(466\) 14.4221 0.668092
\(467\) 22.1963 1.02712 0.513562 0.858052i \(-0.328326\pi\)
0.513562 + 0.858052i \(0.328326\pi\)
\(468\) −1.21620 2.10652i −0.0562188 0.0973738i
\(469\) −1.11732 −0.0515931
\(470\) 5.86175 10.1528i 0.270382 0.468316i
\(471\) 2.57381 + 4.45797i 0.118595 + 0.205412i
\(472\) −4.20970 7.29141i −0.193767 0.335614i
\(473\) −13.7995 −0.634503
\(474\) 39.7986 68.9331i 1.82801 3.16620i
\(475\) 3.93598 6.81731i 0.180595 0.312800i
\(476\) 1.19001 2.06116i 0.0545440 0.0944730i
\(477\) 27.0942 + 46.9285i 1.24056 + 2.14871i
\(478\) 6.80468 11.7861i 0.311239 0.539082i
\(479\) −15.4756 26.8046i −0.707100 1.22473i −0.965928 0.258810i \(-0.916670\pi\)
0.258828 0.965923i \(-0.416664\pi\)
\(480\) 13.6706 0.623977
\(481\) −1.29093 −0.0588615
\(482\) −16.1333 27.9437i −0.734853 1.27280i
\(483\) −0.794061 + 1.37535i −0.0361310 + 0.0625808i
\(484\) −1.49467 2.58885i −0.0679398 0.117675i
\(485\) 4.63266 8.02399i 0.210358 0.364351i
\(486\) −50.5749 + 87.5983i −2.29412 + 3.97354i
\(487\) −1.87396 + 3.24580i −0.0849173 + 0.147081i −0.905356 0.424653i \(-0.860396\pi\)
0.820439 + 0.571735i \(0.193729\pi\)
\(488\) −10.9027 −0.493542
\(489\) 33.7635 + 58.4801i 1.52684 + 2.64456i
\(490\) 5.10208 + 8.83706i 0.230488 + 0.399218i
\(491\) 14.3858 24.9169i 0.649221 1.12448i −0.334088 0.942542i \(-0.608428\pi\)
0.983309 0.181942i \(-0.0582382\pi\)
\(492\) 9.00668 0.406052
\(493\) −8.80149 15.2446i −0.396399 0.686583i
\(494\) 10.1503 0.456686
\(495\) −95.9310 −4.31178
\(496\) −22.7495 10.4559i −1.02148 0.469484i
\(497\) −19.3637 −0.868579
\(498\) −61.5070 −2.75619
\(499\) −7.30744 12.6569i −0.327126 0.566599i 0.654814 0.755790i \(-0.272747\pi\)
−0.981940 + 0.189191i \(0.939414\pi\)
\(500\) 2.76332 0.123579
\(501\) −35.8335 + 62.0655i −1.60092 + 2.77288i
\(502\) 0.752919 + 1.30409i 0.0336044 + 0.0582046i
\(503\) 10.1977 + 17.6630i 0.454695 + 0.787554i 0.998671 0.0515465i \(-0.0164150\pi\)
−0.543976 + 0.839101i \(0.683082\pi\)
\(504\) 44.8242 1.99663
\(505\) −4.24941 + 7.36019i −0.189096 + 0.327524i
\(506\) −0.794258 + 1.37570i −0.0353091 + 0.0611571i
\(507\) 1.68586 2.92000i 0.0748718 0.129682i
\(508\) 2.01743 + 3.49430i 0.0895091 + 0.155034i
\(509\) 5.05525 8.75595i 0.224070 0.388101i −0.731970 0.681337i \(-0.761399\pi\)
0.956040 + 0.293236i \(0.0947322\pi\)
\(510\) −25.0738 43.4291i −1.11029 1.92307i
\(511\) −8.06111 −0.356602
\(512\) 15.9295 0.703989
\(513\) −60.6988 105.133i −2.67992 4.64175i
\(514\) 19.9253 34.5116i 0.878866 1.52224i
\(515\) −15.6669 27.1359i −0.690366 1.19575i
\(516\) −1.46567 + 2.53862i −0.0645227 + 0.111757i
\(517\) 7.19127 12.4556i 0.316272 0.547799i
