Properties

Label 403.2.c.b.311.15
Level 403
Weight 2
Character 403.311
Analytic conductor 3.218
Analytic rank 0
Dimension 32
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 403 = 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 403.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(32\)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 311.15
Character \(\chi\) = 403.311
Dual form 403.2.c.b.311.18

$q$-expansion

\(f(q)\) \(=\) \(q-0.475674i q^{2} +0.345654 q^{3} +1.77373 q^{4} -0.161594i q^{5} -0.164419i q^{6} -4.07996i q^{7} -1.79507i q^{8} -2.88052 q^{9} +O(q^{10})\) \(q-0.475674i q^{2} +0.345654 q^{3} +1.77373 q^{4} -0.161594i q^{5} -0.164419i q^{6} -4.07996i q^{7} -1.79507i q^{8} -2.88052 q^{9} -0.0768661 q^{10} -3.77693i q^{11} +0.613099 q^{12} +(-3.57244 + 0.487542i) q^{13} -1.94073 q^{14} -0.0558557i q^{15} +2.69360 q^{16} +1.83266 q^{17} +1.37019i q^{18} +6.07852i q^{19} -0.286625i q^{20} -1.41025i q^{21} -1.79659 q^{22} +8.58551 q^{23} -0.620472i q^{24} +4.97389 q^{25} +(0.231911 + 1.69931i) q^{26} -2.03263 q^{27} -7.23676i q^{28} -5.21592 q^{29} -0.0265691 q^{30} +1.00000i q^{31} -4.87141i q^{32} -1.30551i q^{33} -0.871748i q^{34} -0.659297 q^{35} -5.10928 q^{36} +11.7559i q^{37} +2.89139 q^{38} +(-1.23483 + 0.168521i) q^{39} -0.290072 q^{40} -4.76311i q^{41} -0.670821 q^{42} +6.24514 q^{43} -6.69927i q^{44} +0.465476i q^{45} -4.08390i q^{46} +4.70897i q^{47} +0.931056 q^{48} -9.64605 q^{49} -2.36595i q^{50} +0.633467 q^{51} +(-6.33655 + 0.864769i) q^{52} +6.16063 q^{53} +0.966867i q^{54} -0.610330 q^{55} -7.32379 q^{56} +2.10107i q^{57} +2.48107i q^{58} -7.98069i q^{59} -0.0990732i q^{60} -4.52134 q^{61} +0.475674 q^{62} +11.7524i q^{63} +3.07001 q^{64} +(0.0787839 + 0.577285i) q^{65} -0.620998 q^{66} +7.69808i q^{67} +3.25065 q^{68} +2.96762 q^{69} +0.313610i q^{70} -7.77152i q^{71} +5.17073i q^{72} -4.96395i q^{73} +5.59197 q^{74} +1.71925 q^{75} +10.7817i q^{76} -15.4097 q^{77} +(0.0801609 + 0.587375i) q^{78} +8.26843 q^{79} -0.435271i q^{80} +7.93898 q^{81} -2.26569 q^{82} +12.1642i q^{83} -2.50142i q^{84} -0.296147i q^{85} -2.97065i q^{86} -1.80290 q^{87} -6.77984 q^{88} +3.17056i q^{89} +0.221415 q^{90} +(1.98915 + 14.5754i) q^{91} +15.2284 q^{92} +0.345654i q^{93} +2.23993 q^{94} +0.982253 q^{95} -1.68382i q^{96} +0.366185i q^{97} +4.58837i q^{98} +10.8795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 4q^{3} - 36q^{4} + 20q^{9} + O(q^{10}) \) \( 32q - 4q^{3} - 36q^{4} + 20q^{9} + 4q^{10} - 16q^{12} + 10q^{13} - 16q^{14} + 28q^{16} - 8q^{17} - 16q^{22} - 8q^{23} + 4q^{25} + 18q^{26} + 20q^{27} - 16q^{29} + 40q^{30} - 4q^{35} - 44q^{36} + 12q^{38} + 4q^{39} + 28q^{40} + 28q^{42} - 32q^{43} - 64q^{49} - 64q^{52} - 12q^{53} + 44q^{55} + 8q^{56} + 16q^{61} + 8q^{62} - 76q^{64} - 66q^{65} - 68q^{66} + 64q^{68} + 20q^{69} + 16q^{74} - 32q^{77} - 20q^{78} + 64q^{79} - 16q^{81} + 12q^{82} - 72q^{87} + 80q^{88} + 68q^{90} + 22q^{91} + 28q^{92} + 88q^{94} + 4q^{95} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.475674i 0.336352i −0.985757 0.168176i \(-0.946212\pi\)
0.985757 0.168176i \(-0.0537877\pi\)
\(3\) 0.345654 0.199564 0.0997818 0.995009i \(-0.468186\pi\)
0.0997818 + 0.995009i \(0.468186\pi\)
\(4\) 1.77373 0.886867
\(5\) 0.161594i 0.0722671i −0.999347 0.0361336i \(-0.988496\pi\)
0.999347 0.0361336i \(-0.0115042\pi\)
\(6\) 0.164419i 0.0671236i
\(7\) 4.07996i 1.54208i −0.636787 0.771039i \(-0.719737\pi\)
