Properties

Label 403.2.h.b.118.15
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.15
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.15

$q$-expansion

\(f(q)\) \(=\) \(q+2.35132 q^{2} +(1.34746 + 2.33387i) q^{3} +3.52869 q^{4} +(-0.0458962 + 0.0794945i) q^{5} +(3.16831 + 5.48767i) q^{6} +(-2.00349 - 3.47014i) q^{7} +3.59444 q^{8} +(-2.13130 + 3.69152i) q^{9} +O(q^{10})\) \(q+2.35132 q^{2} +(1.34746 + 2.33387i) q^{3} +3.52869 q^{4} +(-0.0458962 + 0.0794945i) q^{5} +(3.16831 + 5.48767i) q^{6} +(-2.00349 - 3.47014i) q^{7} +3.59444 q^{8} +(-2.13130 + 3.69152i) q^{9} +(-0.107916 + 0.186917i) q^{10} +(0.00492632 - 0.00853264i) q^{11} +(4.75477 + 8.23551i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-4.71083 - 8.15940i) q^{14} -0.247373 q^{15} +1.39429 q^{16} +(-1.21467 - 2.10386i) q^{17} +(-5.01136 + 8.67993i) q^{18} +(-2.38331 - 4.12801i) q^{19} +(-0.161953 + 0.280512i) q^{20} +(5.39924 - 9.35176i) q^{21} +(0.0115833 - 0.0200629i) q^{22} -0.809767 q^{23} +(4.84337 + 8.38896i) q^{24} +(2.49579 + 4.32283i) q^{25} +(-1.17566 + 2.03630i) q^{26} -3.40260 q^{27} +(-7.06969 - 12.2451i) q^{28} +2.84116 q^{29} -0.581652 q^{30} +(-0.597915 + 5.53557i) q^{31} -3.91047 q^{32} +0.0265521 q^{33} +(-2.85607 - 4.94685i) q^{34} +0.367810 q^{35} +(-7.52070 + 13.0262i) q^{36} +(-2.80734 - 4.86245i) q^{37} +(-5.60391 - 9.70626i) q^{38} -2.69492 q^{39} +(-0.164971 + 0.285738i) q^{40} +(-2.56912 + 4.44985i) q^{41} +(12.6953 - 21.9889i) q^{42} +(5.90557 + 10.2288i) q^{43} +(0.0173835 - 0.0301091i) q^{44} +(-0.195637 - 0.338853i) q^{45} -1.90402 q^{46} +7.29512 q^{47} +(1.87874 + 3.25408i) q^{48} +(-4.52792 + 7.84259i) q^{49} +(5.86839 + 10.1643i) q^{50} +(3.27343 - 5.66975i) q^{51} +(-1.76435 + 3.05594i) q^{52} +(1.42173 - 2.46251i) q^{53} -8.00058 q^{54} +(0.000452198 + 0.000783231i) q^{55} +(-7.20142 - 12.4732i) q^{56} +(6.42282 - 11.1247i) q^{57} +6.68046 q^{58} +(-7.22838 - 12.5199i) q^{59} -0.872903 q^{60} +11.7898 q^{61} +(-1.40589 + 13.0159i) q^{62} +17.0801 q^{63} -11.9833 q^{64} +(-0.0458962 - 0.0794945i) q^{65} +0.0624324 q^{66} +(-2.78471 + 4.82326i) q^{67} +(-4.28619 - 7.42389i) q^{68} +(-1.09113 - 1.88989i) q^{69} +0.864837 q^{70} +(-1.09821 + 1.90216i) q^{71} +(-7.66082 + 13.2689i) q^{72} +(1.50859 - 2.61295i) q^{73} +(-6.60094 - 11.4332i) q^{74} +(-6.72595 + 11.6497i) q^{75} +(-8.40996 - 14.5665i) q^{76} -0.0394793 q^{77} -6.33661 q^{78} +(-1.54226 - 2.67126i) q^{79} +(-0.0639924 + 0.110838i) q^{80} +(1.80903 + 3.13333i) q^{81} +(-6.04082 + 10.4630i) q^{82} +(4.24900 - 7.35949i) q^{83} +(19.0523 - 32.9995i) q^{84} +0.222994 q^{85} +(13.8859 + 24.0510i) q^{86} +(3.82835 + 6.63089i) q^{87} +(0.0177074 - 0.0306701i) q^{88} -2.36869 q^{89} +(-0.460004 - 0.796751i) q^{90} +4.00697 q^{91} -2.85742 q^{92} +(-13.7250 + 6.06350i) q^{93} +17.1531 q^{94} +0.437538 q^{95} +(-5.26921 - 9.12654i) q^{96} -10.0577 q^{97} +(-10.6466 + 18.4404i) q^{98} +(0.0209989 + 0.0363712i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.35132 1.66263 0.831316 0.555800i \(-0.187588\pi\)
0.831316 + 0.555800i \(0.187588\pi\)
\(3\) 1.34746 + 2.33387i 0.777957 + 1.34746i 0.933118 + 0.359571i \(0.117077\pi\)
−0.155161 + 0.987889i \(0.549590\pi\)
\(4\) 3.52869 1.76435
\(5\) −0.0458962 + 0.0794945i −0.0205254 + 0.0355510i −0.876106 0.482119i \(-0.839867\pi\)
0.855580 + 0.517670i \(0.173201\pi\)
\(6\) 3.16831 + 5.48767i 1.29346 + 2.24033i
\(7\) −2.00349 3.47014i −0.757247 1.31159i −0.944249 0.329231i \(-0.893211\pi\)
0.187002 0.982359i \(-0.440123\pi\)
\(8\) 3.59444 1.27083
\(9\) −2.13130 + 3.69152i −0.710433 + 1.23051i
\(10\) −0.107916 + 0.186917i −0.0341262 + 0.0591083i
\(11\) 0.00492632 0.00853264i 0.00148534 0.00257269i −0.865282 0.501286i \(-0.832861\pi\)
0.866767 + 0.498713i \(0.166194\pi\)
\(12\) 4.75477 + 8.23551i 1.37258 + 2.37739i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) −4.71083 8.15940i −1.25902 2.18069i
\(15\) −0.247373 −0.0638714
\(16\) 1.39429 0.348571
\(17\) −1.21467 2.10386i −0.294600 0.510262i 0.680292 0.732941i \(-0.261853\pi\)
−0.974892 + 0.222679i \(0.928520\pi\)
\(18\) −5.01136 + 8.67993i −1.18119 + 2.04588i
\(19\) −2.38331 4.12801i −0.546768 0.947030i −0.998493 0.0548729i \(-0.982525\pi\)
0.451725 0.892157i \(-0.350809\pi\)
\(20\) −0.161953 + 0.280512i −0.0362139 + 0.0627243i
\(21\) 5.39924 9.35176i 1.17821 2.04072i
\(22\) 0.0115833 0.0200629i 0.00246958 0.00427743i
\(23\) −0.809767 −0.168848 −0.0844240 0.996430i \(-0.526905\pi\)
−0.0844240 + 0.996430i \(0.526905\pi\)
\(24\) 4.84337 + 8.38896i 0.988648 + 1.71239i
\(25\) 2.49579 + 4.32283i 0.499157 + 0.864566i
\(26\) −1.17566 + 2.03630i −0.230566 + 0.399351i
\(27\) −3.40260 −0.654830
\(28\) −7.06969 12.2451i −1.33605 2.31410i
\(29\) 2.84116 0.527590 0.263795 0.964579i \(-0.415026\pi\)
0.263795 + 0.964579i \(0.415026\pi\)
\(30\) −0.581652 −0.106195
\(31\) −0.597915 + 5.53557i −0.107389 + 0.994217i
\(32\) −3.91047 −0.691281
\(33\) 0.0265521 0.00462212
\(34\) −2.85607 4.94685i −0.489811 0.848378i
\(35\) 0.367810 0.0621712
\(36\) −7.52070 + 13.0262i −1.25345 + 2.17104i
\(37\) −2.80734 4.86245i −0.461524 0.799382i 0.537514 0.843255i \(-0.319364\pi\)
−0.999037 + 0.0438729i \(0.986030\pi\)
\(38\) −5.60391 9.70626i −0.909074 1.57456i
\(39\) −2.69492 −0.431533
\(40\) −0.164971 + 0.285738i −0.0260842 + 0.0451792i
\(41\) −2.56912 + 4.44985i −0.401229 + 0.694950i −0.993875 0.110514i \(-0.964750\pi\)
0.592645 + 0.805464i \(0.298084\pi\)
\(42\) 12.6953 21.9889i 1.95893 3.39297i
\(43\) 5.90557 + 10.2288i 0.900592 + 1.55987i 0.826728 + 0.562602i \(0.190200\pi\)
0.0738639 + 0.997268i \(0.476467\pi\)