\(518\) −2.02259 + 3.50323i −0.0888676 + 0.153923i
\(519\) −62.5179 −2.74423
\(520\) 3.21406 + 5.56691i 0.140946 + 0.244125i
\(521\) −4.49005 7.77699i −0.196713 0.340716i 0.750748 0.660589i \(-0.229693\pi\)
−0.947461 + 0.319873i \(0.896360\pi\)
\(522\) −28.1867 + 48.8208i −1.23370 + 2.13683i
\(523\) 9.07959 0.397023 0.198511 0.980099i \(-0.436389\pi\)
0.198511 + 0.980099i \(0.436389\pi\)
\(524\) 2.92039 + 5.05827i 0.127578 + 0.220971i
\(525\) −8.19385 −0.357609
\(526\) −10.0450 −0.437981
\(527\) 2.04017 + 21.9256i 0.0888713 + 0.955093i
\(528\) 69.9509 3.04422
\(529\) −22.9482 −0.997750
\(530\) 12.1754 + 21.0883i 0.528864 + 0.916019i
\(531\) 27.2347 1.18188
\(532\) 2.01794 3.49518i 0.0874890 0.151535i
\(533\) 4.59513 + 7.95900i 0.199037 + 0.344742i
\(534\) 27.4000 + 47.4581i 1.18571 + 2.05371i
\(535\) −19.8987 −0.860294
\(536\) 0.698076 1.20910i 0.0301523 0.0522253i
\(537\) 37.1073 64.2718i 1.60130 2.77353i
\(538\) −10.5611 + 18.2924i −0.455322 + 0.788641i
\(539\) 6.25930 + 10.8414i 0.269607 + 0.466973i
\(540\) −6.53640 + 11.3214i −0.281282 + 0.487195i
\(541\) 0.878149 + 1.52100i 0.0377546 + 0.0653928i 0.884285 0.466947i \(-0.154646\pi\)
−0.846531 + 0.532340i \(0.821313\pi\)
\(542\) 14.9516 0.642228
\(543\) 0.572164 0.0245539
\(544\) 3.22681 + 5.58900i 0.138348 + 0.239626i
\(545\) −7.96067 + 13.7883i −0.340998 + 0.590625i
\(546\) −5.28271 9.14992i −0.226079 0.391580i
\(547\) −9.92760 + 17.1951i −0.424474 + 0.735210i −0.996371 0.0851153i \(-0.972874\pi\)
0.571898 + 0.820325i \(0.306207\pi\)
\(548\) −0.179946 + 0.311676i −0.00768692 + 0.0133141i
\(549\) 17.6338 30.5426i 0.752591 1.30352i
\(550\) −8.19588 −0.349474
\(551\) −14.9250 25.8509i −0.635827 1.10128i
\(552\) −0.992222 1.71858i −0.0422318 0.0731476i
\(553\) 16.1469 27.9672i 0.686635 1.18929i
\(554\) −32.1579 −1.36626
\(555\) 5.40756 + 9.36617i 0.229538 + 0.397572i
\(556\) −0.473817 −0.0200943
\(557\) 4.01710 0.170210 0.0851050 0.996372i \(-0.472877\pi\)
0.0851050 + 0.996372i \(0.472877\pi\)
\(558\) 57.5425 40.7665i 2.43597 1.72579i
\(559\) −2.99110 −0.126510
\(560\) 23.1332 0.977557
\(561\) −30.7609 53.2794i −1.29872 2.24946i
\(562\) 10.9054 0.460016
\(563\) −0.794428 + 1.37599i −0.0334811 + 0.0579910i −0.882280 0.470724i \(-0.843993\pi\)
0.848799 + 0.528715i \(0.177326\pi\)
\(564\) −1.52760 2.64587i −0.0643234 0.111411i
\(565\) 5.20969 + 9.02345i 0.219173 + 0.379619i
\(566\) 12.8768 0.541250
\(567\) −37.1916 + 64.4177i −1.56190 + 2.70529i
\(568\) 12.0980 20.9543i 0.507620 0.879223i
\(569\) −8.75399 + 15.1624i −0.366986 + 0.635639i −0.989093 0.147294i \(-0.952944\pi\)
0.622107 + 0.782933i \(0.286277\pi\)
\(570\) −42.5186 73.6443i −1.78091 3.08462i