0.636787 0.771039i \(-0.280263\pi\)
\(8\) 1.79507i 0.634652i
\(9\) −2.88052 −0.960174
\(10\) −0.0768661 −0.0243072
\(11\) 3.77693i 1.13879i −0.822065 0.569394i \(-0.807178\pi\)
0.822065 0.569394i \(-0.192822\pi\)
\(12\) 0.613099 0.176986
\(13\) −3.57244 + 0.487542i −0.990816 + 0.135220i
\(14\) −1.94073 −0.518681
\(15\) 0.0558557i 0.0144219i
\(16\) 2.69360 0.673401
\(17\) 1.83266 0.444485 0.222243 0.974991i \(-0.428662\pi\)
0.222243 + 0.974991i \(0.428662\pi\)
\(18\) 1.37019i 0.322957i
\(19\) 6.07852i 1.39451i 0.716825 + 0.697254i \(0.245595\pi\)
−0.716825 + 0.697254i \(0.754405\pi\)
\(20\) 0.286625i 0.0640913i
\(21\) 1.41025i 0.307743i
\(22\) −1.79659 −0.383033
\(23\) 8.58551 1.79020 0.895102 0.445862i \(-0.147103\pi\)
0.895102 + 0.445862i \(0.147103\pi\)
\(24\) 0.620472i 0.126653i
\(25\) 4.97389 0.994777
\(26\) 0.231911 + 1.69931i 0.0454814 + 0.333263i
\(27\) −2.03263 −0.391179
\(28\) 7.23676i 1.36762i
\(29\) −5.21592 −0.968571 −0.484286 0.874910i \(-0.660920\pi\)
−0.484286 + 0.874910i \(0.660920\pi\)
\(30\) −0.0265691 −0.00485083
\(31\) 1.00000i 0.179605i
\(32\) 4.87141i 0.861151i
\(33\) 1.30551i 0.227261i
\(34\) 0.871748i 0.149504i
\(35\) −0.659297 −0.111442
\(36\) −5.10928 −0.851547
\(37\) 11.7559i 1.93266i 0.257313 + 0.966328i \(0.417163\pi\)
−0.257313 + 0.966328i \(0.582837\pi\)
\(38\) 2.89139 0.469045
\(39\) −1.23483 + 0.168521i −0.197731 + 0.0269849i
\(40\) −0.290072 −0.0458644
\(41\) 4.76311i 0.743873i −0.928258 0.371937i \(-0.878694\pi\)
0.928258 0.371937i \(-0.121306\pi\)
\(42\) −0.670821 −0.103510
\(43\) 6.24514 0.952374 0.476187 0.879344i \(-0.342018\pi\)
0.476187 + 0.879344i \(0.342018\pi\)
\(44\) 6.69927i 1.00995i
\(45\) 0.465476i 0.0693890i
\(46\) 4.08390i 0.602138i
\(47\) 4.70897i 0.686874i 0.939176 + 0.343437i \(0.111591\pi\)
−0.939176 + 0.343437i \(0.888409\pi\)
\(48\) 0.931056 0.134386
\(49\) −9.64605 −1.37801
\(50\) 2.36595i 0.334595i
\(51\) 0.633467 0.0887031
\(52\) −6.33655 + 0.864769i −0.878722 + 0.119922i
\(53\) 6.16063 0.846227 0.423113 0.906077i \(-0.360937\pi\)
0.423113 + 0.906077i \(0.360937\pi\)
\(54\) 0.966867i 0.131574i
\(55\) −0.610330 −0.0822969
\(56\) −7.32379 −0.978683
\(57\) 2.10107i 0.278293i
\(58\) 2.48107i 0.325781i
\(59\) 7.98069i 1.03900i −0.854471 0.519499i \(-0.826119\pi\)
0.854471 0.519499i \(-0.173881\pi\)
\(60\) 0.0990732i 0.0127903i
\(61\) −4.52134 −0.578899 −0.289449 0.957193i \(-0.593472\pi\)
−0.289449 + 0.957193i \(0.593472\pi\)
\(62\) 0.475674 0.0604106
\(63\) 11.7524i 1.48066i
\(64\) 3.07001 0.383751
\(65\) 0.0787839 + 0.577285i 0.00977194 + 0.0716034i
\(66\) −0.620998 −0.0764395
\(67\) 7.69808i 0.940470i 0.882541 + 0.470235i \(0.155831\pi\)
−0.882541 + 0.470235i \(0.844169\pi\)
\(68\) 3.25065 0.394199
\(69\) 2.96762 0.357259
\(70\) 0.313610i 0.0374836i
\(71\) 7.77152i 0.922310i −0.887320 0.461155i \(-0.847435\pi\)
0.887320 0.461155i \(-0.152565\pi\)
\(72\) 5.17073i 0.609376i
\(73\) 4.96395i 0.580986i −0.956877 0.290493i \(-0.906181\pi\)
0.956877 0.290493i \(-0.0938194\pi\)
\(74\) 5.59197 0.650053
\(75\) 1.71925 0.198521
\(76\) 10.7817i 1.23674i
\(77\) −15.4097 −1.75610
\(78\) 0.0801609 + 0.587375i 0.00907644 + 0.0665071i
\(79\) 8.26843 0.930271 0.465135 0.885240i \(-0.346006\pi\)
0.465135 + 0.885240i \(0.346006\pi\)
\(80\) 0.435271i 0.0486648i
\(81\) 7.93898 0.882109
\(82\) −2.26569 −0.250203
\(83\) 12.1642i 1.33520i 0.744522 + 0.667598i \(0.232678\pi\)