\(44\) 0.0173835 0.0301091i 0.00262066 0.00453911i
\(45\) −0.195637 0.338853i −0.0291638 0.0505132i
\(46\) −1.90402 −0.280732
\(47\) 7.29512 1.06410 0.532051 0.846712i \(-0.321421\pi\)
0.532051 + 0.846712i \(0.321421\pi\)
\(48\) 1.87874 + 3.25408i 0.271173 + 0.469686i
\(49\) −4.52792 + 7.84259i −0.646846 + 1.12037i
\(50\) 5.86839 + 10.1643i 0.829915 + 1.43746i
\(51\) 3.27343 5.66975i 0.458372 0.793924i
\(52\) −1.76435 + 3.05594i −0.244671 + 0.423782i
\(53\) 1.42173 2.46251i 0.195290 0.338252i −0.751706 0.659499i \(-0.770769\pi\)
0.946995 + 0.321247i \(0.104102\pi\)
\(54\) −8.00058 −1.08874
\(55\) 0.000452198 0 0.000783231i 6.09744e−5 0 0.000105611i
\(56\) −7.20142 12.4732i −0.962330 1.66680i
\(57\) 6.42282 11.1247i 0.850723 1.47350i
\(58\) 6.68046 0.877188
\(59\) −7.22838 12.5199i −0.941055 1.62996i −0.763464 0.645851i \(-0.776503\pi\)
−0.177591 0.984104i \(-0.556830\pi\)
\(60\) −0.872903 −0.112691
\(61\) 11.7898 1.50953 0.754766 0.655995i \(-0.227751\pi\)
0.754766 + 0.655995i \(0.227751\pi\)
\(62\) −1.40589 + 13.0159i −0.178548 + 1.65302i
\(63\) 17.0801 2.15189
\(64\) −11.9833 −1.49792
\(65\) −0.0458962 0.0794945i −0.00569272 0.00986008i
\(66\) 0.0624324 0.00768489
\(67\) −2.78471 + 4.82326i −0.340207 + 0.589255i −0.984471 0.175548i \(-0.943830\pi\)
0.644264 + 0.764803i \(0.277164\pi\)
\(68\) −4.28619 7.42389i −0.519776 0.900279i
\(69\) −1.09113 1.88989i −0.131356 0.227516i
\(70\) 0.864837 0.103368
\(71\) −1.09821 + 1.90216i −0.130334 + 0.225745i −0.923805 0.382862i \(-0.874938\pi\)
0.793471 + 0.608608i \(0.208272\pi\)
\(72\) −7.66082 + 13.2689i −0.902837 + 1.56376i
\(73\) 1.50859 2.61295i 0.176567 0.305823i −0.764135 0.645056i \(-0.776834\pi\)
0.940702 + 0.339233i \(0.110167\pi\)
\(74\) −6.60094 11.4332i −0.767344 1.32908i
\(75\) −6.72595 + 11.6497i −0.776646 + 1.34519i
\(76\) −8.40996 14.5665i −0.964688 1.67089i
\(77\) −0.0394793 −0.00449908
\(78\) −6.33661 −0.717480
\(79\) −1.54226 2.67126i −0.173517 0.300541i 0.766130 0.642686i \(-0.222180\pi\)
−0.939647 + 0.342145i \(0.888847\pi\)
\(80\) −0.0639924 + 0.110838i −0.00715456 + 0.0123921i
\(81\) 1.80903 + 3.13333i 0.201004 + 0.348148i
\(82\) −6.04082 + 10.4630i −0.667097 + 1.15545i
\(83\) 4.24900 7.35949i 0.466389 0.807809i −0.532874 0.846194i \(-0.678888\pi\)
0.999263 + 0.0383856i \(0.0122215\pi\)
\(84\) 19.0523 32.9995i 2.07877 3.60054i
\(85\) 0.222994 0.0241871
\(86\) 13.8859 + 24.0510i 1.49735 + 2.59349i
\(87\) 3.82835 + 6.63089i 0.410442 + 0.710906i
\(88\) 0.0177074 0.0306701i 0.00188761 0.00326944i
\(89\) −2.36869 −0.251081 −0.125540 0.992089i \(-0.540066\pi\)
−0.125540 + 0.992089i \(0.540066\pi\)
\(90\) −0.460004 0.796751i −0.0484887 0.0839849i
\(91\) 4.00697 0.420045
\(92\) −2.85742 −0.297906
\(93\) −13.7250 + 6.06350i −1.42321 + 0.628756i
\(94\) 17.1531 1.76921
\(95\) 0.437538 0.0448905
\(96\) −5.26921 9.12654i −0.537786 0.931473i
\(97\) −10.0577 −1.02121 −0.510604 0.859816i \(-0.670578\pi\)
−0.510604 + 0.859816i \(0.670578\pi\)
\(98\) −10.6466 + 18.4404i −1.07547 + 1.86276i
\(99\) 0.0209989 + 0.0363712i 0.00211047 + 0.00365544i
\(100\) 8.80687 + 15.2539i 0.880687 + 1.52539i
\(101\) −12.0628 −1.20030 −0.600148 0.799889i \(-0.704892\pi\)
−0.600148 + 0.799889i \(0.704892\pi\)
\(102\) 7.69687 13.3314i 0.762104 1.32000i
\(103\) 5.54528 9.60470i 0.546392 0.946380i −0.452125 0.891954i \(-0.649334\pi\)
0.998518 0.0544251i \(-0.0173326\pi\)
\(104\) −1.79722 + 3.11288i −0.176232 + 0.305243i
\(105\) 0.495609 + 0.858419i 0.0483665 + 0.0837732i
\(106\) 3.34294 5.79014i 0.324695 0.562388i
\(107\) 0.00698191 + 0.0120930i 0.000674967 + 0.00116908i 0.866363 0.499415i \(-0.166452\pi\)
−0.865688 + 0.500584i \(0.833118\pi\)
\(108\) −12.0067 −1.15535
\(109\) 14.0232 1.34318 0.671591 0.740922i \(-0.265611\pi\)
0.671591 + 0.740922i \(0.265611\pi\)
\(110\) 0.00106326 + 0.00184162i 0.000101378 + 0.000175592i
\(111\) 7.56555 13.1039i 0.718090 1.24377i
\(112\) −2.79343 4.83837i −0.263955 0.457183i
\(113\) −7.04991 + 12.2108i −0.663200 + 1.14870i 0.316570 + 0.948569i \(0.397469\pi\)
−0.979770 + 0.200127i \(0.935865\pi\)
\(114\) 15.1021 26.1576i 1.41444 2.44988i
\(115\) 0.0371652 0.0643720i 0.00346567 0.00600272i
\(116\) 10.0256 0.930851
\(117\) −2.13130 3.69152i −0.197039 0.341281i
\(118\) −16.9962 29.4383i −1.56463 2.71002i
\(119\) −4.86714 + 8.43013i −0.446170 + 0.772789i
\(120\) −0.889168 −0.0811695
\(121\) 5.49995 + 9.52620i 0.499996 + 0.866018i
\(122\) 27.7216 2.50980
\(123\) −13.8472 −1.24856
\(124\) −2.10986 + 19.5333i −0.189471 + 1.75414i
\(125\) −0.917150 −0.0820324
\(126\) 40.1608 3.57781
\(127\) −4.95208 8.57726i −0.439426 0.761109i 0.558219 0.829694i \(-0.311485\pi\)
−0.997645 + 0.0685848i \(0.978152\pi\)
\(128\) −20.3557 −1.79920
\(129\) −15.9151 + 27.5657i −1.40124 + 2.42702i
\(130\) −0.107916 0.186917i −0.00946490 0.0163937i
\(131\) 0.234757 + 0.406610i 0.0205108 + 0.0355257i 0.876099 0.482132i \(-0.160137\pi\)
−0.855588 + 0.517658i \(0.826804\pi\)
\(132\) 0.0936941 0.00815503
\(133\) −9.54985 + 16.5408i −0.828077 + 1.43427i
\(134\) −6.54774 + 11.3410i −0.565638 + 0.979714i
\(135\) 0.156166 0.270488i 0.0134406 0.0232799i
\(136\) −4.36605 7.56222i −0.374386 0.648455i
\(137\) −4.65019 + 8.05437i −0.397293 + 0.688131i −0.993391 0.114781i \(-0.963384\pi\)
0.596098 + 0.802911i \(0.296717\pi\)
\(138\) −2.56559 4.44373i −0.218397 0.378276i
\(139\) −21.1823 −1.79666 −0.898329 0.439324i \(-0.855218\pi\)
−0.898329 + 0.439324i \(0.855218\pi\)
\(140\) 1.29789 0.109691
\(141\) 9.82988 + 17.0259i 0.827825 + 1.43384i
\(142\) −2.58225 + 4.47259i −0.216698 + 0.375331i
\(143\) 0.00492632 + 0.00853264i 0.000411960 + 0.000713535i