\(571\) −18.1894 + 31.5051i −0.761205 + 1.31845i 0.181025 + 0.983478i \(0.442058\pi\)
−0.942230 + 0.334967i \(0.891275\pi\)
\(572\) −0.670484 1.16131i −0.0280343 0.0485569i
\(573\) 47.8019 1.99695
\(574\) 28.7980 1.20200
\(575\) 0.133515 + 0.231254i 0.00556795 + 0.00964397i
\(576\) −27.2981 + 47.2818i −1.13742 + 1.97007i
\(577\) −6.54217 11.3314i −0.272354 0.471731i 0.697110 0.716964i \(-0.254469\pi\)
−0.969464 + 0.245233i \(0.921136\pi\)
\(578\) −1.02788 + 1.78034i −0.0427541 + 0.0740522i
\(579\) −11.4799 + 19.8837i −0.477087 + 0.826338i
\(580\) −1.60721 + 2.78377i −0.0667359 + 0.115590i
\(581\) −24.9543 −1.03528
\(582\) −9.51454 16.4797i −0.394390 0.683104i
\(583\) 14.9369 + 25.8715i 0.618623 + 1.07149i
\(584\) 5.03639 8.72329i 0.208407 0.360972i
\(585\) −20.7934 −0.859701
\(586\) 1.14549 + 1.98405i 0.0473197 + 0.0819602i
\(587\) −11.6897 −0.482484 −0.241242 0.970465i \(-0.577555\pi\)
−0.241242 + 0.970465i \(0.577555\pi\)
\(588\) 2.65925 0.109666
\(589\) 3.45960 + 37.1800i 0.142550 + 1.53198i
\(590\) 12.2385 0.503850
\(591\) 78.9566 3.24784
\(592\) −2.90256 5.02738i −0.119294 0.206624i
\(593\) 9.88948 0.406112 0.203056 0.979167i \(-0.434913\pi\)
0.203056 + 0.979167i \(0.434913\pi\)
\(594\) −63.1966 + 109.460i −2.59299 + 4.49118i
\(595\) −10.1728 17.6198i −0.417045 0.722343i
\(596\) −3.04684 5.27727i −0.124803 0.216166i
\(597\) 26.0203 1.06494
\(598\) −0.172158 + 0.298187i −0.00704008 + 0.0121938i
\(599\) 4.07327 7.05511i 0.166429 0.288264i −0.770733 0.637159i \(-0.780110\pi\)
0.937162 + 0.348895i \(0.113443\pi\)
\(600\) 5.11933 8.86694i 0.208996 0.361991i
\(601\) −13.0094 22.5330i −0.530665 0.919139i −0.999360 0.0357787i \(-0.988609\pi\)
0.468695 0.883360i \(-0.344724\pi\)
\(602\) −4.68635 + 8.11700i −0.191001 + 0.330824i
\(603\) 2.25810 + 3.91115i 0.0919571 + 0.159274i
\(604\) −0.0225772 −0.000918655
\(605\) −25.5545 −1.03894
\(606\) 8.72743 + 15.1163i 0.354528 + 0.614060i
\(607\) −3.31423 + 5.74042i −0.134520 + 0.232996i −0.925414 0.378957i \(-0.876283\pi\)
0.790894 + 0.611954i \(0.209616\pi\)
\(608\) 5.47182 + 9.47748i 0.221912 + 0.384363i
\(609\) −15.5353 + 26.9080i −0.629523 + 1.09037i
\(610\) 7.92410 13.7250i 0.320838 0.555707i
\(611\) 1.55873 2.69980i 0.0630596 0.109222i
\(612\) −9.62004 −0.388867
\(613\) −12.3700 21.4256i −0.499622 0.865370i 0.500378 0.865807i \(-0.333194\pi\)
−1.00000 0.000436995i \(0.999861\pi\)
\(614\) 20.9106 + 36.2182i 0.843882 + 1.46165i
\(615\) 38.4969 66.6785i 1.55234 2.68874i
\(616\) 24.7114 0.995649
\(617\) −0.704018 1.21940i −0.0283427 0.0490910i 0.851506 0.524345i \(-0.175690\pi\)
−0.879849 + 0.475254i \(0.842356\pi\)
\(618\) −64.3533 −2.58867