−0.744522 + 0.667598i \(0.767322\pi\)
\(84\) 2.50142i 0.272927i
\(85\) 0.296147i 0.0321217i
\(86\) 2.97065i 0.320333i
\(87\) −1.80290 −0.193292
\(88\) −6.77984 −0.722733
\(89\) 3.17056i 0.336079i 0.985780 + 0.168040i \(0.0537436\pi\)
−0.985780 + 0.168040i \(0.946256\pi\)
\(90\) 0.221415 0.0233391
\(91\) 1.98915 + 14.5754i 0.208519 + 1.52792i
\(92\) 15.2284 1.58767
\(93\) 0.345654i 0.0358427i
\(94\) 2.23993 0.231031
\(95\) 0.982253 0.100777
\(96\) 1.68382i 0.171854i
\(97\) 0.366185i 0.0371804i 0.999827 + 0.0185902i \(0.00591779\pi\)
−0.999827 + 0.0185902i \(0.994082\pi\)
\(98\) 4.58837i 0.463495i
\(99\) 10.8795i 1.09343i
\(100\) 8.82236 0.882236
\(101\) 4.41069 0.438880 0.219440 0.975626i \(-0.429577\pi\)
0.219440 + 0.975626i \(0.429577\pi\)
\(102\) 0.301323i 0.0298355i
\(103\) −5.82239 −0.573697 −0.286849 0.957976i \(-0.592608\pi\)
−0.286849 + 0.957976i \(0.592608\pi\)
\(104\) 0.875169 + 6.41276i 0.0858174 + 0.628823i
\(105\) −0.227889 −0.0222397
\(106\) 2.93045i 0.284630i
\(107\) −16.7531 −1.61958 −0.809790 0.586720i \(-0.800419\pi\)
−0.809790 + 0.586720i \(0.800419\pi\)
\(108\) −3.60534 −0.346924
\(109\) 7.98649i 0.764967i 0.923962 + 0.382484i \(0.124931\pi\)
−0.923962 + 0.382484i \(0.875069\pi\)
\(110\) 0.290318i 0.0276807i
\(111\) 4.06347i 0.385688i
\(112\) 10.9898i 1.03844i
\(113\) −8.73574 −0.821789 −0.410895 0.911683i \(-0.634784\pi\)
−0.410895 + 0.911683i \(0.634784\pi\)
\(114\) 0.999421 0.0936044
\(115\) 1.38737i 0.129373i
\(116\) −9.25165 −0.858994
\(117\) 10.2905 1.40437i 0.951356 0.129834i
\(118\) −3.79620 −0.349469
\(119\) 7.47717i 0.685431i
\(120\) −0.100265 −0.00915287
\(121\) −3.26520 −0.296837
\(122\) 2.15068i 0.194714i
\(123\) 1.64639i 0.148450i
\(124\) 1.77373i 0.159286i
\(125\) 1.61172i 0.144157i
\(126\) 5.59031 0.498024
\(127\) 10.6754 0.947291 0.473646 0.880715i \(-0.342938\pi\)
0.473646 + 0.880715i \(0.342938\pi\)
\(128\) 11.2031i 0.990227i
\(129\) 2.15866 0.190059
\(130\) 0.274599 0.0374754i 0.0240839 0.00328681i
\(131\) −19.6250 −1.71464 −0.857322 0.514780i \(-0.827873\pi\)
−0.857322 + 0.514780i \(0.827873\pi\)
\(132\) 2.31563i 0.201550i
\(133\) 24.8001 2.15044
\(134\) 3.66177 0.316329
\(135\) 0.328461i 0.0282694i
\(136\) 3.28974i 0.282093i
\(137\) 2.38607i 0.203856i 0.994792 + 0.101928i \(0.0325012\pi\)
−0.994792 + 0.101928i \(0.967499\pi\)
\(138\) 1.41162i 0.120165i
\(139\) −16.6882 −1.41547 −0.707735 0.706478i \(-0.750283\pi\)
−0.707735 + 0.706478i \(0.750283\pi\)
\(140\) −1.16942 −0.0988339
\(141\) 1.62768i 0.137075i
\(142\) −3.69671 −0.310221
\(143\) 1.84141 + 13.4928i 0.153986 + 1.12833i
\(144\) −7.75899 −0.646582
\(145\) 0.842862i 0.0699959i
\(146\) −2.36122 −0.195416
\(147\) −3.33420 −0.275000
\(148\) 20.8518i 1.71401i
\(149\) 17.0531i 1.39705i −0.715588 0.698523i \(-0.753841\pi\)
0.715588 0.698523i \(-0.246159\pi\)
\(150\) 0.817800i 0.0667731i
\(151\) 14.6889i 1.19537i 0.801733 + 0.597683i \(0.203912\pi\)
−0.801733 + 0.597683i \(0.796088\pi\)
\(152\) 10.9113 0.885026
\(153\) −5.27902 −0.426783
\(154\) 7.32999i 0.590668i
\(155\) 0.161594 0.0129796
\(156\) −2.19026 + 0.298911i −0.175361 + 0.0239321i
\(157\) 3.04722 0.243195 0.121597 0.992580i \(-0.461198\pi\)
0.121597 + 0.992580i \(0.461198\pi\)
\(158\) 3.93307i 0.312898i
\(159\) 2.12945 0.168876
\(160\) −0.787191 −0.0622329
\(161\) 35.0285i 2.76063i
\(162\) 3.77636i 0.296699i
\(163\) 13.4400i 1.05270i −0.850267 0.526351i \(-0.823560\pi\)
