Properties

Label 403.2.h.b.118.10
Level 403
Weight 2
Character 403.118
Analytic conductor 3.218
Analytic rank 0
Dimension 34
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(34\)
Relative dimension: \(17\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.10
Character \(\chi\) \(=\) 403.118
Dual form 403.2.h.b.222.10

$q$-expansion

\(f(q)\) \(=\) \(q+0.680422 q^{2} +(0.896149 + 1.55218i) q^{3} -1.53703 q^{4} +(-0.204382 + 0.354001i) q^{5} +(0.609760 + 1.05613i) q^{6} +(1.47430 + 2.55357i) q^{7} -2.40667 q^{8} +(-0.106167 + 0.183887i) q^{9} +O(q^{10})\) \(q+0.680422 q^{2} +(0.896149 + 1.55218i) q^{3} -1.53703 q^{4} +(-0.204382 + 0.354001i) q^{5} +(0.609760 + 1.05613i) q^{6} +(1.47430 + 2.55357i) q^{7} -2.40667 q^{8} +(-0.106167 + 0.183887i) q^{9} +(-0.139066 + 0.240870i) q^{10} +(-2.64506 + 4.58137i) q^{11} +(-1.37740 - 2.38574i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(1.00315 + 1.73750i) q^{14} -0.732628 q^{15} +1.43650 q^{16} +(-3.14250 - 5.44297i) q^{17} +(-0.0722385 + 0.125121i) q^{18} +(1.61734 + 2.80131i) q^{19} +(0.314141 - 0.544108i) q^{20} +(-2.64239 + 4.57676i) q^{21} +(-1.79975 + 3.11727i) q^{22} +1.03491 q^{23} +(-2.15674 - 3.73558i) q^{24} +(2.41646 + 4.18542i) q^{25} +(-0.340211 + 0.589263i) q^{26} +4.99633 q^{27} +(-2.26604 - 3.92490i) q^{28} -0.536694 q^{29} -0.498496 q^{30} +(4.66754 + 3.03546i) q^{31} +5.79077 q^{32} -9.48146 q^{33} +(-2.13823 - 3.70352i) q^{34} -1.20529 q^{35} +(0.163182 - 0.282639i) q^{36} +(-2.42298 - 4.19672i) q^{37} +(1.10047 + 1.90607i) q^{38} -1.79230 q^{39} +(0.491881 - 0.851963i) q^{40} +(-4.29037 + 7.43113i) q^{41} +(-1.79794 + 3.11413i) q^{42} +(-1.91684 - 3.32007i) q^{43} +(4.06552 - 7.04169i) q^{44} +(-0.0433974 - 0.0751665i) q^{45} +0.704175 q^{46} +5.01758 q^{47} +(1.28732 + 2.22970i) q^{48} +(-0.847142 + 1.46729i) q^{49} +(1.64421 + 2.84785i) q^{50} +(5.63230 - 9.75543i) q^{51} +(0.768513 - 1.33110i) q^{52} +(7.09395 - 12.2871i) q^{53} +3.39961 q^{54} +(-1.08121 - 1.87270i) q^{55} +(-3.54816 - 6.14560i) q^{56} +(-2.89875 + 5.02078i) q^{57} -0.365178 q^{58} +(-0.839102 - 1.45337i) q^{59} +1.12607 q^{60} +0.829504 q^{61} +(3.17590 + 2.06539i) q^{62} -0.626091 q^{63} +1.06716 q^{64} +(-0.204382 - 0.354001i) q^{65} -6.45139 q^{66} +(2.70677 - 4.68826i) q^{67} +(4.83011 + 8.36599i) q^{68} +(0.927433 + 1.60636i) q^{69} -0.820103 q^{70} +(3.75892 - 6.51064i) q^{71} +(0.255510 - 0.442555i) q^{72} +(6.20487 - 10.7471i) q^{73} +(-1.64865 - 2.85554i) q^{74} +(-4.33101 + 7.50153i) q^{75} +(-2.48589 - 4.30568i) q^{76} -15.5985 q^{77} -1.21952 q^{78} +(4.37564 + 7.57884i) q^{79} +(-0.293596 + 0.508522i) q^{80} +(4.79596 + 8.30684i) q^{81} +(-2.91926 + 5.05630i) q^{82} +(-5.05412 + 8.75399i) q^{83} +(4.06143 - 7.03460i) q^{84} +2.56909 q^{85} +(-1.30426 - 2.25905i) q^{86} +(-0.480958 - 0.833044i) q^{87} +(6.36578 - 11.0258i) q^{88} +17.4073 q^{89} +(-0.0295286 - 0.0511450i) q^{90} -2.94861 q^{91} -1.59068 q^{92} +(-0.528756 + 9.96508i) q^{93} +3.41407 q^{94} -1.32222 q^{95} +(5.18939 + 8.98829i) q^{96} +12.7634 q^{97} +(-0.576414 + 0.998378i) q^{98} +(-0.561637 - 0.972783i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} + O(q^{10}) \) \( 34q + 6q^{2} - 2q^{3} + 34q^{4} - 5q^{5} - 2q^{7} + 36q^{8} - 23q^{9} - 7q^{10} - 5q^{11} - 28q^{12} - 17q^{13} - 7q^{14} + 8q^{15} + 18q^{16} - 8q^{17} + 6q^{18} + 3q^{19} - 8q^{20} + 13q^{21} + 12q^{22} - 14q^{23} - 6q^{24} - 26q^{25} - 3q^{26} + 28q^{27} - 7q^{28} - 18q^{29} - 60q^{30} - 9q^{31} + 58q^{32} - 14q^{33} - 15q^{34} + 50q^{35} - 49q^{36} - 6q^{37} + 2q^{38} + 4q^{39} - 29q^{40} - 5q^{41} + 8q^{42} - q^{43} - 22q^{44} + 13q^{45} + 34q^{46} + 16q^{47} - 49q^{48} + 3q^{49} - 35q^{51} - 17q^{52} + 30q^{53} - 2q^{54} + 21q^{55} - 7q^{56} + 34q^{58} - 9q^{59} - 38q^{60} - 28q^{61} - 62q^{62} + 88q^{63} + 56q^{64} - 5q^{65} + 140q^{66} - 31q^{67} - 39q^{68} + 5q^{69} + 56q^{70} + q^{71} - 32q^{72} - 10q^{73} - 39q^{74} - 2q^{75} - 16q^{76} + 76q^{77} - 23q^{79} - 22q^{80} - 29q^{81} - 10q^{82} + 3q^{83} + 52q^{84} - 32q^{85} + 4q^{86} + 18q^{87} - 10q^{88} + 26q^{89} + 35q^{90} + 4q^{91} - 94q^{92} - 41q^{93} + 70q^{94} + 28q^{95} - 23q^{96} + 32q^{97} - 38q^{98} - 70q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.680422 0.481131 0.240565 0.970633i \(-0.422667\pi\)
0.240565 + 0.970633i \(0.422667\pi\)
\(3\) 0.896149 + 1.55218i 0.517392 + 0.896149i 0.999796 + 0.0202004i \(0.00643043\pi\)
−0.482404 + 0.875949i \(0.660236\pi\)
\(4\) −1.53703 −0.768513
\(5\) −0.204382 + 0.354001i −0.0914026 + 0.158314i −0.908102 0.418750i \(-0.862468\pi\)
0.816699 + 0.577064i \(0.195802\pi\)
\(6\) 0.609760 + 1.05613i 0.248933 + 0.431165i
\(7\) 1.47430 + 2.55357i 0.557234 + 0.965158i 0.997726 + 0.0674015i \(0.0214708\pi\)
−0.440492 + 0.897757i \(0.645196\pi\)
\(8\) −2.40667 −0.850886
\(9\) −0.106167 + 0.183887i −0.0353891 + 0.0612957i
\(10\) −0.139066 + 0.240870i −0.0439766 + 0.0761697i
\(11\) −2.64506 + 4.58137i −0.797514 + 1.38134i 0.123716 + 0.992318i \(0.460519\pi\)
−0.921230 + 0.389018i \(0.872814\pi\)
\(12\) −1.37740 2.38574i −0.397623 0.688702i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 1.00315 + 1.73750i 0.268103 + 0.464367i
\(15\) −0.732628 −0.189164
\(16\) 1.43650 0.359125
\(17\) −3.14250 5.44297i −0.762169 1.32011i −0.941731 0.336368i \(-0.890801\pi\)
0.179562 0.983747i \(-0.442532\pi\)
\(18\) −0.0722385 + 0.125121i −0.0170268 + 0.0294913i
\(19\) 1.61734 + 2.80131i 0.371042 + 0.642664i 0.989726 0.142976i \(-0.0456671\pi\)
−0.618684 + 0.785640i \(0.712334\pi\)
\(20\) 0.314141 0.544108i 0.0702441 0.121666i
\(21\) −2.64239 + 4.57676i −0.576617 + 0.998730i
\(22\) −1.79975 + 3.11727i −0.383709 + 0.664603i
\(23\) 1.03491 0.215794 0.107897 0.994162i \(-0.465588\pi\)
0.107897 + 0.994162i \(0.465588\pi\)