\(619\) −37.5779 −1.51038 −0.755192 0.655504i \(-0.772456\pi\)
−0.755192 + 0.655504i \(0.772456\pi\)
\(620\) 3.28109 2.32452i 0.131772 0.0933549i
\(621\) 4.11801 0.165250
\(622\) −0.771295 −0.0309261
\(623\) 11.1166 + 19.2545i 0.445376 + 0.771415i
\(624\) 15.1621 0.606970
\(625\) 14.7456 25.5400i 0.589822 1.02160i
\(626\) −6.27945 10.8763i −0.250977 0.434705i
\(627\) −52.1624 90.3478i −2.08316 3.60815i
\(628\) 0.443750 0.0177076
\(629\) −2.55280 + 4.42157i −0.101787 + 0.176300i
\(630\) −32.5784 + 56.4274i −1.29795 + 2.24812i
\(631\) −3.12870 + 5.41907i −0.124552 + 0.215730i −0.921558 0.388242i \(-0.873083\pi\)
0.797006 + 0.603971i \(0.206416\pi\)
\(632\) 20.1764 + 34.9465i 0.802573 + 1.39010i
\(633\) −6.99009 + 12.1072i −0.277831 + 0.481217i
\(634\) 7.77331 + 13.4638i 0.308718 + 0.534715i
\(635\) 34.4921 1.36878
\(636\) 6.34590 0.251631
\(637\) 1.35672 + 2.34992i 0.0537554 + 0.0931071i
\(638\) −15.5392 + 26.9147i −0.615202 + 1.06556i
\(639\) 39.1340 + 67.7820i 1.54812 + 2.68141i
\(640\) −16.3215 + 28.2697i −0.645164 + 1.11746i
\(641\) 20.9057 36.2097i 0.825724 1.43020i −0.0756413 0.997135i \(-0.524100\pi\)
0.901365 0.433060i \(-0.142566\pi\)
\(642\) −20.4339 + 35.3926i −0.806462 + 1.39683i
\(643\) 2.87978 0.113567 0.0567837 0.998387i \(-0.481915\pi\)
0.0567837 + 0.998387i \(0.481915\pi\)
\(644\) 0.0684520 + 0.118562i 0.00269739 + 0.00467201i
\(645\) 12.5293 + 21.7015i 0.493342 + 0.854494i
\(646\) 20.0721 34.7659i 0.789727 1.36785i
\(647\) 34.1653 1.34318 0.671588 0.740925i \(-0.265613\pi\)
0.671588 + 0.740925i \(0.265613\pi\)
\(648\) −46.4728 80.4933i −1.82563 3.16208i
\(649\) 15.0143 0.589364
\(650\) −1.77649 −0.0696795
\(651\) 31.7150 22.4688i 1.24301 0.880622i
\(652\) 5.82116 0.227974
\(653\) 21.3121 0.834008 0.417004 0.908905i \(-0.363080\pi\)
0.417004 + 0.908905i \(0.363080\pi\)
\(654\) 16.3496 + 28.3184i 0.639320 + 1.10734i
\(655\) 49.9300 1.95093
\(656\) −20.6635 + 35.7903i −0.806776 + 1.39738i
\(657\) 16.2915 + 28.2177i 0.635592 + 1.10088i
\(658\) −4.88434 8.45992i −0.190411 0.329802i
\(659\) 45.3383 1.76613 0.883064 0.469252i \(-0.155477\pi\)
0.883064 + 0.469252i \(0.155477\pi\)
\(660\) −5.61715 + 9.72919i −0.218647 + 0.378708i
\(661\) −12.4143 + 21.5022i −0.482861 + 0.836341i −0.999806 0.0196781i \(-0.993736\pi\)
0.516945 + 0.856019i \(0.327069\pi\)
\(662\) −19.7235 + 34.1621i −0.766574 + 1.32775i
\(663\) −6.66753 11.5485i −0.258945 0.448506i
\(664\) 15.5909 27.0042i 0.605044 1.04797i
\(665\) −17.2504 29.8786i −0.668943 1.15864i
\(666\) 16.3506 0.633574
\(667\) 1.01256 0.0392066
\(668\) 3.08903 + 5.35035i 0.119518 + 0.207011i
\(669\) −18.3098 + 31.7135i −0.707898 + 1.22612i