0.850267 0.526351i \(-0.176440\pi\)
\(164\) 8.44850i 0.659717i
\(165\) −0.210963 −0.0164235
\(166\) 5.78620 0.449096
\(167\) 18.9746i 1.46830i 0.678990 + 0.734148i \(0.262418\pi\)
−0.678990 + 0.734148i \(0.737582\pi\)
\(168\) −2.53150 −0.195309
\(169\) 12.5246 3.48342i 0.963431 0.267956i
\(170\) −0.140869 −0.0108042
\(171\) 17.5093i 1.33897i
\(172\) 11.0772 0.844630
\(173\) −4.56058 −0.346735 −0.173367 0.984857i \(-0.555465\pi\)
−0.173367 + 0.984857i \(0.555465\pi\)
\(174\) 0.857594i 0.0650140i
\(175\) 20.2932i 1.53403i
\(176\) 10.1736i 0.766861i
\(177\) 2.75856i 0.207346i
\(178\) 1.50815 0.113041
\(179\) 3.85639 0.288240 0.144120 0.989560i \(-0.453965\pi\)
0.144120 + 0.989560i \(0.453965\pi\)
\(180\) 0.825631i 0.0615389i
\(181\) 8.51055 0.632584 0.316292 0.948662i \(-0.397562\pi\)
0.316292 + 0.948662i \(0.397562\pi\)
\(182\) 6.93313 0.946185i 0.513918 0.0701359i
\(183\) −1.56282 −0.115527
\(184\) 15.4116i 1.13616i
\(185\) 1.89968 0.139667
\(186\) 0.164419 0.0120558
\(187\) 6.92183i 0.506174i
\(188\) 8.35246i 0.609166i
\(189\) 8.29304i 0.603230i
\(190\) 0.467232i 0.0338965i
\(191\) 8.46629 0.612599 0.306300 0.951935i \(-0.400909\pi\)
0.306300 + 0.951935i \(0.400909\pi\)
\(192\) 1.06116 0.0765827
\(193\) 1.35305i 0.0973950i −0.998814 0.0486975i \(-0.984493\pi\)
0.998814 0.0486975i \(-0.0155070\pi\)
\(194\) 0.174184 0.0125057
\(195\) 0.0272320 + 0.199541i 0.00195012 + 0.0142894i
\(196\) −17.1095 −1.22211
\(197\) 4.99593i 0.355946i −0.984035 0.177973i \(-0.943046\pi\)
0.984035 0.177973i \(-0.0569539\pi\)
\(198\) 5.17511 0.367779
\(199\) −18.1523 −1.28678 −0.643390 0.765539i \(-0.722472\pi\)
−0.643390 + 0.765539i \(0.722472\pi\)
\(200\) 8.92845i 0.631337i
\(201\) 2.66087i 0.187684i
\(202\) 2.09805i 0.147618i
\(203\) 21.2807i 1.49361i
\(204\) 1.12360 0.0786679
\(205\) −0.769691 −0.0537576
\(206\) 2.76956i 0.192964i
\(207\) −24.7308 −1.71891
\(208\) −9.62273 + 1.31324i −0.667216 + 0.0910571i
\(209\) 22.9581 1.58805
\(210\) 0.108401i 0.00748036i
\(211\) −17.5202 −1.20614 −0.603069 0.797689i \(-0.706056\pi\)
−0.603069 + 0.797689i \(0.706056\pi\)
\(212\) 10.9273 0.750491
\(213\) 2.68626i 0.184060i
\(214\) 7.96899i 0.544749i
\(215\) 1.00918i 0.0688254i
\(216\) 3.64870i 0.248263i
\(217\) 4.07996 0.276966
\(218\) 3.79896 0.257298
\(219\) 1.71581i 0.115944i
\(220\) −1.08256 −0.0729864
\(221\) −6.54706 + 0.893498i −0.440403 + 0.0601032i
\(222\) 1.93289 0.129727
\(223\) 14.9046i 0.998084i 0.866578 + 0.499042i \(0.166315\pi\)
−0.866578 + 0.499042i \(0.833685\pi\)
\(224\) −19.8751 −1.32796
\(225\) −14.3274 −0.955160
\(226\) 4.15536i 0.276410i
\(227\) 23.7120i 1.57382i −0.617068 0.786910i \(-0.711680\pi\)
0.617068 0.786910i \(-0.288320\pi\)
\(228\) 3.72673i 0.246809i
\(229\) 13.5862i 0.897804i −0.893581 0.448902i \(-0.851815\pi\)
0.893581 0.448902i \(-0.148185\pi\)
\(230\) −0.659935 −0.0435148
\(231\) −5.32643 −0.350454
\(232\) 9.36291i 0.614705i
\(233\) −12.3027 −0.805980 −0.402990 0.915204i \(-0.632029\pi\)
−0.402990 + 0.915204i \(0.632029\pi\)
\(234\) −0.668024 4.89491i −0.0436701 0.319990i
\(235\) 0.760942 0.0496384
\(236\) 14.1556i 0.921453i
\(237\) 2.85802 0.185648
\(238\) −3.55669 −0.230546
\(239\) 21.8890i 1.41588i 0.706273 + 0.707940i \(0.250375\pi\)
−0.706273 + 0.707940i \(0.749625\pi\)
\(240\) 0.150453i 0.00971171i
\(241\) 7.21497i 0.464757i −0.972625 0.232379i \(-0.925349\pi\)
0.972625 0.232379i \(-0.0746509\pi\)
\(242\) 1.55317i 0.0998416i