\(144\) −2.97164 + 5.14703i −0.247637 + 0.428919i
\(145\) −0.130398 + 0.225856i −0.0108290 + 0.0187563i
\(146\) 3.54717 6.14388i 0.293566 0.508471i
\(147\) −24.4048 −2.01287
\(148\) −9.90623 17.1581i −0.814287 1.41039i
\(149\) 10.4589 + 18.1153i 0.856825 + 1.48406i 0.874942 + 0.484228i \(0.160900\pi\)
−0.0181170 + 0.999836i \(0.505767\pi\)
\(150\) −15.8148 + 27.3921i −1.29128 + 2.23656i
\(151\) 15.9637 1.29910 0.649552 0.760317i \(-0.274956\pi\)
0.649552 + 0.760317i \(0.274956\pi\)
\(152\) −8.56665 14.8379i −0.694847 1.20351i
\(153\) 10.3553 0.837174
\(154\) −0.0928283 −0.00748032
\(155\) −0.412605 0.301592i −0.0331412 0.0242245i
\(156\) −9.50955 −0.761373
\(157\) −7.93608 −0.633368 −0.316684 0.948531i \(-0.602569\pi\)
−0.316684 + 0.948531i \(0.602569\pi\)
\(158\) −3.62633 6.28099i −0.288495 0.499689i
\(159\) 7.66290 0.607707
\(160\) 0.179476 0.310861i 0.0141888 0.0245757i
\(161\) 1.62236 + 2.81001i 0.127860 + 0.221459i
\(162\) 4.25361 + 7.36746i 0.334195 + 0.578843i
\(163\) 8.40425 0.658272 0.329136 0.944283i \(-0.393243\pi\)
0.329136 + 0.944283i \(0.393243\pi\)
\(164\) −9.06564 + 15.7022i −0.707908 + 1.22613i
\(165\) −0.00121864 + 0.00211074i −9.48709e−5 + 0.000164321i
\(166\) 9.99075 17.3045i 0.775433 1.34309i
\(167\) −7.51405 13.0147i −0.581454 1.00711i −0.995307 0.0967647i \(-0.969151\pi\)
0.413853 0.910344i \(-0.364183\pi\)
\(168\) 19.4072 33.6143i 1.49730 2.59340i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0.524330 0.0402143
\(171\) 20.3181 1.55377
\(172\) 20.8390 + 36.0941i 1.58896 + 2.75215i
\(173\) 2.07443 3.59301i 0.157716 0.273172i −0.776329 0.630328i \(-0.782920\pi\)
0.934045 + 0.357156i \(0.116254\pi\)
\(174\) 9.00166 + 15.5913i 0.682414 + 1.18198i
\(175\) 10.0006 17.3215i 0.755971 1.30938i
\(176\) 0.00686870 0.0118969i 0.000517748 0.000896765i
\(177\) 19.4799 33.7402i 1.46420 2.53607i
\(178\) −5.56954 −0.417455
\(179\) −4.33620 7.51052i −0.324103 0.561363i 0.657227 0.753692i \(-0.271729\pi\)
−0.981330 + 0.192330i \(0.938396\pi\)
\(180\) −0.690342 1.19571i −0.0514551 0.0891228i
\(181\) 1.07752 1.86632i 0.0800914 0.138722i −0.823198 0.567755i \(-0.807812\pi\)
0.903289 + 0.429033i \(0.141145\pi\)
\(182\) 9.42167 0.698381
\(183\) 15.8863 + 27.5159i 1.17435 + 2.03403i
\(184\) −2.91066 −0.214577
\(185\) 0.515384 0.0378918
\(186\) −32.2717 + 14.2572i −2.36628 + 1.04539i
\(187\) −0.0239354 −0.00175033
\(188\) 25.7422 1.87744
\(189\) 6.81706 + 11.8075i 0.495868 + 0.858868i
\(190\) 1.02879 0.0746364
\(191\) 11.7789 20.4017i 0.852293 1.47622i −0.0268403 0.999640i \(-0.508545\pi\)
0.879134 0.476575i \(-0.158122\pi\)
\(192\) −16.1471 27.9675i −1.16531 2.01838i
\(193\) −9.86758 17.0912i −0.710284 1.23025i −0.964750 0.263167i \(-0.915233\pi\)
0.254466 0.967082i \(-0.418100\pi\)
\(194\) −23.6489 −1.69789
\(195\) 0.123686 0.214231i 0.00885737 0.0153414i
\(196\) −15.9776 + 27.6741i −1.14126 + 1.97672i
\(197\) −10.5456 + 18.2655i −0.751342 + 1.30136i 0.195830 + 0.980638i \(0.437260\pi\)
−0.947172 + 0.320725i \(0.896073\pi\)
\(198\) 0.0493751 + 0.0855202i 0.00350894 + 0.00607766i
\(199\) −3.67166 + 6.35950i −0.260277 + 0.450813i −0.966315 0.257361i \(-0.917147\pi\)
0.706039 + 0.708173i \(0.250481\pi\)
\(200\) 8.97096 + 15.5382i 0.634343 + 1.09871i
\(201\) −15.0091 −1.05866
\(202\) −28.3635 −1.99565
\(203\) −5.69222 9.85922i −0.399516 0.691982i
\(204\) 11.5509 20.0068i 0.808727 1.40076i
\(205\) −0.235826 0.408462i −0.0164708 0.0285282i
\(206\) 13.0387 22.5837i 0.908450 1.57348i
\(207\) 1.72585 2.98927i 0.119955 0.207768i
\(208\) −0.697143 + 1.20749i −0.0483382 + 0.0837242i
\(209\) −0.0469637 −0.00324855
\(210\) 1.16533 + 2.01842i 0.0804156 + 0.139284i
\(211\) 4.08007 + 7.06689i 0.280884 + 0.486505i 0.971603 0.236619i \(-0.0760392\pi\)
−0.690719 + 0.723123i \(0.742706\pi\)
\(212\) 5.01685 8.68944i 0.344559 0.596793i
\(213\) −5.91920 −0.405577
\(214\) 0.0164167 + 0.0284346i 0.00112222 + 0.00194375i
\(215\) −1.08417 −0.0739400
\(216\) −12.2304 −0.832175
\(217\) 20.4071 9.01559i 1.38533 0.612018i
\(218\) 32.9731 2.23322
\(219\) 8.13105 0.549446
\(220\) 0.00159567 + 0.00276378i 0.000107580 + 0.000186334i
\(221\) 2.42933 0.163415
\(222\) 17.7890 30.8115i 1.19392 2.06793i
\(223\) 2.78123 + 4.81723i 0.186245 + 0.322586i 0.943995 0.329959i \(-0.107035\pi\)
−0.757750 + 0.652545i \(0.773702\pi\)
\(224\) 7.83458 + 13.5699i 0.523470 + 0.906677i
\(225\) −21.2771 −1.41847
\(226\) −16.5766 + 28.7115i −1.10266 + 1.90986i
\(227\) 1.73060 2.99748i 0.114864 0.198950i −0.802861 0.596166i \(-0.796690\pi\)
0.917725 + 0.397216i \(0.130024\pi\)
\(228\) 22.6642 39.2555i 1.50097 2.59976i
\(229\) −9.14743 15.8438i −0.604479 1.04699i −0.992134 0.125184i \(-0.960048\pi\)
0.387654 0.921805i \(-0.373285\pi\)
\(230\) 0.0873871 0.151359i 0.00576214 0.00998032i
\(231\) −0.0531968 0.0921395i −0.00350009 0.00606233i
\(232\) 10.2124 0.670475
\(233\) 19.9647 1.30793 0.653967 0.756523i \(-0.273104\pi\)
0.653967 + 0.756523i \(0.273104\pi\)
\(234\) −5.01136 8.67993i −0.327603 0.567425i
\(235\) −0.334818 + 0.579922i −0.0218411 + 0.0378299i
\(236\) −25.5067 44.1790i −1.66035 2.87581i
\(237\) 4.15626 7.19884i 0.269978 0.467615i
\(238\) −11.4442 + 19.8219i −0.741817 + 1.28486i
\(239\) 10.3813 17.9809i 0.671508 1.16309i −0.305969 0.952041i \(-0.598980\pi\)
0.977477 0.211044i \(-0.0676862\pi\)
\(240\) −0.344909 −0.0222638
\(241\) 5.24411 + 9.08307i 0.337803 + 0.585092i 0.984019 0.178062i \(-0.0569829\pi\)
−0.646216 + 0.763154i \(0.723650\pi\)
\(242\) 12.9321 + 22.3991i 0.831309 + 1.43987i
\(243\) −9.97909 + 17.2843i −0.640159 + 1.10879i
\(244\) 41.6026 2.66334