\(24\) −2.15674 3.73558i −0.440242 0.762521i
\(25\) 2.41646 + 4.18542i 0.483291 + 0.837085i
\(26\) −0.340211 + 0.589263i −0.0667208 + 0.115564i
\(27\) 4.99633 0.961544
\(28\) −2.26604 3.92490i −0.428242 0.741737i
\(29\) −0.536694 −0.0996616 −0.0498308 0.998758i \(-0.515868\pi\)
−0.0498308 + 0.998758i \(0.515868\pi\)
\(30\) −0.498496 −0.0910126
\(31\) 4.66754 + 3.03546i 0.838316 + 0.545185i
\(32\) 5.79077 1.02367
\(33\) −9.48146 −1.65051
\(34\) −2.13823 3.70352i −0.366703 0.635148i
\(35\) −1.20529 −0.203731
\(36\) 0.163182 0.282639i 0.0271970 0.0471065i
\(37\) −2.42298 4.19672i −0.398335 0.689936i 0.595186 0.803588i \(-0.297078\pi\)
−0.993521 + 0.113652i \(0.963745\pi\)
\(38\) 1.10047 + 1.90607i 0.178520 + 0.309206i
\(39\) −1.79230 −0.286997
\(40\) 0.491881 0.851963i 0.0777732 0.134707i
\(41\) −4.29037 + 7.43113i −0.670043 + 1.16055i 0.307849 + 0.951435i \(0.400391\pi\)
−0.977892 + 0.209113i \(0.932942\pi\)
\(42\) −1.79794 + 3.11413i −0.277428 + 0.480520i
\(43\) −1.91684 3.32007i −0.292316 0.506306i 0.682041 0.731314i \(-0.261092\pi\)
−0.974357 + 0.225008i \(0.927759\pi\)
\(44\) 4.06552 7.04169i 0.612900 1.06157i
\(45\) −0.0433974 0.0751665i −0.00646931 0.0112052i
\(46\) 0.704175 0.103825
\(47\) 5.01758 0.731889 0.365944 0.930637i \(-0.380746\pi\)
0.365944 + 0.930637i \(0.380746\pi\)
\(48\) 1.28732 + 2.22970i 0.185809 + 0.321830i
\(49\) −0.847142 + 1.46729i −0.121020 + 0.209613i
\(50\) 1.64421 + 2.84785i 0.232526 + 0.402747i
\(51\) 5.63230 9.75543i 0.788680 1.36603i
\(52\) 0.768513 1.33110i 0.106574 0.184591i
\(53\) 7.09395 12.2871i 0.974429 1.68776i 0.292623 0.956228i \(-0.405472\pi\)
0.681806 0.731533i \(-0.261195\pi\)
\(54\) 3.39961 0.462629
\(55\) −1.08121 1.87270i −0.145790 0.252515i
\(56\) −3.54816 6.14560i −0.474143 0.821240i
\(57\) −2.89875 + 5.02078i −0.383949 + 0.665019i
\(58\) −0.365178 −0.0479503
\(59\) −0.839102 1.45337i −0.109242 0.189212i 0.806222 0.591614i \(-0.201509\pi\)
−0.915463 + 0.402401i \(0.868176\pi\)
\(60\) 1.12607 0.145375
\(61\) 0.829504 0.106207 0.0531036 0.998589i \(-0.483089\pi\)
0.0531036 + 0.998589i \(0.483089\pi\)
\(62\) 3.17590 + 2.06539i 0.403340 + 0.262305i
\(63\) −0.626091 −0.0788801
\(64\) 1.06716 0.133395
\(65\) −0.204382 0.354001i −0.0253505 0.0439084i
\(66\) −6.45139 −0.794112
\(67\) 2.70677 4.68826i 0.330685 0.572763i −0.651962 0.758252i \(-0.726054\pi\)
0.982646 + 0.185489i \(0.0593870\pi\)
\(68\) 4.83011 + 8.36599i 0.585737 + 1.01453i
\(69\) 0.927433 + 1.60636i 0.111650 + 0.193383i
\(70\) −0.820103 −0.0980211
\(71\) 3.75892 6.51064i 0.446102 0.772671i −0.552026 0.833827i \(-0.686145\pi\)
0.998128 + 0.0611556i \(0.0194786\pi\)
\(72\) 0.255510 0.442555i 0.0301121 0.0521557i
\(73\) 6.20487 10.7471i 0.726225 1.25786i −0.232243 0.972658i \(-0.574606\pi\)
0.958468 0.285201i \(-0.0920603\pi\)
\(74\) −1.64865 2.85554i −0.191651 0.331950i
\(75\) −4.33101 + 7.50153i −0.500102 + 0.866202i
\(76\) −2.48589 4.30568i −0.285151 0.493896i
\(77\) −15.5985 −1.77761
\(78\) −1.21952 −0.138083
\(79\) 4.37564 + 7.57884i 0.492298 + 0.852686i 0.999961 0.00887052i \(-0.00282361\pi\)
−0.507662 + 0.861556i \(0.669490\pi\)
\(80\) −0.293596 + 0.508522i −0.0328250 + 0.0568545i
\(81\) 4.79596 + 8.30684i 0.532884 + 0.922983i
\(82\) −2.91926 + 5.05630i −0.322378 + 0.558375i
\(83\) −5.05412 + 8.75399i −0.554762 + 0.960875i 0.443160 + 0.896442i \(0.353857\pi\)
−0.997922 + 0.0644331i \(0.979476\pi\)
\(84\) 4.06143 7.03460i 0.443138 0.767537i
\(85\) 2.56909 0.278657
\(86\) −1.30426 2.25905i −0.140642 0.243599i
\(87\) −0.480958 0.833044i −0.0515641 0.0893117i
\(88\) 6.36578 11.0258i 0.678594 1.17536i
\(89\) 17.4073 1.84517 0.922583 0.385798i \(-0.126074\pi\)
0.922583 + 0.385798i \(0.126074\pi\)
\(90\) −0.0295286 0.0511450i −0.00311258 0.00539115i
\(91\) −2.94861 −0.309098
\(92\) −1.59068 −0.165840
\(93\) −0.528756 + 9.96508i −0.0548295 + 1.03333i
\(94\) 3.41407 0.352134
\(95\) −1.32222 −0.135657
\(96\) 5.18939 + 8.98829i 0.529640 + 0.917364i
\(97\) 12.7634 1.29592 0.647962 0.761672i \(-0.275621\pi\)
0.647962 + 0.761672i \(0.275621\pi\)
\(98\) −0.576414 + 0.998378i −0.0582266 + 0.100851i
\(99\) −0.561637 0.972783i −0.0564466 0.0977684i
\(100\) −3.71416 6.43311i −0.371416 0.643311i
\(101\) −14.2543 −1.41835 −0.709176 0.705031i \(-0.750933\pi\)
−0.709176 + 0.705031i \(0.750933\pi\)
\(102\) 3.83234 6.63781i 0.379458 0.657241i
\(103\) −5.32940 + 9.23080i −0.525122 + 0.909538i 0.474450 + 0.880282i \(0.342647\pi\)
−0.999572 + 0.0292552i \(0.990686\pi\)
\(104\) 1.20333 2.08424i 0.117997 0.204376i
\(105\) −1.08012 1.87082i −0.105409 0.182573i
\(106\) 4.82688 8.36040i 0.468828 0.812034i
\(107\) 4.16287 + 7.21031i 0.402440 + 0.697047i 0.994020 0.109200i \(-0.0348288\pi\)
−0.591580 + 0.806247i \(0.701495\pi\)
\(108\) −7.67949 −0.738959
\(109\) −8.84512 −0.847209 −0.423605 0.905847i \(-0.639235\pi\)
−0.423605 + 0.905847i \(0.639235\pi\)
\(110\) −0.735676 1.27423i −0.0701439 0.121493i
\(111\) 4.34270 7.52177i 0.412191 0.713935i
\(112\) 2.11784 + 3.66821i 0.200117 + 0.346613i
\(113\) −3.58245 + 6.20498i −0.337009 + 0.583716i −0.983869 0.178893i \(-0.942748\pi\)
0.646860 + 0.762609i \(0.276082\pi\)
\(114\) −1.97237 + 3.41625i −0.184730 + 0.319961i
\(115\) −0.211517 + 0.366358i −0.0197241 + 0.0341631i
\(116\) 0.824913 0.0765912
\(117\) −0.106167 0.183887i −0.00981517 0.0170004i
\(118\) −0.570944 0.988903i −0.0525596 0.0910359i
\(119\) 9.26600 16.0492i 0.849413 1.47123i
\(120\) 1.76319 0.160957
\(121\) −8.49264 14.7097i −0.772058 1.33724i
\(122\) 0.564413 0.0510995
\(123\) −15.3792 −1.38670
\(124\) −7.17414 4.66559i −0.644257 0.418982i
\(125\) −4.01935 −0.359501
\(126\) −0.426006 −0.0379516
\(127\) 5.33319 + 9.23736i 0.473245 + 0.819684i 0.999531 0.0306238i \(-0.00974938\pi\)