\(243\) 8.84203 0.567216
\(244\) −8.01967 −0.513406
\(245\) 1.55875i 0.0995846i
\(246\) −0.783144 −0.0499315
\(247\) −2.96353 21.7151i −0.188565 1.38170i
\(248\) 1.79507 0.113987
\(249\) 4.20462i 0.266457i
\(250\) −0.766654 −0.0484874
\(251\) 13.8037 0.871280 0.435640 0.900121i \(-0.356522\pi\)
0.435640 + 0.900121i \(0.356522\pi\)
\(252\) 20.8457i 1.31315i
\(253\) 32.4269i 2.03866i
\(254\) 5.07802i 0.318623i
\(255\) 0.102365i 0.00641032i
\(256\) 0.810980 0.0506863
\(257\) 10.4274 0.650446 0.325223 0.945637i \(-0.394561\pi\)
0.325223 + 0.945637i \(0.394561\pi\)
\(258\) 1.02682i 0.0639268i
\(259\) 47.9635 2.98031
\(260\) 0.139742 + 1.02395i 0.00866641 + 0.0635027i
\(261\) 15.0246 0.929997
\(262\) 9.33509i 0.576724i
\(263\) 21.8967 1.35021 0.675105 0.737721i \(-0.264098\pi\)
0.675105 + 0.737721i \(0.264098\pi\)
\(264\) −2.34348 −0.144231
\(265\) 0.995521i 0.0611544i
\(266\) 11.7967i 0.723305i
\(267\) 1.09592i 0.0670692i
\(268\) 13.6543i 0.834072i
\(269\) −4.19670 −0.255877 −0.127939 0.991782i \(-0.540836\pi\)
−0.127939 + 0.991782i \(0.540836\pi\)
\(270\) 0.156240 0.00950847
\(271\) 4.89966i 0.297633i −0.988865 0.148817i \(-0.952454\pi\)
0.988865 0.148817i \(-0.0475464\pi\)
\(272\) 4.93646 0.299317
\(273\) 0.687558 + 5.03805i 0.0416129 + 0.304916i
\(274\) 1.13499 0.0685674
\(275\) 18.7860i 1.13284i
\(276\) 5.26377 0.316842
\(277\) −15.9569 −0.958760 −0.479380 0.877608i \(-0.659138\pi\)
−0.479380 + 0.877608i \(0.659138\pi\)
\(278\) 7.93811i 0.476096i
\(279\) 2.88052i 0.172452i
\(280\) 1.18348i 0.0707266i
\(281\) 8.30204i 0.495258i 0.968855 + 0.247629i \(0.0796514\pi\)
−0.968855 + 0.247629i \(0.920349\pi\)
\(282\) 0.774242 0.0461055
\(283\) 21.4803 1.27687 0.638436 0.769675i \(-0.279582\pi\)
0.638436 + 0.769675i \(0.279582\pi\)
\(284\) 13.7846i 0.817967i
\(285\) 0.339520 0.0201114
\(286\) 6.41819 0.875910i 0.379515 0.0517937i
\(287\) −19.4333 −1.14711
\(288\) 14.0322i 0.826855i
\(289\) −13.6414 −0.802433
\(290\) 0.400927 0.0235432
\(291\) 0.126573i 0.00741986i
\(292\) 8.80473i 0.515258i
\(293\) 25.3620i 1.48166i −0.671690 0.740832i \(-0.734431\pi\)
0.671690 0.740832i \(-0.265569\pi\)
\(294\) 1.58599i 0.0924968i
\(295\) −1.28963 −0.0750854
\(296\) 21.1026 1.22656
\(297\) 7.67710i 0.445470i
\(298\) −8.11171 −0.469899
\(299\) −30.6712 + 4.18579i −1.77376 + 0.242071i
\(300\) 3.04949 0.176062
\(301\) 25.4799i 1.46864i
\(302\) 6.98712 0.402064
\(303\) 1.52457 0.0875845
\(304\) 16.3731i 0.939063i
\(305\) 0.730623i 0.0418354i
\(306\) 2.51109i 0.143549i
\(307\) 24.5792i 1.40281i 0.712765 + 0.701403i \(0.247443\pi\)
−0.712765 + 0.701403i \(0.752557\pi\)
\(308\) −27.3327 −1.55743
\(309\) −2.01253 −0.114489
\(310\) 0.0768661i 0.00436570i
\(311\) 11.9767 0.679138 0.339569 0.940581i \(-0.389719\pi\)
0.339569 + 0.940581i \(0.389719\pi\)
\(312\) 0.302506 + 2.21660i 0.0171260 + 0.125490i
\(313\) 4.14553 0.234319 0.117160 0.993113i \(-0.462621\pi\)
0.117160 + 0.993113i \(0.462621\pi\)
\(314\) 1.44948i 0.0817990i
\(315\) 1.89912 0.107003
\(316\) 14.6660 0.825027
\(317\) 31.3673i 1.76176i 0.473335 + 0.880882i \(0.343050\pi\)
−0.473335 + 0.880882i \(0.656950\pi\)
\(318\) 1.01292i 0.0568018i
\(319\) 19.7002i 1.10300i
\(320\) 0.496095i 0.0277326i
\(321\) −5.79077 −0.323209
\(322\) −16.6621 −0.928545
\(323\) 11.1399i 0.619838i
\(324\) 14.0816 0.782314
\(325\) −17.7689 + 2.42498i −0.985641 + 0.134514i
\(326\) −6.39305 −0.354078
\(327\) 2.76056i 0.152660i