\(245\) −0.415629 0.719890i −0.0265535 0.0459921i
\(246\) −32.5591 −2.07589
\(247\) 4.76661 0.303292
\(248\) −2.14917 + 19.8973i −0.136472 + 1.26348i
\(249\) 22.9014 1.45132
\(250\) −2.15651 −0.136390
\(251\) −0.00476844 0.00825918i −0.000300981 0.000521315i 0.865875 0.500261i \(-0.166762\pi\)
−0.866176 + 0.499739i \(0.833429\pi\)
\(252\) 60.2705 3.79668
\(253\) −0.00398917 + 0.00690945i −0.000250797 + 0.000434393i
\(254\) −11.6439 20.1679i −0.730605 1.26544i
\(255\) 0.300476 + 0.520439i 0.0188165 + 0.0325912i
\(256\) −23.8960 −1.49350
\(257\) −2.17387 + 3.76526i −0.135602 + 0.234870i −0.925827 0.377946i \(-0.876630\pi\)
0.790225 + 0.612817i \(0.209964\pi\)
\(258\) −37.4213 + 64.8157i −2.32975 + 4.03525i
\(259\) −11.2489 + 19.4837i −0.698975 + 1.21066i
\(260\) −0.161953 0.280512i −0.0100439 0.0173966i
\(261\) −6.05535 + 10.4882i −0.374817 + 0.649202i
\(262\) 0.551987 + 0.956070i 0.0341019 + 0.0590662i
\(263\) 15.8338 0.976352 0.488176 0.872745i \(-0.337662\pi\)
0.488176 + 0.872745i \(0.337662\pi\)
\(264\) 0.0954399 0.00587392
\(265\) 0.130504 + 0.226039i 0.00801679 + 0.0138855i
\(266\) −22.4547 + 38.8927i −1.37679 + 2.38467i
\(267\) −3.19171 5.52821i −0.195330 0.338321i
\(268\) −9.82639 + 17.0198i −0.600242 + 1.03965i
\(269\) −11.0791 + 19.1896i −0.675507 + 1.17001i 0.300814 + 0.953683i \(0.402742\pi\)
−0.976321 + 0.216329i \(0.930592\pi\)
\(270\) 0.367196 0.636002i 0.0223468 0.0387059i
\(271\) 22.5096 1.36736 0.683682 0.729780i \(-0.260378\pi\)
0.683682 + 0.729780i \(0.260378\pi\)
\(272\) −1.69359 2.93339i −0.102689 0.177863i
\(273\) 5.39924 + 9.35176i 0.326777 + 0.565994i
\(274\) −10.9341 + 18.9384i −0.660552 + 1.14411i
\(275\) 0.0491802 0.00296568
\(276\) −3.85026 6.66884i −0.231758 0.401417i
\(277\) 15.4592 0.928853 0.464427 0.885612i \(-0.346260\pi\)
0.464427 + 0.885612i \(0.346260\pi\)
\(278\) −49.8063 −2.98718
\(279\) −19.1603 14.0052i −1.14710 0.838467i
\(280\) 1.32207 0.0790088
\(281\) −32.1745 −1.91937 −0.959685 0.281076i \(-0.909309\pi\)
−0.959685 + 0.281076i \(0.909309\pi\)
\(282\) 23.1132 + 40.0332i 1.37637 + 2.38394i
\(283\) −7.91393 −0.470434 −0.235217 0.971943i \(-0.575580\pi\)
−0.235217 + 0.971943i \(0.575580\pi\)
\(284\) −3.87526 + 6.71215i −0.229955 + 0.398293i
\(285\) 0.589566 + 1.02116i 0.0349229 + 0.0604882i
\(286\) 0.0115833 + 0.0200629i 0.000684937 + 0.00118635i
\(287\) 20.5888 1.21532
\(288\) 8.33438 14.4356i 0.491108 0.850625i
\(289\) 5.54917 9.61144i 0.326422 0.565379i
\(290\) −0.306608 + 0.531060i −0.0180046 + 0.0311849i
\(291\) −13.5524 23.4734i −0.794455 1.37604i
\(292\) 5.32335 9.22031i 0.311525 0.539578i
\(293\) 11.0773 + 19.1865i 0.647145 + 1.12089i 0.983802 + 0.179261i \(0.0573705\pi\)
−0.336657 + 0.941627i \(0.609296\pi\)
\(294\) −57.3834 −3.34667
\(295\) 1.32702 0.0772621
\(296\) −10.0908 17.4778i −0.586516 1.01588i
\(297\) −0.0167623 + 0.0290331i −0.000972646 + 0.00168467i
\(298\) 24.5921 + 42.5948i 1.42458 + 2.46745i
\(299\) 0.404883 0.701279i 0.0234150 0.0405560i
\(300\) −23.7338 + 41.1081i −1.37027 + 2.37338i
\(301\) 23.6635 40.9864i 1.36394 2.36241i
\(302\) 37.5356 2.15993
\(303\) −16.2542 28.1530i −0.933778 1.61735i
\(304\) −3.32301 5.75562i −0.190588 0.330108i
\(305\) −0.541107 + 0.937225i −0.0309837 + 0.0536654i
\(306\) 24.3485 1.39191
\(307\) 1.77100 + 3.06746i 0.101076 + 0.175069i 0.912128 0.409905i \(-0.134438\pi\)
−0.811052 + 0.584974i \(0.801105\pi\)
\(308\) −0.139310 −0.00793794
\(309\) 29.8882 1.70028
\(310\) −0.970165 0.709139i −0.0551017 0.0402764i
\(311\) −24.2946 −1.37762 −0.688811 0.724941i \(-0.741867\pi\)
−0.688811 + 0.724941i \(0.741867\pi\)
\(312\) −9.68673 −0.548403
\(313\) −5.57726 9.66009i −0.315245 0.546021i 0.664244 0.747516i \(-0.268753\pi\)
−0.979490 + 0.201495i \(0.935420\pi\)
\(314\) −18.6602 −1.05306
\(315\) −0.783912 + 1.35777i −0.0441684 + 0.0765019i
\(316\) −5.44214 9.42607i −0.306145 0.530258i
\(317\) −4.61381 7.99136i −0.259138 0.448839i 0.706874 0.707340i \(-0.250105\pi\)
−0.966011 + 0.258500i \(0.916772\pi\)
\(318\) 18.0179 1.01039
\(319\) 0.0139965 0.0242426i 0.000783651 0.00135732i
\(320\) 0.549989 0.952609i 0.0307453 0.0532525i
\(321\) −0.0188157 + 0.0325898i −0.00105019 + 0.00181898i
\(322\) 3.81468 + 6.60721i 0.212584 + 0.368206i
\(323\) −5.78985 + 10.0283i −0.322156 + 0.557990i
\(324\) 6.38352 + 11.0566i 0.354640 + 0.614254i
\(325\) −4.99157 −0.276883
\(326\) 19.7611 1.09446
\(327\) 18.8957 + 32.7284i 1.04494 + 1.80988i
\(328\) −9.23456 + 15.9947i −0.509893 + 0.883161i
\(329\) −14.6157 25.3151i −0.805788 1.39567i
\(330\) −0.00286541 + 0.00496303i −0.000157735 + 0.000273206i
\(331\) −3.00281 + 5.20101i −0.165049 + 0.285874i −0.936673 0.350206i \(-0.886112\pi\)
0.771624 + 0.636079i \(0.219445\pi\)
\(332\) 14.9934 25.9694i 0.822871 1.42525i
\(333\) 23.9331 1.31153
\(334\) −17.6679 30.6017i −0.966745 1.67445i
\(335\) −0.255615 0.442738i −0.0139657 0.0241894i
\(336\) 7.52808 13.0390i 0.410691 0.711337i
\(337\) 24.3060 1.32403 0.662015 0.749490i \(-0.269701\pi\)
0.662015 + 0.749490i \(0.269701\pi\)
\(338\) −1.17566 2.03630i −0.0639474 0.110760i
\(339\) −37.9979 −2.06376
\(340\) 0.786878 0.0426744
\(341\) 0.0442875 + 0.0323718i 0.00239830 + 0.00175303i
\(342\) 47.7744 2.58334
\(343\) 8.23772 0.444795
\(344\) 21.2272 + 36.7667i 1.14450 + 1.98233i
\(345\) 0.200314 0.0107846
\(346\) 4.87763 8.44831i 0.262223 0.454184i
\(347\) −14.3936 24.9305i −0.772689 1.33834i −0.936084 0.351776i \(-0.885578\pi\)
0.163395 0.986561i \(-0.447755\pi\)
\(348\) 13.5091 + 23.3984i 0.724162 + 1.25428i
\(349\) 36.0861 1.93164 0.965821 0.259210i \(-0.0834622\pi\)
0.965821 + 0.259210i \(0.0834622\pi\)