\(670\) 1.01473 + 1.75756i 0.0392023 + 0.0679004i
\(671\) 9.72140 16.8380i 0.375290 0.650022i
\(672\) 5.69558 9.86503i 0.219712 0.380552i
\(673\) −4.90548 + 8.49654i −0.189092 + 0.327518i −0.944948 0.327221i \(-0.893888\pi\)
0.755856 + 0.654738i \(0.227221\pi\)
\(674\) 10.3945 0.400382
\(675\) 10.6233 + 18.4002i 0.408892 + 0.708223i
\(676\) −0.145330 0.251718i −0.00558961 0.00968148i
\(677\) 1.59090 2.75553i 0.0611434 0.105904i −0.833833 0.552016i \(-0.813859\pi\)
0.894977 + 0.446113i \(0.147192\pi\)
\(678\) 21.3993 0.821835
\(679\) −3.86019 6.68605i −0.148141 0.256587i
\(680\) 25.4230 0.974926
\(681\) −7.24102 −0.277477
\(682\) 31.7228 22.4744i 1.21473 0.860589i
\(683\) 13.3662 0.511443 0.255721 0.966751i \(-0.417687\pi\)
0.255721 + 0.966751i \(0.417687\pi\)
\(684\) −16.3131 −0.623745
\(685\) 1.53827 + 2.66437i 0.0587744 + 0.101800i
\(686\) 30.4374 1.16211
\(687\) 27.1895 47.0937i 1.03735 1.79674i
\(688\) −6.72524 11.6485i −0.256397 0.444093i
\(689\) 3.23762 + 5.60773i 0.123344 + 0.213637i
\(690\) 2.88460 0.109815
\(691\) 0.173108 0.299831i 0.00658533 0.0114061i −0.862714 0.505692i \(-0.831237\pi\)
0.869299 + 0.494286i \(0.164570\pi\)
\(692\) −2.69467 + 4.66731i −0.102436 + 0.177425i
\(693\) −39.9676 + 69.2259i −1.51824 + 2.62967i
\(694\) 0.279093 + 0.483403i 0.0105942 + 0.0183497i
\(695\) −2.02522 + 3.50778i −0.0768208 + 0.133058i
\(696\) −19.4122 33.6230i −0.735818 1.27447i
\(697\) 36.3471 1.37674
\(698\) 22.5991 0.855389
\(699\) −16.0647 27.8248i −0.607621 1.05243i
\(700\) −0.353175 + 0.611717i −0.0133488 + 0.0231207i
\(701\) 0.318617 + 0.551862i 0.0120340 + 0.0208435i 0.871980 0.489542i \(-0.162836\pi\)
−0.859946 + 0.510386i \(0.829503\pi\)
\(702\) −13.6981 + 23.7258i −0.517001 + 0.895471i
\(703\) −4.32887 + 7.49782i −0.163266 + 0.282786i
\(704\) −15.0493 + 26.0662i −0.567193 + 0.982407i
\(705\) −26.1174 −0.983636
\(706\) −15.4422 26.7466i −0.581173 1.00662i
\(707\) 3.54085 + 6.13293i 0.133167 + 0.230653i
\(708\) 1.59470 2.76210i 0.0599325 0.103806i
\(709\) −5.12268 −0.192386 −0.0961931 0.995363i \(-0.530667\pi\)
−0.0961931 + 0.995363i \(0.530667\pi\)
\(710\) 17.5857 + 30.4593i 0.659979 + 1.14312i
\(711\) −130.531 −4.89531
\(712\) −27.7815 −1.04116
\(713\) −1.15092 0.528971i −0.0431021 0.0198101i
\(714\) −41.7858 −1.56379
\(715\) −11.4633 −0.428702
\(716\) −3.19883 5.54054i −0.119546 0.207060i
\(717\) −30.3187 −1.13227
\(718\) 0.797969 1.38212i 0.0297799 0.0515804i
\(719\) −6.24342 10.8139i −0.232840 0.403292i 0.725802 0.687903i \(-0.241469\pi\)
−0.958643 + 0.284612i \(0.908135\pi\)
\(720\) −46.7522 80.9772i −1.74235 3.01784i
\(721\) −26.1091 −0.972353
\(722\) 19.6589 34.0501i 0.731627 1.26722i