\(328\) −8.55010 −0.472100
\(329\) 19.2124 1.05921
\(330\) 0.100350i 0.00552406i
\(331\) 0.485651i 0.0266938i 0.999911 + 0.0133469i \(0.00424858\pi\)
−0.999911 + 0.0133469i \(0.995751\pi\)
\(332\) 21.5761i 1.18414i
\(333\) 33.8631i 1.85569i
\(334\) 9.02569 0.493864
\(335\) 1.24396 0.0679650
\(336\) 3.79867i 0.207234i
\(337\) −10.4733 −0.570518 −0.285259 0.958451i \(-0.592080\pi\)
−0.285259 + 0.958451i \(0.592080\pi\)
\(338\) −1.65697 5.95762i −0.0901274 0.324052i
\(339\) −3.01955 −0.163999
\(340\) 0.525286i 0.0284877i
\(341\) 3.77693 0.204532
\(342\) −8.32871 −0.450365
\(343\) 10.7958i 0.582917i
\(344\) 11.2104i 0.604426i
\(345\) 0.479550i 0.0258181i
\(346\) 2.16935i 0.116625i
\(347\) 16.0801 0.863225 0.431613 0.902059i \(-0.357945\pi\)
0.431613 + 0.902059i \(0.357945\pi\)
\(348\) −3.19787 −0.171424
\(349\) 27.1125i 1.45130i 0.688064 + 0.725650i \(0.258461\pi\)
−0.688064 + 0.725650i \(0.741539\pi\)
\(350\) −9.65296 −0.515972
\(351\) 7.26144 0.990991i 0.387587 0.0528952i
\(352\) −18.3990 −0.980668
\(353\) 2.27544i 0.121109i −0.998165 0.0605547i \(-0.980713\pi\)
0.998165 0.0605547i \(-0.0192869\pi\)
\(354\) −1.31217 −0.0697413
\(355\) −1.25583 −0.0666527
\(356\) 5.62374i 0.298058i
\(357\) 2.58452i 0.136787i
\(358\) 1.83438i 0.0969502i
\(359\) 2.58251i 0.136300i 0.997675 + 0.0681498i \(0.0217096\pi\)
−0.997675 + 0.0681498i \(0.978290\pi\)
\(360\) 0.835560 0.0440379
\(361\) −17.9484 −0.944650
\(362\) 4.04824i 0.212771i
\(363\) −1.12863 −0.0592378
\(364\) 3.52822 + 25.8529i 0.184929 + 1.35506i
\(365\) −0.802146 −0.0419862
\(366\) 0.743393i 0.0388578i
\(367\) −15.6380 −0.816296 −0.408148 0.912916i \(-0.633825\pi\)
−0.408148 + 0.912916i \(0.633825\pi\)
\(368\) 23.1260 1.20552
\(369\) 13.7203i 0.714248i
\(370\) 0.903629i 0.0469774i
\(371\) 25.1351i 1.30495i
\(372\) 0.613099i 0.0317877i
\(373\) −28.3986 −1.47042 −0.735211 0.677839i \(-0.762917\pi\)
−0.735211 + 0.677839i \(0.762917\pi\)
\(374\) −3.29253 −0.170253
\(375\) 0.557099i 0.0287685i
\(376\) 8.45291 0.435926
\(377\) 18.6335 2.54298i 0.959676 0.130970i
\(378\) 3.94478 0.202897
\(379\) 3.66801i 0.188413i −0.995553 0.0942066i \(-0.969969\pi\)
0.995553 0.0942066i \(-0.0300314\pi\)
\(380\) 1.74226 0.0893758
\(381\) 3.69001 0.189045
\(382\) 4.02719i 0.206049i
\(383\) 27.7530i 1.41811i 0.705153 + 0.709056i \(0.250878\pi\)
−0.705153 + 0.709056i \(0.749122\pi\)
\(384\) 3.87241i 0.197613i
\(385\) 2.49012i 0.126908i
\(386\) −0.643612 −0.0327590
\(387\) −17.9893 −0.914446
\(388\) 0.649514i 0.0329741i
\(389\) 7.80800 0.395881 0.197941 0.980214i \(-0.436575\pi\)
0.197941 + 0.980214i \(0.436575\pi\)
\(390\) 0.0949164 0.0129535i 0.00480628 0.000655928i
\(391\) 15.7343 0.795719
\(392\) 17.3153i 0.874554i
\(393\) −6.78347 −0.342181
\(394\) −2.37643 −0.119723
\(395\) 1.33613i 0.0672280i
\(396\) 19.2974i 0.969731i
\(397\) 32.5182i 1.63204i 0.578024 + 0.816020i \(0.303824\pi\)
−0.578024 + 0.816020i \(0.696176\pi\)
\(398\) 8.63455i 0.432811i
\(399\) 8.57226 0.429150
\(400\) 13.3977 0.669884
\(401\) 18.4545i 0.921574i −0.887511 0.460787i \(-0.847567\pi\)
0.887511 0.460787i \(-0.152433\pi\)
\(402\) 1.26571 0.0631277
\(403\) −0.487542 3.57244i −0.0242862 0.177956i
\(404\) 7.82340 0.389228
\(405\) 1.28289i 0.0637475i
\(406\) 10.1227 0.502380
\(407\) 44.4012 2.20088
\(408\) 1.13711i 0.0562956i
\(409\) 20.3559i 1.00653i −0.864132 0.503266i \(-0.832132\pi\)
0.864132 0.503266i \(-0.167868\pi\)