\(350\) 23.5145 40.7283i 1.25690 2.17702i
\(351\) 1.70130 2.94673i 0.0908086 0.157285i
\(352\) −0.0192642 + 0.0333667i −0.00102679 + 0.00177845i
\(353\) 14.7115 + 25.4811i 0.783015 + 1.35622i 0.930178 + 0.367109i \(0.119653\pi\)
−0.147163 + 0.989112i \(0.547014\pi\)
\(354\) 45.8034 79.3339i 2.43443 4.21655i
\(355\) −0.100808 0.174604i −0.00535032 0.00926702i
\(356\) −8.35838 −0.442993
\(357\) −26.2331 −1.38840
\(358\) −10.1958 17.6596i −0.538864 0.933340i
\(359\) −15.2472 + 26.4089i −0.804714 + 1.39381i 0.111770 + 0.993734i \(0.464348\pi\)
−0.916484 + 0.400072i \(0.868985\pi\)
\(360\) −0.703205 1.21799i −0.0370622 0.0641935i
\(361\) −1.86030 + 3.22213i −0.0979104 + 0.169586i
\(362\) 2.53359 4.38830i 0.133162 0.230644i
\(363\) −14.8219 + 25.6723i −0.777950 + 1.34745i
\(364\) 14.1394 0.741105
\(365\) 0.138477 + 0.239849i 0.00724821 + 0.0125543i
\(366\) 37.3538 + 64.6986i 1.95251 + 3.38185i
\(367\) 17.6168 30.5131i 0.919587 1.59277i 0.119545 0.992829i \(-0.461856\pi\)
0.800042 0.599943i \(-0.204810\pi\)
\(368\) −1.12905 −0.0588556
\(369\) −10.9511 18.9679i −0.570093 0.987430i
\(370\) 1.21183 0.0630001
\(371\) −11.3937 −0.591530
\(372\) −48.4312 + 21.3962i −2.51104 + 1.10934i
\(373\) 19.1774 0.992967 0.496484 0.868046i \(-0.334624\pi\)
0.496484 + 0.868046i \(0.334624\pi\)
\(374\) −0.0562796 −0.00291015
\(375\) −1.23582 2.14051i −0.0638176 0.110535i
\(376\) 26.2219 1.35229
\(377\) −1.42058 + 2.46051i −0.0731635 + 0.126723i
\(378\) 16.0291 + 27.7632i 0.824446 + 1.42798i
\(379\) −10.7731 18.6596i −0.553377 0.958478i −0.998028 0.0627736i \(-0.980005\pi\)
0.444650 0.895704i \(-0.353328\pi\)
\(380\) 1.54394 0.0792024
\(381\) 13.3455 23.1150i 0.683709 1.18422i
\(382\) 27.6960 47.9709i 1.41705 2.45440i
\(383\) 2.56379 4.44061i 0.131003 0.226905i −0.793060 0.609143i \(-0.791513\pi\)
0.924064 + 0.382239i \(0.124847\pi\)
\(384\) −27.4285 47.5075i −1.39970 2.42436i
\(385\) 0.00181195 0.00313838i 9.23454e−5 0.000159947i
\(386\) −23.2018 40.1867i −1.18094 2.04545i
\(387\) −50.3462 −2.55924
\(388\) −35.4906 −1.80176
\(389\) −7.75954 13.4399i −0.393424 0.681430i 0.599475 0.800394i \(-0.295376\pi\)
−0.992899 + 0.118963i \(0.962043\pi\)
\(390\) 0.290826 0.503726i 0.0147266 0.0255071i
\(391\) 0.983597 + 1.70364i 0.0497426 + 0.0861568i
\(392\) −16.2754 + 28.1897i −0.822029 + 1.42380i
\(393\) −0.632651 + 1.09578i −0.0319130 + 0.0552749i
\(394\) −24.7960 + 42.9480i −1.24921 + 2.16369i
\(395\) 0.283134 0.0142460
\(396\) 0.0740987 + 0.128343i 0.00372360 + 0.00644946i
\(397\) −8.51031 14.7403i −0.427120 0.739794i 0.569496 0.821994i \(-0.307139\pi\)
−0.996616 + 0.0822006i \(0.973805\pi\)
\(398\) −8.63323 + 14.9532i −0.432745 + 0.749536i
\(399\) −51.4722 −2.57683
\(400\) 3.47984 + 6.02726i 0.173992 + 0.301363i
\(401\) −38.3723 −1.91622 −0.958111 0.286396i \(-0.907543\pi\)
−0.958111 + 0.286396i \(0.907543\pi\)
\(402\) −35.2913 −1.76017
\(403\) −4.49498 3.28559i −0.223911 0.163667i
\(404\) −42.5660 −2.11774
\(405\) −0.332110 −0.0165027
\(406\) −13.3842 23.1822i −0.664248 1.15051i
\(407\) −0.0553194 −0.00274208
\(408\) 11.7662 20.3796i 0.582511 1.00894i
\(409\) 6.77574 + 11.7359i 0.335039 + 0.580304i 0.983492 0.180950i \(-0.0579173\pi\)
−0.648454 + 0.761254i \(0.724584\pi\)
\(410\) −0.554501 0.960424i −0.0273848 0.0474319i
\(411\) −25.0638 −1.23631
\(412\) 19.5676 33.8920i 0.964025 1.66974i
\(413\) −28.9639 + 50.1670i −1.42522 + 2.46856i
\(414\) 4.05803 7.02872i 0.199441 0.345443i
\(415\) 0.390026 + 0.675545i 0.0191456 + 0.0331612i
\(416\) 1.95524 3.38657i 0.0958634 0.166040i
\(417\) −28.5423 49.4367i −1.39772 2.42092i
\(418\) −0.110427 −0.00540114
\(419\) −22.5265 −1.10049 −0.550245 0.835003i \(-0.685466\pi\)
−0.550245 + 0.835003i \(0.685466\pi\)
\(420\) 1.74885 + 3.02910i 0.0853352 + 0.147805i
\(421\) −9.69923 + 16.7996i −0.472711 + 0.818760i −0.999512 0.0312287i \(-0.990058\pi\)
0.526801 + 0.849989i \(0.323391\pi\)
\(422\) 9.59354 + 16.6165i 0.467006 + 0.808879i
\(423\) −15.5481 + 26.9300i −0.755973 + 1.30938i
\(424\) 5.11032 8.85134i 0.248179 0.429859i
\(425\) 6.06310 10.5016i 0.294104 0.509402i
\(426\) −13.9179 −0.674326
\(427\) −23.6207 40.9123i −1.14309 1.97989i
\(428\) 0.0246370 + 0.0426726i 0.00119088 + 0.00206266i
\(429\) −0.0132760 + 0.0229948i −0.000640973 + 0.00111020i
\(430\) −2.54923 −0.122935
\(431\) −7.68809 13.3162i −0.370322 0.641417i 0.619293 0.785160i \(-0.287419\pi\)
−0.989615 + 0.143743i \(0.954086\pi\)
\(432\) −4.74419 −0.228255
\(433\) 23.6632 1.13718 0.568590 0.822621i \(-0.307489\pi\)
0.568590 + 0.822621i \(0.307489\pi\)
\(434\) 47.9836 21.1985i 2.30329 1.01756i
\(435\) −0.702826 −0.0336979
\(436\) 49.4837 2.36984
\(437\) 1.92992 + 3.34272i 0.0923207 + 0.159904i
\(438\) 19.1187 0.913526
\(439\) 2.49669 4.32440i 0.119161 0.206392i −0.800275 0.599634i \(-0.795313\pi\)
0.919435 + 0.393241i \(0.128646\pi\)
\(440\) 0.00162540 + 0.00281528i 7.74879e−5 + 0.000134213i
\(441\) −19.3007 33.4298i −0.919081 1.59190i
\(442\) 5.71213 0.271699
\(443\) 5.47657 9.48570i 0.260200 0.450679i −0.706095 0.708117i \(-0.749545\pi\)
0.966295 + 0.257438i \(0.0828782\pi\)
\(444\) 26.6965 46.2397i 1.26696 2.19444i
\(445\) 0.108714 0.188298i 0.00515353 0.00892617i
\(446\) 6.53955 + 11.3268i 0.309657 + 0.536341i
\(447\) −28.1858 + 48.8193i −1.33314 + 2.30907i
\(448\) 24.0085 + 41.5839i 1.13429 + 1.96465i
\(449\) 33.6121 1.58625 0.793126 0.609058i \(-0.208452\pi\)
0.793126 + 0.609058i \(0.208452\pi\)
\(450\) −50.0291 −2.35840
\(451\) 0.0253126 + 0.0438428i 0.00119193 + 0.00206448i
\(452\) −24.8770 + 43.0882i −1.17011 + 2.02670i
\(453\) 21.5104 + 37.2571i 1.01065 + 1.75049i
\(454\) 4.06918 7.04803i 0.190976 0.330781i