−0.526286 + 0.850307i \(0.676416\pi\)
\(128\) −10.8554 −0.959492
\(129\) 3.43555 5.95055i 0.302484 0.523917i
\(130\) −0.139066 0.240870i −0.0121969 0.0211257i
\(131\) −10.4218 18.0511i −0.910555 1.57713i −0.813282 0.581870i \(-0.802321\pi\)
−0.0972734 0.995258i \(-0.531012\pi\)
\(132\) 14.5733 1.26844
\(133\) −4.76889 + 8.25996i −0.413515 + 0.716229i
\(134\) 1.84175 3.19000i 0.159103 0.275574i
\(135\) −1.02116 + 1.76870i −0.0878876 + 0.152226i
\(136\) 7.56297 + 13.0994i 0.648519 + 1.12327i
\(137\) 5.41085 9.37187i 0.462280 0.800693i −0.536794 0.843714i \(-0.680365\pi\)
0.999074 + 0.0430202i \(0.0136980\pi\)
\(138\) 0.631046 + 1.09300i 0.0537182 + 0.0930426i
\(139\) 0.890137 0.0755004 0.0377502 0.999287i \(-0.487981\pi\)
0.0377502 + 0.999287i \(0.487981\pi\)
\(140\) 1.85256 0.156570
\(141\) 4.49650 + 7.78816i 0.378673 + 0.655882i
\(142\) 2.55765 4.42998i 0.214633 0.371756i
\(143\) −2.64506 4.58137i −0.221191 0.383114i
\(144\) −0.152509 + 0.264154i −0.0127091 + 0.0220128i
\(145\) 0.109691 0.189990i 0.00910932 0.0157778i
\(146\) 4.22193 7.31259i 0.349409 0.605195i
\(147\) −3.03666 −0.250460
\(148\) 3.72418 + 6.45047i 0.306126 + 0.530225i
\(149\) −2.08855 3.61748i −0.171101 0.296355i 0.767704 0.640804i \(-0.221399\pi\)
−0.938805 + 0.344449i \(0.888066\pi\)
\(150\) −2.94691 + 5.10420i −0.240615 + 0.416757i
\(151\) −11.9406 −0.971709 −0.485855 0.874040i \(-0.661492\pi\)
−0.485855 + 0.874040i \(0.661492\pi\)
\(152\) −3.89239 6.74182i −0.315715 0.546834i
\(153\) 1.33452 0.107890
\(154\) −10.6135 −0.855263
\(155\) −2.02852 + 1.03192i −0.162935 + 0.0828857i
\(156\) 2.75481 0.220561
\(157\) −4.11913 −0.328742 −0.164371 0.986399i \(-0.552559\pi\)
−0.164371 + 0.986399i \(0.552559\pi\)
\(158\) 2.97728 + 5.15680i 0.236860 + 0.410253i
\(159\) 25.4290 2.01665
\(160\) −1.18353 + 2.04993i −0.0935663 + 0.162062i
\(161\) 1.52577 + 2.64271i 0.120248 + 0.208275i
\(162\) 3.26328 + 5.65216i 0.256387 + 0.444075i
\(163\) −21.5273 −1.68615 −0.843076 0.537794i \(-0.819258\pi\)
−0.843076 + 0.537794i \(0.819258\pi\)
\(164\) 6.59440 11.4218i 0.514937 0.891896i
\(165\) 1.93784 3.35644i 0.150861 0.261299i
\(166\) −3.43893 + 5.95641i −0.266913 + 0.462307i
\(167\) −1.29365 2.24067i −0.100106 0.173388i 0.811622 0.584182i \(-0.198585\pi\)
−0.911728 + 0.410794i \(0.865251\pi\)
\(168\) 6.35937 11.0147i 0.490636 0.849806i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 1.74806 0.134070
\(171\) −0.686833 −0.0525234
\(172\) 2.94624 + 5.10303i 0.224648 + 0.389102i
\(173\) −2.18057 + 3.77686i −0.165786 + 0.287149i −0.936934 0.349506i \(-0.886349\pi\)
0.771148 + 0.636656i \(0.219683\pi\)
\(174\) −0.327254 0.566821i −0.0248091 0.0429706i
\(175\) −7.12518 + 12.3412i −0.538613 + 0.932905i
\(176\) −3.79963 + 6.58115i −0.286408 + 0.496073i
\(177\) 1.50392 2.60487i 0.113042 0.195794i
\(178\) 11.8443 0.887766
\(179\) −3.66673 6.35097i −0.274064 0.474693i 0.695834 0.718202i \(-0.255035\pi\)
−0.969899 + 0.243509i \(0.921701\pi\)
\(180\) 0.0667030 + 0.115533i 0.00497175 + 0.00861132i
\(181\) −7.88979 + 13.6655i −0.586443 + 1.01575i 0.408251 + 0.912870i \(0.366139\pi\)
−0.994694 + 0.102879i \(0.967194\pi\)
\(182\) −2.00630 −0.148717
\(183\) 0.743360 + 1.28754i 0.0549507 + 0.0951775i
\(184\) −2.49068 −0.183616
\(185\) 1.98085 0.145635
\(186\) −0.359777 + 6.78046i −0.0263801 + 0.497167i
\(187\) 33.2484 2.43136
\(188\) −7.71215 −0.562466
\(189\) 7.36611 + 12.7585i 0.535805 + 0.928042i
\(190\) −0.899667 −0.0652687
\(191\) −3.24740 + 5.62467i −0.234974 + 0.406987i −0.959265 0.282508i \(-0.908834\pi\)
0.724291 + 0.689494i \(0.242167\pi\)
\(192\) 0.956335 + 1.65642i 0.0690176 + 0.119542i
\(193\) 12.2799 + 21.2693i 0.883924 + 1.53100i 0.846942 + 0.531685i \(0.178441\pi\)
0.0369819 + 0.999316i \(0.488226\pi\)
\(194\) 8.68448 0.623509
\(195\) 0.366314 0.634475i 0.0262323 0.0454357i
\(196\) 1.30208 2.25527i 0.0930057 0.161091i
\(197\) −7.18632 + 12.4471i −0.512004 + 0.886818i 0.487899 + 0.872900i \(0.337764\pi\)
−0.999903 + 0.0139174i \(0.995570\pi\)
\(198\) −0.382150 0.661903i −0.0271582 0.0470394i
\(199\) 3.59714 6.23043i 0.254995 0.441664i −0.709899 0.704303i \(-0.751260\pi\)
0.964894 + 0.262639i \(0.0845930\pi\)
\(200\) −5.81561 10.0729i −0.411226 0.712264i
\(201\) 9.70268 0.684374
\(202\) −9.69892 −0.682413
\(203\) −0.791250 1.37049i −0.0555349 0.0961892i
\(204\) −8.65700 + 14.9944i −0.606111 + 1.04981i
\(205\) −1.75375 3.03758i −0.122487 0.212154i
\(206\) −3.62624 + 6.28084i −0.252652 + 0.437607i
\(207\) −0.109873 + 0.190306i −0.00763673 + 0.0132272i
\(208\) −0.718251 + 1.24405i −0.0498017 + 0.0862591i
\(209\) −17.1118 −1.18365
\(210\) −0.734935 1.27294i −0.0507153 0.0878415i
\(211\) −0.499763 0.865614i −0.0344051 0.0595914i 0.848310 0.529500i \(-0.177620\pi\)
−0.882715 + 0.469908i \(0.844287\pi\)
\(212\) −10.9036 + 18.8856i −0.748862 + 1.29707i
\(213\) 13.4742 0.923238
\(214\) 2.83251 + 4.90605i 0.193626 + 0.335371i
\(215\) 1.56707 0.106874
\(216\) −12.0245 −0.818165
\(217\) −0.869885 + 16.3941i −0.0590517 + 1.11290i
\(218\) −6.01841 −0.407618
\(219\) 22.2420 1.50297
\(220\) 1.66184 + 2.87839i 0.112041 + 0.194061i
\(221\) 6.28500 0.422775
\(222\) 2.95487 5.11798i 0.198318 0.343496i
\(223\) 3.94546 + 6.83374i 0.264208 + 0.457621i 0.967356 0.253423i \(-0.0815563\pi\)
−0.703148 + 0.711043i \(0.748223\pi\)
\(224\) 8.53735 + 14.7871i 0.570426 + 0.988006i
\(225\) −1.02619 −0.0684129
\(226\) −2.43758 + 4.22201i −0.162145 + 0.280844i
\(227\) −2.16296 + 3.74636i −0.143561 + 0.248655i −0.928835 0.370493i \(-0.879189\pi\)
0.785274 + 0.619148i \(0.212522\pi\)
\(228\) 4.45545 7.71707i 0.295070 0.511076i
\(229\) 7.34153 + 12.7159i 0.485142 + 0.840290i 0.999854 0.0170728i \(-0.00543469\pi\)
−0.514713 + 0.857363i \(0.672101\pi\)
\(230\) −0.143921 + 0.249278i −0.00948986 + 0.0164369i