\(410\) 0.366122i 0.0180815i
\(411\) 0.824757i 0.0406823i
\(412\) −10.3274 −0.508793
\(413\) −32.5609 −1.60222
\(414\) 11.7638i 0.578158i
\(415\) 1.96567 0.0964908
\(416\) 2.37501 + 17.4028i 0.116445 + 0.853242i
\(417\) −5.76833 −0.282477
\(418\) 10.9206i 0.534143i
\(419\) −32.6649 −1.59578 −0.797891 0.602801i \(-0.794051\pi\)
−0.797891 + 0.602801i \(0.794051\pi\)
\(420\) −0.404215 −0.0197237
\(421\) 10.0153i 0.488114i 0.969761 + 0.244057i \(0.0784783\pi\)
−0.969761 + 0.244057i \(0.921522\pi\)
\(422\) 8.33388i 0.405687i
\(423\) 13.5643i 0.659519i
\(424\) 11.0587i 0.537059i
\(425\) 9.11544 0.442164
\(426\) −1.27778 −0.0619088
\(427\) 18.4469i 0.892708i
\(428\) −29.7155 −1.43635
\(429\) 0.636492 + 4.66386i 0.0307301 + 0.225173i
\(430\) −0.480039 −0.0231495
\(431\) 15.7075i 0.756604i −0.925682 0.378302i \(-0.876508\pi\)
0.925682 0.378302i \(-0.123492\pi\)
\(432\) −5.47510 −0.263421
\(433\) 23.0783 1.10907 0.554537 0.832159i \(-0.312895\pi\)
0.554537 + 0.832159i \(0.312895\pi\)
\(434\) 1.94073i 0.0931579i
\(435\) 0.291339i 0.0139686i
\(436\) 14.1659i 0.678424i
\(437\) 52.1872i 2.49645i
\(438\) −0.816166 −0.0389979
\(439\) −9.91131 −0.473041 −0.236520 0.971627i \(-0.576007\pi\)
−0.236520 + 0.971627i \(0.576007\pi\)
\(440\) 1.09558i 0.0522298i
\(441\) 27.7857 1.32313
\(442\) 0.425013 + 3.11426i 0.0202158 + 0.148130i
\(443\) −10.2386 −0.486452 −0.243226 0.969970i \(-0.578206\pi\)
−0.243226 + 0.969970i \(0.578206\pi\)
\(444\) 7.20752i 0.342054i
\(445\) 0.512345 0.0242875
\(446\) 7.08971 0.335708
\(447\) 5.89448i 0.278799i
\(448\) 12.5255i 0.591774i
\(449\) 37.8155i 1.78462i −0.451421 0.892311i \(-0.649083\pi\)
0.451421 0.892311i \(-0.350917\pi\)
\(450\) 6.81516i 0.321270i
\(451\) −17.9899 −0.847113
\(452\) −15.4949 −0.728818
\(453\) 5.07728i 0.238552i
\(454\) −11.2792 −0.529357
\(455\) 2.35530 0.321435i 0.110418 0.0150691i
\(456\) 3.77155 0.176619
\(457\) 5.76721i 0.269779i −0.990861 0.134889i \(-0.956932\pi\)
0.990861 0.134889i \(-0.0430679\pi\)
\(458\) −6.46261 −0.301978
\(459\) −3.72512 −0.173874
\(460\) 2.46082i 0.114737i
\(461\) 19.4478i 0.905775i −0.891568 0.452888i \(-0.850394\pi\)
0.891568 0.452888i \(-0.149606\pi\)
\(462\) 2.53364i 0.117876i
\(463\) 17.5592i 0.816046i −0.912972 0.408023i \(-0.866218\pi\)
0.912972 0.408023i \(-0.133782\pi\)
\(464\) −14.0496 −0.652237
\(465\) 0.0558557 0.00259025
\(466\) 5.85209i 0.271093i
\(467\) 21.5159 0.995637 0.497818 0.867281i \(-0.334135\pi\)
0.497818 + 0.867281i \(0.334135\pi\)
\(468\) 18.2526 2.49099i 0.843726 0.115146i
\(469\) 31.4078 1.45028
\(470\) 0.361960i 0.0166960i
\(471\) 1.05328 0.0485328
\(472\) −14.3259 −0.659401
\(473\) 23.5874i 1.08455i
\(474\) 1.35948i 0.0624432i
\(475\) 30.2339i 1.38722i
\(476\) 13.2625i 0.607887i
\(477\) −17.7458 −0.812525
\(478\) 10.4120 0.476234
\(479\) 40.4137i 1.84655i 0.384139 + 0.923275i \(0.374498\pi\)
−0.384139 + 0.923275i \(0.625502\pi\)
\(480\) −0.272096 −0.0124194
\(481\) −5.73148 41.9972i −0.261333 1.91491i
\(482\) −3.43197 −0.156322
\(483\) 12.1078i 0.550922i
\(484\) −5.79160 −0.263255
\(485\) 0.0591733 0.00268692
\(486\) 4.20592i 0.190784i
\(487\) 0.476889i 0.0216099i 0.999942 + 0.0108050i \(0.00343939\pi\)
−0.999942 + 0.0108050i \(0.996561\pi\)
\(488\) 8.11611i 0.367399i
\(489\) 4.64559i 0.210081i
\(490\) 0.741454 0.0334955
\(491\) −5.42032 −0.244616 −0.122308 0.992492i \(-0.539030\pi\)
−0.122308 + 0.992492i \(0.539030\pi\)