\(723\) −35.9415 + 62.2525i −1.33668 + 2.31519i
\(724\) 0.0246617 0.0427153i 0.000916544 0.00158750i
\(725\) 2.61213 + 4.52435i 0.0970123 + 0.168030i
\(726\) −26.2419 + 45.4523i −0.973928 + 1.68689i
\(727\) 3.70845 + 6.42323i 0.137539 + 0.238224i 0.926564 0.376136i \(-0.122747\pi\)
−0.789026 + 0.614360i \(0.789414\pi\)
\(728\) 5.35627 0.198517
\(729\) 117.559 4.35402
\(730\) 7.32093 + 12.6802i 0.270960 + 0.469316i
\(731\) −5.91484 + 10.2448i −0.218768 + 0.378918i
\(732\) −2.06506 3.57678i −0.0763267 0.132202i
\(733\) 3.49544 6.05428i 0.129107 0.223620i −0.794224 0.607625i \(-0.792122\pi\)
0.923331 + 0.384005i \(0.125456\pi\)
\(734\) 4.96326 8.59661i 0.183197 0.317307i
\(735\) 11.3663 19.6870i 0.419253 0.726167i
\(736\) −0.371227 −0.0136836
\(737\) 1.24488 + 2.15620i 0.0458558 + 0.0794246i
\(738\) −58.2007 100.807i −2.14240 3.71074i
\(739\) −18.5794 + 32.1805i −0.683455 + 1.18378i 0.290465 + 0.956886i \(0.406190\pi\)
−0.973920 + 0.226893i \(0.927143\pi\)
\(740\) 0.932317 0.0342726
\(741\) −11.3064 19.5832i −0.415350 0.719407i
\(742\) 20.2904 0.744884
\(743\) −20.9212 −0.767523 −0.383761 0.923432i \(-0.625372\pi\)
−0.383761 + 0.923432i \(0.625372\pi\)
\(744\) 4.49973 + 48.3582i 0.164968 + 1.77290i
\(745\) −52.0918 −1.90850
\(746\) 43.3305 1.58644
\(747\) 50.4327 + 87.3519i 1.84523 + 3.19604i
\(748\) −5.30348 −0.193914
\(749\) −8.29034 + 14.3593i −0.302923 + 0.524677i
\(750\) −24.2577 42.0155i −0.885765 1.53419i
\(751\) 2.52793 + 4.37850i 0.0922454 + 0.159774i 0.908456 0.417981i \(-0.137262\pi\)
−0.816210 + 0.577755i \(0.803929\pi\)
\(752\) 14.0187 0.511210
\(753\) 1.67734 2.90523i 0.0611256 0.105873i
\(754\) −3.36817 + 5.83384i −0.122662 + 0.212456i
\(755\) −0.0965009 + 0.167145i −0.00351203 + 0.00608301i
\(756\) 5.44650 + 9.43362i 0.198087 + 0.343097i
\(757\) −13.4559 + 23.3063i −0.489064 + 0.847083i −0.999921 0.0125824i \(-0.995995\pi\)
0.510857 + 0.859666i \(0.329328\pi\)
\(758\) 3.16869 + 5.48832i 0.115092 + 0.199345i
\(759\) 3.53887 0.128453
\(760\) 43.1107 1.56379
\(761\) 12.6158 + 21.8512i 0.457323 + 0.792107i 0.998818 0.0485968i \(-0.0154749\pi\)
−0.541495 + 0.840704i \(0.682142\pi\)
\(762\) 35.4199 61.3491i 1.28313 2.22244i
\(763\) 6.63328 + 11.4892i 0.240141 + 0.415936i
\(764\) 2.06038 3.56868i 0.0745419 0.129110i
\(765\) −41.1185 + 71.2193i −1.48664 + 2.57494i
\(766\) 3.08698 5.34680i 0.111537 0.193188i
\(767\) 3.25441 0.117510
\(768\) 11.5239 + 19.9601i 0.415834 + 0.720246i
\(769\) 10.7481 + 18.6163i 0.387587 + 0.671320i 0.992124 0.125256i \(-0.0399754\pi\)
−0.604537 + 0.796577i \(0.706642\pi\)
\(770\) −17.9603 + 31.1081i −0.647244 + 1.12106i
\(771\) −88.7782 −3.19727