\(231\) −13.9786 24.2116i −0.919721 1.59300i
\(232\) 1.29165 0.0848007
\(233\) −27.4006 −1.79507 −0.897537 0.440939i \(-0.854645\pi\)
−0.897537 + 0.440939i \(0.854645\pi\)
\(234\) −0.0722385 0.125121i −0.00472238 0.00817940i
\(235\) −1.02550 + 1.77623i −0.0668965 + 0.115868i
\(236\) 1.28972 + 2.23386i 0.0839538 + 0.145412i
\(237\) −7.84246 + 13.5835i −0.509422 + 0.882345i
\(238\) 6.30479 10.9202i 0.408679 0.707853i
\(239\) 5.29053 9.16346i 0.342216 0.592735i −0.642628 0.766178i \(-0.722156\pi\)
0.984844 + 0.173443i \(0.0554893\pi\)
\(240\) −1.05242 −0.0679335
\(241\) −6.83191 11.8332i −0.440082 0.762244i 0.557613 0.830101i \(-0.311717\pi\)
−0.997695 + 0.0678567i \(0.978384\pi\)
\(242\) −5.77858 10.0088i −0.371461 0.643390i
\(243\) −1.10130 + 1.90750i −0.0706482 + 0.122366i
\(244\) −1.27497 −0.0816216
\(245\) −0.346282 0.599777i −0.0221231 0.0383184i
\(246\) −10.4644 −0.667184
\(247\) −3.23467 −0.205817
\(248\) −11.2332 7.30536i −0.713311 0.463891i
\(249\) −18.1170 −1.14812
\(250\) −2.73485 −0.172967
\(251\) −10.2064 17.6780i −0.644223 1.11583i −0.984480 0.175495i \(-0.943847\pi\)
0.340257 0.940333i \(-0.389486\pi\)
\(252\) 0.962318 0.0606204
\(253\) −2.73739 + 4.74130i −0.172098 + 0.298083i
\(254\) 3.62882 + 6.28530i 0.227693 + 0.394375i
\(255\) 2.30229 + 3.98768i 0.144175 + 0.249718i
\(256\) −9.52058 −0.595036
\(257\) 6.53703 11.3225i 0.407769 0.706277i −0.586870 0.809681i \(-0.699640\pi\)
0.994639 + 0.103404i \(0.0329735\pi\)
\(258\) 2.33763 4.04889i 0.145534 0.252073i
\(259\) 7.14441 12.3745i 0.443932 0.768912i
\(260\) 0.314141 + 0.544108i 0.0194822 + 0.0337442i
\(261\) 0.0569793 0.0986911i 0.00352693 0.00610883i
\(262\) −7.09121 12.2823i −0.438096 0.758805i
\(263\) 10.8496 0.669012 0.334506 0.942394i \(-0.391431\pi\)
0.334506 + 0.942394i \(0.391431\pi\)
\(264\) 22.8187 1.40440
\(265\) 2.89976 + 5.02253i 0.178131 + 0.308531i
\(266\) −3.24486 + 5.62026i −0.198955 + 0.344600i
\(267\) 15.5995 + 27.0191i 0.954674 + 1.65354i
\(268\) −4.16038 + 7.20598i −0.254135 + 0.440176i
\(269\) 13.4683 23.3277i 0.821174 1.42232i −0.0836345 0.996496i \(-0.526653\pi\)
0.904809 0.425819i \(-0.140014\pi\)
\(270\) −0.694821 + 1.20346i −0.0422854 + 0.0732405i
\(271\) 22.5954 1.37257 0.686285 0.727332i \(-0.259240\pi\)
0.686285 + 0.727332i \(0.259240\pi\)
\(272\) −4.51421 7.81884i −0.273714 0.474087i
\(273\) −2.64239 4.57676i −0.159925 0.276998i
\(274\) 3.68166 6.37683i 0.222417 0.385238i
\(275\) −25.5666 −1.54173
\(276\) −1.42549 2.46902i −0.0858044 0.148618i
\(277\) 31.0264 1.86420 0.932098 0.362206i \(-0.117976\pi\)
0.932098 + 0.362206i \(0.117976\pi\)
\(278\) 0.605668 0.0363256
\(279\) −1.05372 + 0.536034i −0.0630847 + 0.0320915i
\(280\) 2.90073 0.173352
\(281\) −3.38810 −0.202117 −0.101059 0.994880i \(-0.532223\pi\)
−0.101059 + 0.994880i \(0.532223\pi\)
\(282\) 3.05952 + 5.29924i 0.182191 + 0.315565i
\(283\) 26.5583 1.57872 0.789362 0.613928i \(-0.210411\pi\)
0.789362 + 0.613928i \(0.210411\pi\)
\(284\) −5.77756 + 10.0070i −0.342835 + 0.593808i
\(285\) −1.18491 2.05232i −0.0701878 0.121569i
\(286\) −1.79975 3.11727i −0.106422 0.184328i
\(287\) −25.3012 −1.49348
\(288\) −0.614790 + 1.06485i −0.0362268 + 0.0627467i
\(289\) −11.2506 + 19.4867i −0.661802 + 1.14628i
\(290\) 0.0746360 0.129273i 0.00438278 0.00759119i
\(291\) 11.4379 + 19.8110i 0.670501 + 1.16134i
\(292\) −9.53705 + 16.5186i −0.558113 + 0.966681i
\(293\) −1.34986 2.33803i −0.0788597 0.136589i 0.823899 0.566737i \(-0.191795\pi\)
−0.902758 + 0.430148i \(0.858461\pi\)
\(294\) −2.06621 −0.120504
\(295\) 0.685991 0.0399399
\(296\) 5.83131 + 10.1001i 0.338938 + 0.587057i
\(297\) −13.2156 + 22.8900i −0.766845 + 1.32821i
\(298\) −1.42110 2.46141i −0.0823219 0.142586i
\(299\) −0.517455 + 0.896258i −0.0299252 + 0.0518319i
\(300\) 6.65688 11.5300i 0.384335 0.665688i
\(301\) 5.65201 9.78958i 0.325777 0.564262i
\(302\) −8.12462 −0.467519
\(303\) −12.7740 22.1251i −0.733844 1.27106i
\(304\) 2.32331 + 4.02408i 0.133251 + 0.230797i
\(305\) −0.169536 + 0.293645i −0.00970760 + 0.0168141i
\(306\) 0.908039 0.0519091
\(307\) −9.71769 16.8315i −0.554618 0.960627i −0.997933 0.0642607i \(-0.979531\pi\)
0.443315 0.896366i \(-0.353802\pi\)
\(308\) 23.9752 1.36612
\(309\) −19.1038 −1.08678
\(310\) −1.38025 + 0.702140i −0.0783929 + 0.0398789i
\(311\) 3.42372 0.194141 0.0970705 0.995278i \(-0.469053\pi\)
0.0970705 + 0.995278i \(0.469053\pi\)
\(312\) 4.31347 0.244202
\(313\) −11.6344 20.1514i −0.657617 1.13903i −0.981231 0.192837i \(-0.938231\pi\)
0.323614 0.946189i \(-0.395102\pi\)
\(314\) −2.80274 −0.158168
\(315\) 0.127962 0.221637i 0.00720984 0.0124878i
\(316\) −6.72548 11.6489i −0.378338 0.655300i
\(317\) 0.550293 + 0.953136i 0.0309075 + 0.0535334i 0.881065 0.472994i \(-0.156827\pi\)
−0.850158 + 0.526528i \(0.823494\pi\)
\(318\) 17.3024 0.970271
\(319\) 1.41959 2.45879i 0.0794816 0.137666i
\(320\) −0.218109 + 0.377775i −0.0121927 + 0.0211183i
\(321\) −7.46111 + 12.9230i −0.416439 + 0.721293i
\(322\) 1.03817 + 1.79816i 0.0578548 + 0.100207i
\(323\) 10.1650 17.6062i 0.565594 0.979637i
\(324\) −7.37151 12.7678i −0.409529 0.709324i
\(325\) −4.83291 −0.268082
\(326\) −14.6477 −0.811260
\(327\) −7.92655 13.7292i −0.438339 0.759226i
\(328\) 10.3255 17.8843i 0.570130 0.987494i
\(329\) 7.39743 + 12.8127i 0.407834 + 0.706388i
\(330\) 1.31855 2.28380i 0.0725838 0.125719i
\(331\) 1.28540 2.22638i 0.0706521 0.122373i −0.828535 0.559937i \(-0.810825\pi\)
0.899187 + 0.437564i \(0.144159\pi\)
\(332\) 7.76831 13.4551i 0.426342 0.738445i
\(333\) 1.02896 0.0563868
\(334\) −0.880227 1.52460i −0.0481639 0.0834223i
\(335\) 1.10643 + 1.91640i 0.0604508 + 0.104704i
\(336\) −3.79580 + 6.57452i −0.207078 + 0.358669i
\(337\) 21.7924 1.18711 0.593553 0.804795i \(-0.297725\pi\)