\(455\) −0.183905 + 0.318532i −0.00862159 + 0.0149330i
\(456\) 23.0865 39.9869i 1.08112 1.87256i
\(457\) −18.7472 −0.876959 −0.438479 0.898741i \(-0.644483\pi\)
−0.438479 + 0.898741i \(0.644483\pi\)
\(458\) −21.5085 37.2538i −1.00503 1.74076i
\(459\) 4.13302 + 7.15860i 0.192913 + 0.334135i
\(460\) 0.131145 0.227149i 0.00611464 0.0105909i
\(461\) −35.8285 −1.66870 −0.834351 0.551234i \(-0.814157\pi\)
−0.834351 + 0.551234i \(0.814157\pi\)
\(462\) −0.125082 0.216649i −0.00581936 0.0100794i
\(463\) 28.5782 1.32814 0.664071 0.747670i \(-0.268827\pi\)
0.664071 + 0.747670i \(0.268827\pi\)
\(464\) 3.96139 0.183903
\(465\) 0.147908 1.36935i 0.00685907 0.0635021i
\(466\) 46.9435 2.17461
\(467\) 5.65039 0.261469 0.130735 0.991417i \(-0.458266\pi\)
0.130735 + 0.991417i \(0.458266\pi\)
\(468\) −7.52070 13.0262i −0.347644 0.602138i
\(469\) 22.3165 1.03048
\(470\) −0.787263 + 1.36358i −0.0363137 + 0.0628972i
\(471\) −10.6935 18.5218i −0.492733 0.853438i
\(472\) −25.9820 45.0021i −1.19592 2.07139i
\(473\) 0.116371 0.00535074
\(474\) 9.77267 16.9268i 0.448874 0.777472i
\(475\) 11.8965 20.6053i 0.545847 0.945434i
\(476\) −17.1746 + 29.7473i −0.787198 + 1.36347i
\(477\) 6.06026 + 10.4967i 0.277480 + 0.480610i
\(478\) 24.4096 42.2787i 1.11647 1.93378i
\(479\) −16.6317 28.8070i −0.759922 1.31622i −0.942890 0.333105i \(-0.891904\pi\)
0.182968 0.983119i \(-0.441430\pi\)
\(480\) 0.967346 0.0441531
\(481\) 5.61468 0.256007
\(482\) 12.3306 + 21.3572i 0.561642 + 0.972793i
\(483\) −4.37212 + 7.57274i −0.198939 + 0.344572i
\(484\) 19.4076 + 33.6150i 0.882165 + 1.52796i
\(485\) 0.461611 0.799534i 0.0209607 0.0363050i
\(486\) −23.4640 + 40.6409i −1.06435 + 1.84351i
\(487\) 11.3599 19.6760i 0.514768 0.891604i −0.485085 0.874467i \(-0.661212\pi\)
0.999853 0.0171370i \(-0.00545516\pi\)
\(488\) 42.3778 1.91835
\(489\) 11.3244 + 19.6144i 0.512107 + 0.886995i
\(490\) −0.977275 1.69269i −0.0441488 0.0764679i
\(491\) −20.2603 + 35.0919i −0.914335 + 1.58367i −0.106463 + 0.994317i \(0.533953\pi\)
−0.807872 + 0.589358i \(0.799381\pi\)
\(492\) −48.8624 −2.20289
\(493\) −3.45106 5.97741i −0.155428 0.269209i
\(494\) 11.2078 0.504264
\(495\) −0.00385508 −0.000173273
\(496\) −0.833664 + 7.71816i −0.0374326 + 0.346556i
\(497\) 8.80104 0.394781
\(498\) 53.8486 2.41301
\(499\) 8.01287 + 13.8787i 0.358705 + 0.621296i 0.987745 0.156078i \(-0.0498850\pi\)
−0.629039 + 0.777373i \(0.716552\pi\)
\(500\) −3.23634 −0.144734
\(501\) 20.2498 35.0736i 0.904692 1.56697i
\(502\) −0.0112121 0.0194199i −0.000500421 0.000866755i
\(503\) −11.0824 19.1953i −0.494140 0.855875i 0.505838 0.862629i \(-0.331184\pi\)
−0.999977 + 0.00675382i \(0.997850\pi\)
\(504\) 61.3935 2.73468
\(505\) 0.553637 0.958928i 0.0246365 0.0426717i
\(506\) −0.00937981 + 0.0162463i −0.000416983 + 0.000722236i
\(507\) 1.34746 2.33387i 0.0598428 0.103651i
\(508\) −17.4744 30.2665i −0.775300 1.34286i
\(509\) 5.78924 10.0273i 0.256603 0.444450i −0.708726 0.705483i \(-0.750730\pi\)
0.965330 + 0.261033i \(0.0840633\pi\)
\(510\) 0.706514 + 1.22372i 0.0312850 + 0.0541871i
\(511\) −12.0898 −0.534819
\(512\) −15.4757 −0.683935
\(513\) 8.10943 + 14.0459i 0.358040 + 0.620143i
\(514\) −5.11147 + 8.85332i −0.225457 + 0.390503i
\(515\) 0.509014 + 0.881638i 0.0224298 + 0.0388496i
\(516\) −56.1593 + 97.2708i −2.47228 + 4.28211i
\(517\) 0.0359381 0.0622466i 0.00158055 0.00273760i
\(518\) −26.4498 + 45.8124i −1.16214 + 2.01288i
\(519\) 11.1808 0.490784
\(520\) −0.164971 0.285738i −0.00723446 0.0125305i
\(521\) −18.5385 32.1096i −0.812187 1.40675i −0.911330 0.411676i \(-0.864944\pi\)
0.0991433 0.995073i \(-0.468390\pi\)
\(522\) −14.2381 + 24.6610i −0.623183 + 1.07938i
\(523\) 4.03873 0.176601 0.0883007 0.996094i \(-0.471856\pi\)
0.0883007 + 0.996094i \(0.471856\pi\)
\(524\) 0.828384 + 1.43480i 0.0361881 + 0.0626797i
\(525\) 53.9014 2.35245
\(526\) 37.2302 1.62331
\(527\) 12.3724 5.46594i 0.538948 0.238100i
\(528\) 0.0370212 0.00161114
\(529\) −22.3443 −0.971490
\(530\) 0.306856 + 0.531490i 0.0133290 + 0.0230865i
\(531\) 61.6233 2.67422
\(532\) −33.6985 + 58.3675i −1.46101 + 2.53055i
\(533\) −2.56912 4.44985i −0.111281 0.192744i
\(534\) −7.50473 12.9986i −0.324762 0.562504i
\(535\) −0.00128177 −5.54158e−5
\(536\) −10.0095 + 17.3369i −0.432344 + 0.748841i
\(537\) 11.6857 20.2403i 0.504276 0.873432i
\(538\) −26.0506 + 45.1209i −1.12312 + 1.94530i
\(539\) 0.0446120 + 0.0772702i 0.00192157 + 0.00332826i
\(540\) 0.551062 0.954467i 0.0237139 0.0410737i
\(541\) 11.3543 + 19.6663i 0.488162 + 0.845521i 0.999907 0.0136163i \(-0.00433435\pi\)
−0.511746 + 0.859137i \(0.671001\pi\)
\(542\) 52.9273 2.27342
\(543\) 5.80766 0.249230
\(544\) 4.74992 + 8.22711i 0.203651 + 0.352734i
\(545\) −0.643612 + 1.11477i −0.0275693 + 0.0477515i
\(546\) 12.6953 + 21.9889i 0.543310 + 0.941040i
\(547\) −16.9118 + 29.2920i −0.723095 + 1.25244i 0.236658 + 0.971593i \(0.423948\pi\)
−0.959753 + 0.280844i \(0.909386\pi\)
\(548\) −16.4091 + 28.4214i −0.700962 + 1.21410i
\(549\) −25.1276 + 43.5223i −1.07242 + 1.85749i
\(550\) 0.115638 0.00493083
\(551\) −6.77135 11.7283i −0.288469 0.499643i
\(552\) −3.92200 6.79310i −0.166931 0.289133i
\(553\) −6.17978 + 10.7037i −0.262791 + 0.455167i
\(554\) 36.3495 1.54434
\(555\) 0.694460 + 1.20284i 0.0294782 + 0.0510577i
\(556\) −74.7457 −3.16993
\(557\) 26.3971 1.11848 0.559241 0.829005i \(-0.311093\pi\)
0.559241 + 0.829005i \(0.311093\pi\)
\(558\) −45.0519 32.9306i −1.90720 1.39406i
\(559\) −11.8111 −0.499558
\(560\) 0.512832 0.0216711
\(561\) −0.0322519 0.0558620i −0.00136168 0.00235850i
\(562\) −75.6525 −3.19121