0.593553 + 0.804795i \(0.297725\pi\)
\(338\) −0.340211 0.589263i −0.0185050 0.0320517i
\(339\) −12.8416 −0.697462
\(340\) −3.94876 −0.214151
\(341\) −26.2525 + 13.3548i −1.42165 + 0.723202i
\(342\) −0.467336 −0.0252706
\(343\) 15.6445 0.844722
\(344\) 4.61321 + 7.99031i 0.248727 + 0.430809i
\(345\) −0.758204 −0.0408203
\(346\) −1.48371 + 2.56986i −0.0797646 + 0.138156i
\(347\) −17.8689 30.9498i −0.959251 1.66147i −0.724325 0.689459i \(-0.757849\pi\)
−0.234926 0.972013i \(-0.575485\pi\)
\(348\) 0.739245 + 1.28041i 0.0396277 + 0.0686372i
\(349\) 1.11201 0.0595244 0.0297622 0.999557i \(-0.490525\pi\)
0.0297622 + 0.999557i \(0.490525\pi\)
\(350\) −4.84813 + 8.39720i −0.259143 + 0.448849i
\(351\) −2.49816 + 4.32695i −0.133342 + 0.230955i
\(352\) −15.3169 + 26.5297i −0.816394 + 1.41404i
\(353\) −4.73709 8.20489i −0.252130 0.436702i 0.711982 0.702198i \(-0.247798\pi\)
−0.964112 + 0.265496i \(0.914464\pi\)
\(354\) 1.02330 1.77241i 0.0543879 0.0942025i
\(355\) 1.53651 + 2.66132i 0.0815497 + 0.141248i
\(356\) −26.7554 −1.41803
\(357\) 33.2149 1.75792
\(358\) −2.49492 4.32134i −0.131861 0.228390i
\(359\) 5.38733 9.33114i 0.284333 0.492479i −0.688114 0.725602i \(-0.741561\pi\)
0.972447 + 0.233124i \(0.0748947\pi\)
\(360\) 0.104443 + 0.180901i 0.00550464 + 0.00953432i
\(361\) 4.26845 7.39317i 0.224655 0.389114i
\(362\) −5.36838 + 9.29831i −0.282156 + 0.488708i
\(363\) 15.2214 26.3642i 0.798914 1.38376i
\(364\) 4.53209 0.237546
\(365\) 2.53633 + 4.39305i 0.132758 + 0.229943i
\(366\) 0.505798 + 0.876068i 0.0264385 + 0.0457928i
\(367\) 2.84961 4.93567i 0.148748 0.257640i −0.782017 0.623257i \(-0.785809\pi\)
0.930765 + 0.365618i \(0.119142\pi\)
\(368\) 1.48665 0.0774969
\(369\) −0.910993 1.57789i −0.0474244 0.0821415i
\(370\) 1.34782 0.0700697
\(371\) 41.8346 2.17194
\(372\) 0.812712 15.3166i 0.0421372 0.794128i
\(373\) 33.3823 1.72847 0.864234 0.503090i \(-0.167804\pi\)
0.864234 + 0.503090i \(0.167804\pi\)
\(374\) 22.6229 1.16980
\(375\) −3.60193 6.23873i −0.186003 0.322167i
\(376\) −12.0756 −0.622754
\(377\) 0.268347 0.464791i 0.0138206 0.0239379i
\(378\) 5.01206 + 8.68114i 0.257793 + 0.446510i
\(379\) −10.5145 18.2117i −0.540096 0.935474i −0.998898 0.0469352i \(-0.985055\pi\)
0.458802 0.888539i \(-0.348279\pi\)
\(380\) 2.03229 0.104254
\(381\) −9.55868 + 16.5561i −0.489706 + 0.848196i
\(382\) −2.20960 + 3.82715i −0.113053 + 0.195814i
\(383\) −1.06401 + 1.84293i −0.0543686 + 0.0941692i −0.891929 0.452176i \(-0.850648\pi\)
0.837560 + 0.546345i \(0.183981\pi\)
\(384\) −9.72807 16.8495i −0.496434 0.859848i
\(385\) 3.18805 5.52186i 0.162478 0.281420i
\(386\) 8.35549 + 14.4721i 0.425283 + 0.736612i
\(387\) 0.814023 0.0413791
\(388\) −19.6176 −0.995935
\(389\) 7.48510 + 12.9646i 0.379509 + 0.657330i 0.990991 0.133929i \(-0.0427595\pi\)
−0.611481 + 0.791259i \(0.709426\pi\)
\(390\) 0.249248 0.431710i 0.0126212 0.0218605i
\(391\) −3.25220 5.63298i −0.164471 0.284872i
\(392\) 2.03879 3.53129i 0.102974 0.178357i
\(393\) 18.6789 32.3529i 0.942228 1.63199i
\(394\) −4.88973 + 8.46926i −0.246341 + 0.426675i
\(395\) −3.57722 −0.179989
\(396\) 0.863250 + 1.49519i 0.0433800 + 0.0751363i
\(397\) 16.7675 + 29.0422i 0.841538 + 1.45759i 0.888594 + 0.458694i \(0.151682\pi\)
−0.0470568 + 0.998892i \(0.514984\pi\)
\(398\) 2.44757 4.23932i 0.122686 0.212498i
\(399\) −17.0945 −0.855798
\(400\) 3.47124 + 6.01237i 0.173562 + 0.300618i
\(401\) 2.73709 0.136684 0.0683418 0.997662i \(-0.478229\pi\)
0.0683418 + 0.997662i \(0.478229\pi\)
\(402\) 6.60192 0.329274
\(403\) −4.96256 + 2.52448i −0.247203 + 0.125753i
\(404\) 21.9092 1.09002
\(405\) −3.92084 −0.194828
\(406\) −0.538384 0.932508i −0.0267195 0.0462796i
\(407\) 25.6356 1.27071
\(408\) −13.5551 + 23.4781i −0.671077 + 1.16234i
\(409\) −16.8755 29.2292i −0.834439 1.44529i −0.894487 0.447095i \(-0.852459\pi\)
0.0600480 0.998195i \(-0.480875\pi\)
\(410\) −1.19329 2.06684i −0.0589324 0.102074i
\(411\) 19.3957 0.956721
\(412\) 8.19143 14.1880i 0.403563 0.698991i
\(413\) 2.47418 4.28541i 0.121747 0.210871i
\(414\) −0.0747603 + 0.129489i −0.00367427 + 0.00636402i
\(415\) −2.06595 3.57832i −0.101413 0.175653i
\(416\) −2.89538 + 5.01495i −0.141958 + 0.245878i
\(417\) 0.797695 + 1.38165i 0.0390633 + 0.0676596i
\(418\) −11.6432 −0.569489
\(419\) 0.531174 0.0259495 0.0129748 0.999916i \(-0.495870\pi\)
0.0129748 + 0.999916i \(0.495870\pi\)
\(420\) 1.66017 + 2.87549i 0.0810079 + 0.140310i
\(421\) −10.8943 + 18.8694i −0.530954 + 0.919639i 0.468394 + 0.883520i \(0.344833\pi\)
−0.999347 + 0.0361190i \(0.988500\pi\)
\(422\) −0.340049 0.588983i −0.0165533 0.0286712i
\(423\) −0.532702 + 0.922667i −0.0259009 + 0.0448616i
\(424\) −17.0728 + 29.5710i −0.829128 + 1.43609i
\(425\) 15.1874 26.3054i 0.736699 1.27600i
\(426\) 9.16815 0.444198
\(427\) 1.22294 + 2.11820i 0.0591823 + 0.102507i
\(428\) −6.39845 11.0824i −0.309281 0.535690i
\(429\) 4.74073 8.21119i 0.228885 0.396440i
\(430\) 1.06627 0.0514202
\(431\) 7.83106 + 13.5638i 0.377209 + 0.653345i 0.990655 0.136392i \(-0.0435505\pi\)
−0.613446 + 0.789737i \(0.710217\pi\)
\(432\) 7.17724 0.345315
\(433\) −22.5130 −1.08190 −0.540952 0.841053i \(-0.681936\pi\)
−0.540952 + 0.841053i \(0.681936\pi\)
\(434\) −0.591889 + 11.1549i −0.0284116 + 0.535452i
\(435\) 0.393197 0.0188524
\(436\) 13.5952 0.651091
\(437\) 1.67380 + 2.89910i 0.0800685 + 0.138683i
\(438\) 15.1339 0.723126
\(439\) −5.91881 + 10.2517i −0.282489 + 0.489286i −0.971997 0.234992i \(-0.924493\pi\)
0.689508 + 0.724278i \(0.257827\pi\)
\(440\) 2.60210 + 4.50698i 0.124050 + 0.214862i
\(441\) −0.179877 0.311557i −0.00856559 0.0148360i
\(442\) 4.27645 0.203410
\(443\) −5.56160 + 9.63298i −0.264240 + 0.457677i −0.967364 0.253390i \(-0.918454\pi\)
0.703124 + 0.711067i \(0.251788\pi\)
\(444\) −6.67484 + 11.5612i −0.316774 + 0.548669i
\(445\) −3.55774 + 6.16218i −0.168653 + 0.292115i
\(446\) 2.68458 + 4.64982i 0.127118 + 0.220176i
\(447\) 3.74331 6.48360i 0.177052 0.306664i
\(448\) 1.57332 + 2.72507i 0.0743323 + 0.128747i
\(449\) 28.7985 1.35909 0.679543 0.733636i \(-0.262178\pi\)
0.679543 + 0.733636i \(0.262178\pi\)
\(450\) −0.698245 −0.0329156
\(451\) −22.6965 39.3115i −1.06874 1.85111i
\(452\) 5.50632 9.53722i 0.258995 0.448593i
\(453\) −10.7005 18.5339i −0.502755 0.870797i
\(454\) −1.47173 + 2.54911i −0.0690716 + 0.119636i
\(455\) 0.602643 1.04381i 0.0282523 0.0489345i
\(456\) 6.97633 12.0834i 0.326697 0.565855i
\(457\) 9.67323 0.452495 0.226247 0.974070i \(-0.427354\pi\)
0.226247 + 0.974070i \(0.427354\pi\)
\(458\) 4.99533 + 8.65217i 0.233417 + 0.404289i
\(459\) −15.7010 27.1949i −0.732859 1.26935i
\(460\) 0.325107 0.563103i 0.0151582 0.0262548i
\(461\) −30.3869 −1.41526 −0.707630 0.706583i \(-0.750236\pi\)
−0.707630 + 0.706583i \(0.750236\pi\)
\(462\) −9.51131 16.4741i −0.442506 0.766443i
\(463\) −29.1462 −1.35454 −0.677269 0.735736i \(-0.736837\pi\)
−0.677269 + 0.735736i \(0.736837\pi\)
\(464\) −0.770962 −0.0357910
\(465\) −3.41958 2.22387i −0.158579 0.103129i
\(466\) −18.6440 −0.863665
\(467\) −7.10315 −0.328695 −0.164347 0.986403i \(-0.552552\pi\)
−0.164347 + 0.986403i \(0.552552\pi\)
\(468\) 0.163182 + 0.282639i 0.00754308 + 0.0130650i
\(469\) 15.9624 0.737075
\(470\) −0.697775 + 1.20858i −0.0321860 + 0.0557477i
\(471\) −3.69135 6.39361i −0.170089 0.294602i
\(472\) 2.01944 + 3.49778i 0.0929524 + 0.160998i
\(473\) 20.2806 0.932504
\(474\) −5.33618 + 9.24253i −0.245099 + 0.424524i
\(475\) −7.81644 + 13.5385i −0.358643 + 0.621188i
\(476\) −14.2421 + 24.6680i −0.652785 + 1.13066i
\(477\) 1.50629 + 2.60897i 0.0689683 + 0.119457i
\(478\) 3.59979 6.23502i 0.164651 0.285183i
\(479\) −5.31801 9.21106i −0.242986 0.420864i 0.718577 0.695447i \(-0.244794\pi\)
−0.961563 + 0.274583i \(0.911460\pi\)
\(480\) −4.24248 −0.193642
\(481\) 4.84595 0.220956
\(482\) −4.64858 8.05158i −0.211737 0.366739i
\(483\) −2.73464 + 4.73653i −0.124430 + 0.215520i
\(484\) 13.0534 + 22.6092i 0.593337 + 1.02769i
\(485\) −2.60861 + 4.51824i −0.118451 + 0.205163i
\(486\) −0.749346 + 1.29791i −0.0339910 + 0.0588742i
\(487\) 7.64778 13.2463i 0.346554 0.600249i −0.639081 0.769139i \(-0.720685\pi\)
0.985635 + 0.168891i \(0.0540185\pi\)
\(488\) −1.99634 −0.0903702
\(489\) −19.2917 33.4142i −0.872402 1.51104i
\(490\) −0.235618 0.408102i −0.0106441 0.0184362i
\(491\) 13.0040 22.5236i 0.586862 1.01647i −0.407779 0.913081i \(-0.633697\pi\)
0.994641 0.103393i \(-0.0329701\pi\)
\(492\) 23.6383 1.06570
\(493\) 1.68656 + 2.92121i 0.0759589 + 0.131565i
\(494\) −2.20094 −0.0990251
\(495\) 0.459154 0.0206375
\(496\) 6.70493 + 4.36045i 0.301060 + 0.195790i
\(497\) 22.1672 0.994333
\(498\) −12.3272 −0.552395
\(499\) 0.700372 + 1.21308i 0.0313529 + 0.0543049i 0.881276 0.472602i \(-0.156685\pi\)
−0.849923 + 0.526907i \(0.823352\pi\)
\(500\) 6.17784 0.276281
\(501\) 2.31861 4.01594i 0.103588 0.179419i
\(502\) −6.94467 12.0285i −0.309956 0.536859i
\(503\) 8.00581 + 13.8665i 0.356961 + 0.618275i 0.987452 0.157922i \(-0.0504795\pi\)
−0.630490 + 0.776197i \(0.717146\pi\)
\(504\) 1.50679 0.0671180
\(505\) 2.91332 5.04602i 0.129641 0.224545i
\(506\) −1.86258 + 3.22609i −0.0828019 + 0.143417i
\(507\) 0.896149 1.55218i 0.0397994 0.0689346i
\(508\) −8.19726 14.1981i −0.363695 0.629938i
\(509\) −2.70020 + 4.67688i −0.119684 + 0.207299i −0.919643 0.392756i \(-0.871522\pi\)
0.799958 + 0.600056i \(0.204855\pi\)
\(510\) 1.56653 + 2.71330i 0.0693669 + 0.120147i
\(511\) 36.5914 1.61871
\(512\) 15.2328 0.673202
\(513\) 8.08074 + 13.9963i 0.356774 + 0.617950i
\(514\) 4.44794 7.70406i 0.196190 0.339811i
\(515\) −2.17847 3.77322i −0.0959949 0.166268i
\(516\) −5.28054 + 9.14616i −0.232463 + 0.402637i
\(517\) −13.2718 + 22.9874i −0.583692 + 1.01098i
\(518\) 4.86121 8.41986i 0.213589 0.369948i
\(519\) −7.81647 −0.343105
\(520\) 0.491881 + 0.851963i 0.0215704 + 0.0373610i
\(521\) −3.54437 6.13903i −0.155282 0.268956i 0.777880 0.628413i \(-0.216295\pi\)
−0.933162 + 0.359457i \(0.882962\pi\)
\(522\) 0.0387700 0.0671516i 0.00169692 0.00293914i
\(523\) −15.0058 −0.656159 −0.328079 0.944650i \(-0.606401\pi\)
−0.328079 + 0.944650i \(0.606401\pi\)
\(524\) 16.0185 + 27.7449i 0.699774 + 1.21204i
\(525\) −25.5409 −1.11470
\(526\) 7.38227 0.321882
\(527\) 1.85417 34.9443i 0.0807691 1.52220i
\(528\) −13.6201 −0.592740
\(529\) −21.9290 −0.953433
\(530\) 1.97306 + 3.41744i 0.0857042 + 0.148444i
\(531\) 0.356341 0.0154639
\(532\) 7.32991 12.6958i 0.317792 0.550432i
\(533\) −4.29037 7.43113i −0.185836 0.321878i
\(534\) 10.6142 + 18.3844i 0.459323 + 0.795571i
\(535\) −3.40327 −0.147136
\(536\) −6.51430 + 11.2831i −0.281375 + 0.487356i
\(537\) 6.57188 11.3828i 0.283597 0.491205i
\(538\) 9.16409 15.8727i 0.395092 0.684320i
\(539\) −4.48148 7.76214i −0.193031 0.334339i
\(540\) 1.56955 2.71854i 0.0675428 0.116987i
\(541\) −16.2396 28.1278i −0.698194 1.20931i −0.969092 0.246699i \(-0.920654\pi\)
0.270898 0.962608i \(-0.412679\pi\)
\(542\) 15.3744 0.660386
\(543\) −28.2817 −1.21368
\(544\) −18.1975 31.5190i −0.780211 1.35137i
\(545\) 1.80779 3.13118i 0.0774371 0.134125i
\(546\) −1.79794 3.11413i −0.0769448 0.133272i
\(547\) 6.41812 11.1165i 0.274419 0.475308i −0.695569 0.718459i \(-0.744848\pi\)
0.969988 + 0.243151i \(0.0781812\pi\)
\(548\) −8.31662 + 14.4048i −0.355269 + 0.615343i
\(549\) −0.0880662 + 0.152535i −0.00375857 + 0.00651004i
\(550\) −17.3961 −0.741772
\(551\) −0.868015 1.50345i −0.0369787 0.0640489i
\(552\) −2.23203 3.86598i −0.0950013 0.164547i
\(553\) −12.9021 + 22.3470i −0.548651 + 0.950291i
\(554\) 21.1110 0.896922
\(555\) 1.77514 + 3.07464i 0.0753506 + 0.130511i