\(563\) −2.39000 + 4.13960i −0.100727 + 0.174464i −0.911984 0.410225i \(-0.865450\pi\)
0.811258 + 0.584689i \(0.198783\pi\)
\(564\) 34.6866 + 60.0790i 1.46057 + 2.52978i
\(565\) −0.647128 1.12086i −0.0272249 0.0471548i
\(566\) −18.6082 −0.782159
\(567\) 7.24874 12.5552i 0.304419 0.527269i
\(568\) −3.94747 + 6.83722i −0.165632 + 0.286883i
\(569\) 7.22055 12.5064i 0.302701 0.524294i −0.674046 0.738690i \(-0.735445\pi\)
0.976747 + 0.214396i \(0.0687782\pi\)
\(570\) 1.38626 + 2.40107i 0.0580639 + 0.100570i
\(571\) 0.262156 0.454067i 0.0109709 0.0190021i −0.860488 0.509471i \(-0.829841\pi\)
0.871459 + 0.490469i \(0.163174\pi\)
\(572\) 0.0173835 + 0.0301091i 0.000726839 + 0.00125892i
\(573\) 63.4865 2.65219
\(574\) 48.4108 2.02063
\(575\) −2.02101 3.50048i −0.0842818 0.145980i
\(576\) 25.5401 44.2367i 1.06417 1.84319i
\(577\) 16.9655 + 29.3851i 0.706283 + 1.22332i 0.966227 + 0.257694i \(0.0829625\pi\)
−0.259944 + 0.965624i \(0.583704\pi\)
\(578\) 13.0479 22.5995i 0.542719 0.940017i
\(579\) 26.5923 46.0593i 1.10514 1.91416i
\(580\) −0.460135 + 0.796978i −0.0191061 + 0.0330927i
\(581\) −34.0513 −1.41269
\(582\) −31.8660 55.1935i −1.32089 2.28784i
\(583\) −0.0140078 0.0242622i −0.000580144 0.00100484i
\(584\) 5.42253 9.39210i 0.224386 0.388648i
\(585\) 0.391274 0.0161772
\(586\) 26.0463 + 45.1136i 1.07596 + 1.86362i
\(587\) 9.04716 0.373416 0.186708 0.982415i \(-0.440218\pi\)
0.186708 + 0.982415i \(0.440218\pi\)
\(588\) −86.1170 −3.55140
\(589\) 24.2759 10.7248i 1.00027 0.441906i
\(590\) 3.12024 0.128458
\(591\) −56.8391 −2.33805
\(592\) −3.91423 6.77965i −0.160874 0.278642i
\(593\) 10.7119 0.439884 0.219942 0.975513i \(-0.429413\pi\)
0.219942 + 0.975513i \(0.429413\pi\)
\(594\) −0.0394134 + 0.0682661i −0.00161715 + 0.00280099i
\(595\) −0.446766 0.773821i −0.0183156 0.0317236i
\(596\) 36.9062 + 63.9234i 1.51174 + 2.61840i
\(597\) −19.7897 −0.809937
\(598\) 0.952009 1.64893i 0.0389306 0.0674297i
\(599\) −16.4028 + 28.4105i −0.670200 + 1.16082i 0.307647 + 0.951501i \(0.400458\pi\)
−0.977847 + 0.209320i \(0.932875\pi\)
\(600\) −24.1760 + 41.8741i −0.986982 + 1.70950i
\(601\) 10.5817 + 18.3280i 0.431635 + 0.747614i 0.997014 0.0772169i \(-0.0246034\pi\)
−0.565379 + 0.824831i \(0.691270\pi\)
\(602\) 55.6404 96.3719i 2.26773 3.92783i
\(603\) −11.8701 20.5596i −0.483388 0.837252i
\(604\) 56.3309 2.29207
\(605\) −1.00971 −0.0410504
\(606\) −38.2187 66.1967i −1.55253 2.68906i
\(607\) −6.76080 + 11.7100i −0.274412 + 0.475296i −0.969987 0.243158i \(-0.921817\pi\)
0.695574 + 0.718454i \(0.255150\pi\)
\(608\) 9.31986 + 16.1425i 0.377970 + 0.654663i
\(609\) 15.3401 26.5698i 0.621612 1.07666i
\(610\) −1.27231 + 2.20371i −0.0515145 + 0.0892258i
\(611\) −3.64756 + 6.31776i −0.147564 + 0.255589i
\(612\) 36.5406 1.47706
\(613\) −6.33371 10.9703i −0.255816 0.443087i 0.709301 0.704906i \(-0.249011\pi\)
−0.965117 + 0.261819i \(0.915678\pi\)
\(614\) 4.16418 + 7.21258i 0.168053 + 0.291076i
\(615\) 0.635531 1.10077i 0.0256271 0.0443874i
\(616\) −0.141906 −0.00571755
\(617\) 10.4563 + 18.1109i 0.420956 + 0.729116i 0.996033 0.0889825i \(-0.0283615\pi\)
−0.575078 + 0.818099i \(0.695028\pi\)
\(618\) 70.2766 2.82694
\(619\) 1.86008 0.0747628 0.0373814 0.999301i \(-0.488098\pi\)
0.0373814 + 0.999301i \(0.488098\pi\)
\(620\) −1.45596 1.06423i −0.0584726 0.0427403i
\(621\) 2.75531 0.110567
\(622\) −57.1243 −2.29048
\(623\) 4.74564 + 8.21969i 0.190130 + 0.329315i
\(624\) −3.75749 −0.150420
\(625\) −12.4368 + 21.5412i −0.497474 + 0.861650i
\(626\) −13.1139 22.7139i −0.524137 0.907832i
\(627\) −0.0632817 0.109607i −0.00252723 0.00437729i
\(628\) −28.0040 −1.11748
\(629\) −6.81996 + 11.8125i −0.271930 + 0.470996i
\(630\) −1.84322 + 3.19256i −0.0734358 + 0.127195i
\(631\) −9.95353 + 17.2400i −0.396244 + 0.686314i −0.993259 0.115916i \(-0.963020\pi\)
0.597015 + 0.802230i \(0.296353\pi\)
\(632\) −5.54355 9.60170i −0.220510 0.381935i
\(633\) −10.9955 + 19.0447i −0.437031 + 0.756959i
\(634\) −10.8485 18.7902i −0.430851 0.746255i
\(635\) 0.909127 0.0360776
\(636\) 27.0400 1.07221
\(637\) −4.52792 7.84259i −0.179403 0.310735i
\(638\) 0.0329101 0.0570020i 0.00130292 0.00225673i
\(639\) −4.68125 8.10816i −0.185187 0.320754i
\(640\) 0.934247 1.61816i 0.0369294 0.0639635i
\(641\) 1.53767 2.66333i 0.0607345 0.105195i −0.834059 0.551675i \(-0.813989\pi\)
0.894794 + 0.446479i \(0.147322\pi\)
\(642\) −0.0442417 + 0.0766289i −0.00174608 + 0.00302430i
\(643\) 5.02770 0.198273 0.0991365 0.995074i \(-0.468392\pi\)
0.0991365 + 0.995074i \(0.468392\pi\)
\(644\) 5.72480 + 9.91565i 0.225589 + 0.390731i
\(645\) −1.46088 2.53032i −0.0575221 0.0996312i
\(646\) −13.6138 + 23.5797i −0.535626 + 0.927732i
\(647\) 0.153149 0.00602091 0.00301045 0.999995i \(-0.499042\pi\)
0.00301045 + 0.999995i \(0.499042\pi\)
\(648\) 6.50246 + 11.2626i 0.255441 + 0.442436i
\(649\) −0.142437 −0.00559115
\(650\) −11.7368 −0.460354
\(651\) 48.5390 + 35.4794i 1.90239 + 1.39055i
\(652\) 29.6560 1.16142
\(653\) −48.0459 −1.88018 −0.940091 0.340922i \(-0.889261\pi\)
−0.940091 + 0.340922i \(0.889261\pi\)
\(654\) 44.4299 + 76.9548i 1.73735 + 3.00917i
\(655\) −0.0430977 −0.00168397
\(656\) −3.58209 + 6.20436i −0.139857 + 0.242240i
\(657\) 6.43051 + 11.1380i 0.250878 + 0.434533i
\(658\) −34.3661 59.5238i −1.33973 2.32048i
\(659\) 10.4959 0.408862 0.204431 0.978881i \(-0.434466\pi\)
0.204431 + 0.978881i \(0.434466\pi\)
\(660\) −0.00430020 + 0.00744817i −0.000167385 + 0.000289919i
\(661\) −15.7391 + 27.2609i −0.612179 + 1.06032i 0.378694 + 0.925522i \(0.376373\pi\)
−0.990872 + 0.134803i \(0.956960\pi\)
\(662\) −7.06055 + 12.2292i −0.274416 + 0.475303i