\(556\) −1.36816 −0.0580230
\(557\) −22.9685 −0.973206 −0.486603 0.873623i \(-0.661764\pi\)
−0.486603 + 0.873623i \(0.661764\pi\)
\(558\) −0.716976 + 0.364729i −0.0303520 + 0.0154402i
\(559\) 3.83368 0.162148
\(560\) −1.73140 −0.0731648
\(561\) 29.7955 + 51.6073i 1.25797 + 2.17886i
\(562\) −2.30534 −0.0972449
\(563\) −14.3311 + 24.8222i −0.603983 + 1.04613i 0.388228 + 0.921563i \(0.373087\pi\)
−0.992211 + 0.124566i \(0.960246\pi\)
\(564\) −6.91123 11.9706i −0.291015 0.504054i
\(565\) −1.46438 2.53638i −0.0616069 0.106706i
\(566\) 18.0708 0.759573
\(567\) −14.1414 + 24.4936i −0.593883 + 1.02864i
\(568\) −9.04648 + 15.6690i −0.379582 + 0.657455i
\(569\) 1.69071 2.92839i 0.0708781 0.122765i −0.828408 0.560125i \(-0.810753\pi\)
0.899286 + 0.437360i \(0.144087\pi\)
\(570\) −0.806236 1.39644i −0.0337695 0.0584905i
\(571\) −2.92200 + 5.06105i −0.122282 + 0.211798i −0.920667 0.390349i \(-0.872355\pi\)
0.798385 + 0.602147i \(0.205688\pi\)
\(572\) 4.06552 + 7.04169i 0.169988 + 0.294428i
\(573\) −11.6406 −0.486294
\(574\) −17.2155 −0.718561
\(575\) 2.50081 + 4.33153i 0.104291 + 0.180637i
\(576\) −0.113298 + 0.196237i −0.00472073 + 0.00817654i
\(577\) −13.9236 24.1163i −0.579646 1.00398i −0.995520 0.0945536i \(-0.969858\pi\)
0.415874 0.909422i \(-0.363476\pi\)
\(578\) −7.65518 + 13.2592i −0.318414 + 0.551508i
\(579\) −22.0092 + 38.1210i −0.914670 + 1.58426i
\(580\) −0.168598 + 0.292020i −0.00700063 + 0.0121255i
\(581\) −29.8052 −1.23653
\(582\) 7.78259 + 13.4798i 0.322599 + 0.558758i
\(583\) 37.5278 + 65.0001i 1.55424 + 2.69203i
\(584\) −14.9331 + 25.8648i −0.617935 + 1.07029i
\(585\) 0.0867948 0.00358853
\(586\) −0.918474 1.59084i −0.0379418 0.0657172i
\(587\) 19.1762 0.791485 0.395742 0.918362i \(-0.370487\pi\)
0.395742 + 0.918362i \(0.370487\pi\)
\(588\) 4.66743 0.192482
\(589\) −0.954279 + 17.9846i −0.0393204 + 0.741042i
\(590\) 0.466763 0.0192163
\(591\) −25.7601 −1.05963
\(592\) −3.48061 6.02859i −0.143052 0.247774i
\(593\) 17.9631 0.737655 0.368827 0.929498i \(-0.379759\pi\)
0.368827 + 0.929498i \(0.379759\pi\)
\(594\) −8.99216 + 15.5749i −0.368953 + 0.639045i
\(595\) 3.78762 + 6.56034i 0.155277 + 0.268948i
\(596\) 3.21016 + 5.56016i 0.131493 + 0.227753i
\(597\) 12.8943 0.527729
\(598\) −0.352087 + 0.609833i −0.0143979 + 0.0249379i
\(599\) −17.9919 + 31.1629i −0.735131 + 1.27328i 0.219535 + 0.975605i \(0.429546\pi\)
−0.954666 + 0.297679i \(0.903787\pi\)
\(600\) 10.4233 18.0537i 0.425530 0.737039i
\(601\) −10.3208 17.8762i −0.420995 0.729185i 0.575042 0.818124i \(-0.304986\pi\)
−0.996037 + 0.0889391i \(0.971652\pi\)
\(602\) 3.84575 6.66104i 0.156741 0.271484i
\(603\) 0.574741 + 0.995480i 0.0234053 + 0.0405391i
\(604\) 18.3530 0.746771
\(605\) 6.94299 0.282272
\(606\) −8.69168 15.0544i −0.353075 0.611544i
\(607\) 4.19470 7.26543i 0.170258 0.294895i −0.768252 0.640147i \(-0.778873\pi\)
0.938510 + 0.345252i \(0.112207\pi\)
\(608\) 9.36562 + 16.2217i 0.379826 + 0.657878i
\(609\) 1.41816 2.45632i 0.0574666 0.0995351i
\(610\) −0.115356 + 0.199802i −0.00467063 + 0.00808977i
\(611\) −2.50879 + 4.34535i −0.101495 + 0.175794i
\(612\) −2.05120 −0.0829147
\(613\) 19.7165 + 34.1501i 0.796344 + 1.37931i 0.921982 + 0.387232i \(0.126569\pi\)
−0.125639 + 0.992076i \(0.540098\pi\)
\(614\) −6.61213 11.4525i −0.266844 0.462187i
\(615\) 3.14324 5.44426i 0.126748 0.219534i
\(616\) 37.5403 1.51254
\(617\) 3.74354 + 6.48400i 0.150709 + 0.261036i 0.931488 0.363771i \(-0.118511\pi\)
−0.780779 + 0.624807i \(0.785178\pi\)
\(618\) −12.9986 −0.522881
\(619\) 9.42029 0.378633 0.189317 0.981916i \(-0.439373\pi\)
0.189317 + 0.981916i \(0.439373\pi\)
\(620\) 3.11789 1.58609i 0.125217 0.0636987i
\(621\) 5.17075 0.207495
\(622\) 2.32957 0.0934073
\(623\) 25.6636 + 44.4506i 1.02819 + 1.78088i
\(624\) −2.57464 −0.103068
\(625\) −11.2608 + 19.5043i −0.450432 + 0.780171i
\(626\) −7.91632 13.7115i −0.316400 0.548020i
\(627\) −15.3347 26.5605i −0.612409 1.06072i
\(628\) 6.33121 0.252643
\(629\) −15.2284 + 26.3764i −0.607197 + 1.05170i
\(630\) 0.0870681 0.150806i 0.00346888 0.00600827i
\(631\) −18.7612 + 32.4954i −0.746873 + 1.29362i 0.202442 + 0.979294i \(0.435112\pi\)
−0.949315 + 0.314327i \(0.898221\pi\)
\(632\) −10.5307 18.2398i −0.418890 0.725538i
\(633\) 0.895724 1.55144i 0.0356018 0.0616642i
\(634\) 0.374431 + 0.648534i 0.0148706 + 0.0257566i
\(635\) −4.36004 −0.173023
\(636\) −39.0850 −1.54982
\(637\) −0.847142 1.46729i −0.0335650 0.0581363i
\(638\) 0.965917 1.67302i 0.0382410 0.0662354i
\(639\) 0.798149 + 1.38243i 0.0315743 + 0.0546882i
\(640\) 2.21865 3.84282i 0.0877000 0.151901i
\(641\) 8.69151 15.0541i 0.343294 0.594603i −0.641748 0.766915i \(-0.721791\pi\)
0.985042 + 0.172313i \(0.0551240\pi\)
\(642\) −5.07670 + 8.79311i −0.200362 + 0.347036i
\(643\) 38.2575 1.50873 0.754364 0.656456i \(-0.227945\pi\)
0.754364 + 0.656456i \(0.227945\pi\)
\(644\) −2.34515 4.06192i −0.0924118 0.160062i
\(645\) 1.40433 + 2.43238i 0.0552956 + 0.0957747i
\(646\) 6.91646 11.9797i 0.272125 0.471334i
\(647\) 2.68859 0.105699 0.0528496 0.998602i \(-0.483170\pi\)
0.0528496 + 0.998602i \(0.483170\pi\)
\(648\) −11.5423 19.9918i −0.453424 0.785353i
\(649\) 8.87789 0.348488
\(650\) −3.28842 −0.128982
\(651\) −26.2261 + 13.3413i −1.02788 + 0.522888i
\(652\) 33.0881 1.29583
\(653\) −5.73176 −0.224301 −0.112151 0.993691i \(-0.535774\pi\)
−0.112151 + 0.993691i \(0.535774\pi\)
\(654\) −5.39340 9.34164i −0.210899 0.365287i
\(655\) 8.52011 0.332908
\(656\) −6.16312 + 10.6748i −0.240629 + 0.416782i
\(657\) 1.31751 + 2.28199i 0.0514009 + 0.0890289i
\(658\) 5.03337 + 8.71806i 0.196221 + 0.339865i
\(659\) 4.96180 0.193284 0.0966422 0.995319i \(-0.469190\pi\)
0.0966422 + 0.995319i \(0.469190\pi\)
\(660\) −2.97852 + 5.15894i −0.115939 + 0.200811i
\(661\) 10.0969 17.4883i 0.392723 0.680216i −0.600085 0.799937i \(-0.704866\pi\)
0.992808 + 0.119720i \(0.0381997\pi\)
\(662\) 0.874615 1.51488i 0.0339929 0.0588774i
\(663\) 5.63230 + 9.75543i 0.218741 + 0.378870i
\(664\) 12.1636 21.0680i 0.472039 0.817596i
\(665\) −1.94935 3.37638i −0.0755927 0.130930i
\(666\) 0.700129 0.0271294
\(667\) −0.555430 −0.0215063
\(668\) 1.98837 + 3.44396i 0.0769324 + 0.133251i
\(669\) −7.07144 + 12.2481i −0.273398 + 0.473539i
\(670\) 0.752840 + 1.30396i 0.0290848 + 0.0503763i
\(671\) −2.19409 + 3.80027i −0.0847017 + 0.146708i
\(672\) −15.3015 + 26.5029i −0.590267 + 1.02237i
\(673\) −23.6085 + 40.8910i −0.910039 + 1.57623i −0.0960327 + 0.995378i \(0.530615\pi\)
−0.814006 + 0.580856i \(0.802718\pi\)
\(674\) 14.8280 0.571153
\(675\) 12.0734 + 20.9118i 0.464706 + 0.804894i
\(676\) 0.768513 + 1.33110i 0.0295582 + 0.0511963i
\(677\) 7.75366 13.4297i 0.297997 0.516146i −0.677680 0.735357i \(-0.737015\pi\)
0.975678 + 0.219210i \(0.0703480\pi\)
\(678\) −8.73773 −0.335571
\(679\) 18.8171 + 32.5922i 0.722134 + 1.25077i
\(680\) −6.18295 −0.237105
\(681\) −7.75335 −0.297109
\(682\) −17.8628 + 9.08689i −0.684001 + 0.347955i
\(683\) 11.7610 0.450021 0.225011 0.974356i \(-0.427758\pi\)
0.225011 + 0.974356i \(0.427758\pi\)
\(684\) 1.05568 0.0403649
\(685\) 2.21177 + 3.83089i 0.0845072 + 0.146371i
\(686\) 10.6448 0.406422
\(687\) −13.1582 + 22.7907i −0.502017 + 0.869519i
\(688\) −2.75355 4.76928i −0.104978 0.181827i
\(689\) 7.09395 + 12.2871i 0.270258 + 0.468101i
\(690\) −0.515898 −0.0196399
\(691\) 4.42430 7.66312i 0.168308 0.291519i −0.769517 0.638627i \(-0.779503\pi\)
0.937825 + 0.347108i \(0.112836\pi\)
\(692\) 3.35159 5.80513i 0.127408 0.220678i
\(693\) 1.65605 2.86836i 0.0629080 0.108960i
\(694\) −12.1584 21.0589i −0.461525 0.799385i
\(695\) −0.181928 + 0.315109i −0.00690093 + 0.0119528i
\(696\) 1.15751 + 2.00486i 0.0438752 + 0.0759941i
\(697\) 53.9299 2.04274
\(698\) 0.756635 0.0286390
\(699\) −24.5550 42.5306i −0.928757 1.60865i
\(700\) 10.9516 18.9687i 0.413931 0.716950i
\(701\) 15.2515 + 26.4164i 0.576043 + 0.997735i 0.995928 + 0.0901576i \(0.0287371\pi\)
−0.419885 + 0.907577i \(0.637930\pi\)
\(702\) −1.69981 + 2.94415i −0.0641550 + 0.111120i
\(703\) 7.83754 13.5750i 0.295598 0.511991i
\(704\) −2.82270 + 4.88906i −0.106384 + 0.184263i
\(705\) −3.67602 −0.138447
\(706\) −3.22322 5.58278i −0.121308 0.210111i
\(707\) −21.0151 36.3993i −0.790355 1.36893i
\(708\) −2.31157 + 4.00375i −0.0868740 + 0.150470i
\(709\) −7.25645 −0.272522 −0.136261 0.990673i \(-0.543509\pi\)
−0.136261 + 0.990673i \(0.543509\pi\)
\(710\) 1.04548 + 1.81082i 0.0392361 + 0.0679589i
\(711\) −1.85820 −0.0696879
\(712\) −41.8935 −1.57003
\(713\) 4.83048 + 3.14143i 0.180903 + 0.117647i
\(714\) 22.6001 0.845789
\(715\) 2.16241 0.0808696
\(716\) 5.63586 + 9.76160i 0.210622 + 0.364808i
\(717\) 18.9644 0.708239
\(718\) 3.66566 6.34911i 0.136801 0.236947i
\(719\) −0.680785 1.17915i −0.0253890 0.0439750i 0.853052 0.521826i \(-0.174749\pi\)
−0.878441 + 0.477851i \(0.841416\pi\)
\(720\) −0.0623405 0.107977i −0.00232329 0.00402406i
\(721\) −31.4286 −1.17046
\(722\) 2.90434 5.03047i 0.108089 0.187215i
\(723\) 12.2448 21.2086i 0.455390 0.788758i
\(724\) 12.1268 21.0042i 0.450689 0.780617i
\(725\) −1.29690 2.24629i −0.0481656 0.0834252i
\(726\) 10.3569 17.9387i 0.384382 0.665769i
\(727\) −26.6852 46.2201i −0.989698 1.71421i −0.618838 0.785519i \(-0.712396\pi\)
−0.370860 0.928689i \(-0.620937\pi\)
\(728\) 7.09632 0.263007
\(729\) 24.8280 0.919557
\(730\) 1.72578 + 2.98913i 0.0638738 + 0.110633i
\(731\) −12.0474 + 20.8666i −0.445588 + 0.771781i
\(732\) −1.14256 1.97898i −0.0422304 0.0731451i
\(733\) 4.24541 7.35327i 0.156808 0.271599i −0.776908 0.629614i \(-0.783213\pi\)
0.933716 + 0.358015i \(0.116546\pi\)
\(734\) 1.93894 3.35834i 0.0715674 0.123958i
\(735\) 0.620640 1.07498i 0.0228927 0.0396512i
\(736\) 5.99292 0.220902
\(737\) 14.3191 + 24.8014i 0.527451 + 0.913573i
\(738\) −0.619859 1.07363i −0.0228173 0.0395208i
\(739\) −1.66531 + 2.88440i −0.0612595 + 0.106105i −0.895029 0.446009i \(-0.852845\pi\)
0.833769 + 0.552113i \(0.186178\pi\)
\(740\) −3.04463 −0.111923
\(741\) −2.89875 5.02078i −0.106488 0.184443i
\(742\) 28.4651 1.04499
\(743\) −4.95373 −0.181735 −0.0908674 0.995863i \(-0.528964\pi\)
−0.0908674 + 0.995863i \(0.528964\pi\)
\(744\) 1.27254 23.9827i 0.0466536 0.879247i
\(745\) 1.70745 0.0625562
\(746\) 22.7140 0.831619
\(747\) −1.07316 1.85877i −0.0392650 0.0680090i
\(748\) −51.1036 −1.86853
\(749\) −12.2747 + 21.2604i −0.448507 + 0.776837i
\(750\) −2.45084 4.24497i −0.0894918 0.155004i
\(751\) −17.9872 31.1547i −0.656362 1.13685i −0.981550 0.191203i \(-0.938761\pi\)
0.325188 0.945649i \(-0.394572\pi\)
\(752\) 7.20776 0.262840
\(753\) 18.2929 31.6843i 0.666632 1.15464i
\(754\) 0.182589 0.316254i 0.00664951 0.0115173i
\(755\) 2.44044 4.22697i 0.0888167 0.153835i
\(756\) −11.3219 19.6101i −0.411773 0.713212i
\(757\) −10.2957 + 17.8326i −0.374203 + 0.648138i −0.990207 0.139604i \(-0.955417\pi\)
0.616005 + 0.787743i \(0.288750\pi\)
\(758\) −7.15433 12.3917i −0.259857 0.450085i
\(759\) −9.81245 −0.356169
\(760\) 3.18215 0.115429
\(761\) 1.56717 + 2.71441i 0.0568098 + 0.0983975i 0.893032 0.449994i \(-0.148574\pi\)
−0.836222 + 0.548391i \(0.815240\pi\)
\(762\) −6.50393 + 11.2651i −0.235613 + 0.408093i
\(763\) −13.0404 22.5866i −0.472094 0.817691i
\(764\) 4.99134 8.64526i 0.180580 0.312775i
\(765\) −0.272753 + 0.472422i −0.00986141 + 0.0170805i
\(766\) −0.723979 + 1.25397i −0.0261584 + 0.0453077i
\(767\) 1.67820 0.0605965
\(768\) −8.53186 14.7776i −0.307867 0.533241i
\(769\) 1.92429 + 3.33297i 0.0693917 + 0.120190i 0.898634 0.438700i \(-0.144561\pi\)
−0.829242 + 0.558890i \(0.811227\pi\)
\(770\) 2.16922 3.75720i 0.0781732 0.135400i
\(771\) 23.4326