\(663\) 3.27343 + 5.66975i 0.127130 + 0.220195i
\(664\) 15.2728 26.4532i 0.592699 1.02659i
\(665\) −0.876603 1.51832i −0.0339932 0.0588779i
\(666\) 56.2743 2.18058
\(667\) −2.30068 −0.0890825
\(668\) −26.5148 45.9249i −1.02589 1.77689i
\(669\) −7.49519 + 12.9821i −0.289781 + 0.501915i
\(670\) −0.601032 1.04102i −0.0232199 0.0402180i
\(671\) 0.0580804 0.100598i 0.00224217 0.00388355i
\(672\) −21.1136 + 36.5698i −0.814474 + 1.41071i
\(673\) 25.1738 43.6023i 0.970379 1.68075i 0.275968 0.961167i \(-0.411002\pi\)
0.694411 0.719579i \(-0.255665\pi\)
\(674\) 57.1510 2.20138
\(675\) −8.49215 14.7088i −0.326863 0.566144i
\(676\) −1.76435 3.05594i −0.0678595 0.117536i
\(677\) 8.65338 14.9881i 0.332576 0.576039i −0.650440 0.759558i \(-0.725415\pi\)
0.983016 + 0.183519i \(0.0587488\pi\)
\(678\) −89.3451 −3.43128
\(679\) 20.1505 + 34.9017i 0.773306 + 1.33941i
\(680\) 0.801539 0.0307376
\(681\) 9.32765 0.357436
\(682\) 0.104134 + 0.0761163i 0.00398749 + 0.00291464i
\(683\) −6.70441 −0.256537 −0.128269 0.991739i \(-0.540942\pi\)
−0.128269 + 0.991739i \(0.540942\pi\)
\(684\) 71.6965 2.74138
\(685\) −0.426852 0.739329i −0.0163092 0.0282483i
\(686\) 19.3695 0.739531
\(687\) 24.6516 42.6978i 0.940517 1.62902i
\(688\) 8.23406 + 14.2618i 0.313921 + 0.543726i
\(689\) 1.42173 + 2.46251i 0.0541636 + 0.0938141i
\(690\) 0.471003 0.0179308
\(691\) 1.90995 3.30813i 0.0726578 0.125847i −0.827408 0.561602i \(-0.810185\pi\)
0.900065 + 0.435755i \(0.143519\pi\)
\(692\) 7.32001 12.6786i 0.278265 0.481969i
\(693\) 0.0841421 0.145738i 0.00319629 0.00553614i
\(694\) −33.8439 58.6194i −1.28470 2.22516i
\(695\) 0.972185 1.68387i 0.0368771 0.0638730i
\(696\) 13.7608 + 23.8343i 0.521600 + 0.903439i
\(697\) 12.4825 0.472809
\(698\) 84.8497 3.21161
\(699\) 26.9017 + 46.5951i 1.01752 + 1.76239i
\(700\) 35.2889 61.1221i 1.33379 2.31020i
\(701\) 1.24702 + 2.15991i 0.0470994 + 0.0815785i 0.888614 0.458656i \(-0.151669\pi\)
−0.841515 + 0.540234i \(0.818336\pi\)
\(702\) 4.00029 6.92871i 0.150981 0.261507i
\(703\) −13.3815 + 23.1774i −0.504693 + 0.874153i
\(704\) −0.0590337 + 0.102249i −0.00222492 + 0.00385367i
\(705\) −1.80461 −0.0679657
\(706\) 34.5914 + 59.9141i 1.30187 + 2.25490i
\(707\) 24.1677 + 41.8597i 0.908920 + 1.57430i
\(708\) 68.7386 119.059i 2.58336 4.47450i
\(709\) 0.997071 0.0374458 0.0187229 0.999825i \(-0.494040\pi\)
0.0187229 + 0.999825i \(0.494040\pi\)
\(710\) −0.237031 0.410549i −0.00889561 0.0154076i
\(711\) 13.1480 0.493089
\(712\) −8.51411 −0.319080
\(713\) 0.484172 4.48252i 0.0181324 0.167872i
\(714\) −61.6824 −2.30840
\(715\) −0.000904397 0 −3.38225e−5 0
\(716\) −15.3011 26.5023i −0.571830 0.990438i
\(717\) 55.9533 2.08961
\(718\) −35.8509 + 62.0956i −1.33794 + 2.31739i
\(719\) 14.8305 + 25.6872i 0.553085 + 0.957971i 0.998050 + 0.0624232i \(0.0198828\pi\)
−0.444965 + 0.895548i \(0.646784\pi\)
\(720\) −0.272774 0.472458i −0.0101657 0.0176075i
\(721\) −44.4396 −1.65502
\(722\) −4.37415 + 7.57625i −0.162789 + 0.281959i
\(723\) −14.1325 + 24.4781i −0.525592 + 0.910352i
\(724\) 3.80223 6.58566i 0.141309 0.244754i
\(725\) 7.09092 + 12.2818i 0.263350 + 0.456136i
\(726\) −34.8511 + 60.3638i −1.29344 + 2.24031i
\(727\) −5.46012 9.45720i −0.202504 0.350748i 0.746830 0.665015i \(-0.231575\pi\)
−0.949335 + 0.314267i \(0.898241\pi\)
\(728\) 14.4028 0.533805
\(729\) −42.9315 −1.59006
\(730\) 0.325603 + 0.563961i 0.0120511 + 0.0208731i
\(731\) 14.3466 24.8491i 0.530629 0.919076i
\(732\) 56.0579 + 97.0951i 2.07196 + 3.58874i
\(733\) 2.44544 4.23563i 0.0903244 0.156446i −0.817323 0.576179i \(-0.804543\pi\)
0.907648 + 0.419733i \(0.137876\pi\)
\(734\) 41.4226 71.7460i 1.52894 2.64819i
\(735\) 1.12009 1.94005i 0.0413150 0.0715597i
\(736\) 3.16657 0.116721
\(737\) 0.0274367 + 0.0475218i 0.00101065 + 0.00175049i
\(738\) −25.7496 44.5996i −0.947855 1.64173i
\(739\) 10.5630 18.2957i 0.388566 0.673016i −0.603691 0.797219i \(-0.706304\pi\)
0.992257 + 0.124202i \(0.0396371\pi\)
\(740\) 1.81863 0.0668542
\(741\) 6.42282 + 11.1247i 0.235948 + 0.408674i
\(742\) −26.7901 −0.983497
\(743\) −0.609608 −0.0223643 −0.0111822 0.999937i \(-0.503559\pi\)
−0.0111822 + 0.999937i \(0.503559\pi\)
\(744\) −49.3335 + 21.7949i −1.80866 + 0.799040i
\(745\) −1.92009 −0.0703466
\(746\) 45.0921 1.65094
\(747\) 18.1118 + 31.3705i 0.662675 + 1.14779i
\(748\) −0.0844605 −0.00308818
\(749\) 0.0279764 0.0484565i 0.00102223 0.00177056i
\(750\) −2.90581 5.03301i −0.106105 0.183780i
\(751\) −1.76865 3.06340i −0.0645391 0.111785i 0.831950 0.554850i \(-0.187224\pi\)
−0.896489 + 0.443065i \(0.853891\pi\)
\(752\) 10.1715 0.370916
\(753\) 0.0128506 0.0222578i 0.000468300 0.000811120i
\(754\) −3.34023 + 5.78545i −0.121644 + 0.210694i
\(755\) −0.732671 + 1.26902i −0.0266646 + 0.0461845i
\(756\) 24.0553 + 41.6650i 0.874883 + 1.51534i
\(757\) −6.27342 + 10.8659i −0.228011 + 0.394927i −0.957219 0.289366i \(-0.906556\pi\)
0.729207 + 0.684293i \(0.239889\pi\)
\(758\) −25.3310 43.8746i −0.920063 1.59360i
\(759\) −0.0215010 −0.000780437
\(760\) 1.57271 0.0570480
\(761\) 9.74494 + 16.8787i 0.353254 + 0.611854i 0.986818 0.161837i \(-0.0517419\pi\)
−0.633564 + 0.773691i \(0.718409\pi\)
\(762\) 31.3794 54.3508i 1.13676 1.96892i
\(763\) −28.0954 48.6626i −1.01712 1.76170i
\(764\) 41.5642 71.9913i 1.50374 2.60455i
\(765\) −0.475267 + 0.823187i −0.0171833 + 0.0297624i
\(766\) 6.02828 10.4413i 0.217811 0.377259i
\(767\) 14.4568 0.522003
\(768\) −32.1989 55.7701i −1.16188 2.01243i
\(769\) −3.88838 6.73488i −0.140219 0.242866i 0.787360 0.616493i \(-0.211447\pi\)
−0.927579 + 0.373627i \(0.878114\pi\)
\(770\) 0.00426046 0.00737934i 0.000153536 0.000265933i
\(771\) −11.7168