\(492\) 2.92026i 0.131655i
\(493\) −9.55900 −0.430516
\(494\) −10.3293 + 1.40967i −0.464737 + 0.0634242i
\(495\) 1.75807 0.0790194
\(496\) 2.69360i 0.120946i
\(497\) −31.7075 −1.42227
\(498\) 2.00002 0.0896232
\(499\) 12.7183i 0.569350i −0.958624 0.284675i \(-0.908114\pi\)
0.958624 0.284675i \(-0.0918856\pi\)
\(500\) 2.85877i 0.127848i
\(501\) 6.55864i 0.293018i
\(502\) 6.56604i 0.293057i
\(503\) 3.19745 0.142567 0.0712835 0.997456i \(-0.477290\pi\)
0.0712835 + 0.997456i \(0.477290\pi\)
\(504\) 21.0964 0.939706
\(505\) 0.712742i 0.0317166i
\(506\) −15.4246 −0.685708
\(507\) 4.32918 1.20406i 0.192266 0.0534742i
\(508\) 18.9354 0.840122
\(509\) 29.0567i 1.28791i 0.765061 + 0.643957i \(0.222709\pi\)
−0.765061 + 0.643957i \(0.777291\pi\)
\(510\) −0.0486921 −0.00215612
\(511\) −20.2527 −0.895927
\(512\) 22.7920i 1.00728i
\(513\) 12.3554i 0.545503i
\(514\) 4.96006i 0.218779i
\(515\) 0.940864i 0.0414594i
\(516\) 3.82889 0.168557
\(517\) 17.7855 0.782203
\(518\) 22.8150i 1.00243i
\(519\) −1.57639 −0.0691956
\(520\) 1.03626 0.141422i 0.0454432 0.00620178i
\(521\) −32.5948 −1.42800 −0.714001 0.700145i \(-0.753119\pi\)
−0.714001 + 0.700145i \(0.753119\pi\)
\(522\) 7.14679i 0.312806i
\(523\) 24.3813 1.06612 0.533059 0.846078i \(-0.321042\pi\)
0.533059 + 0.846078i \(0.321042\pi\)
\(524\) −34.8095 −1.52066
\(525\) 7.01445i 0.306136i
\(526\) 10.4157i 0.454146i
\(527\) 1.83266i 0.0798319i
\(528\) 3.51653i 0.153037i
\(529\) 50.7110 2.20483
\(530\) −0.473543 −0.0205694
\(531\) 22.9886i 0.997619i
\(532\) 43.9888 1.90716
\(533\) 2.32221 + 17.0159i 0.100586 + 0.737041i
\(534\) 0.521300 0.0225588
\(535\) 2.70720i 0.117042i
\(536\) 13.8186 0.596871
\(537\) 1.33298 0.0575223
\(538\) 1.99626i 0.0860649i
\(539\) 36.4325i 1.56926i
\(540\) 0.582603i 0.0250712i
\(541\) 36.9850i 1.59011i −0.606537 0.795055i \(-0.707442\pi\)
0.606537 0.795055i \(-0.292558\pi\)
\(542\) −2.33064 −0.100110
\(543\) 2.94171 0.126241
\(544\) 8.92763i 0.382769i
\(545\) 1.29057 0.0552820
\(546\) 2.39647 0.327053i 0.102559 0.0139966i
\(547\) 10.3345 0.441872 0.220936 0.975288i \(-0.429089\pi\)
0.220936 + 0.975288i \(0.429089\pi\)
\(548\) 4.23226i 0.180793i
\(549\) 13.0238 0.555844
\(550\) −8.93602 −0.381033
\(551\) 31.7050i 1.35068i
\(552\) 5.32707i 0.226735i
\(553\) 33.7348i 1.43455i
\(554\) 7.59029i 0.322481i
\(555\) 0.656634 0.0278726
\(556\) −29.6004 −1.25533
\(557\) 5.13754i 0.217685i −0.994059 0.108842i \(-0.965286\pi\)
0.994059 0.108842i \(-0.0347143\pi\)
\(558\) −1.37019 −0.0580047
\(559\) −22.3104 + 3.04476i −0.943627 + 0.128780i
\(560\) −1.77589 −0.0750449
\(561\) 2.39256i 0.101014i
\(562\) 3.94906 0.166581
\(563\) −5.84576 −0.246370 −0.123185 0.992384i \(-0.539311\pi\)
−0.123185 + 0.992384i \(0.539311\pi\)
\(564\) 2.88706i 0.121567i
\(565\) 1.41164i 0.0593883i
\(566\) 10.2176i 0.429478i
\(567\) 32.3907i 1.36028i
\(568\) −13.9504 −0.585346
\(569\) −19.4506 −0.815413 −0.407706 0.913113i \(-0.633671\pi\)
−0.407706 + 0.913113i \(0.633671\pi\)
\(570\) 0.161501i 0.00676452i
\(571\) 4.61628 0.193185 0.0965927 0.995324i \(-0.469206\pi\)
0.0965927 + 0.995324i \(0.469206\pi\)
\(572\) 3.26617 + 23.9327i 0.136566 + 1.00068i
\(573\) 2.92641 0.122253
\(574\) 9.24390i 0.385833i
\(575\) 42.7034 1.78085
\(576\) −8.84323 −0.368468
\(577\) 26.1386i 1.08817i −0.839032 0.544083i \(-0.816878\pi\)
0.839032 0.544083i \(-0.183122\pi\)
\(578\) 6.48883i 0.269900i
\(579\) 0.467689i 0.0194365i
\(580\) 1.49501i 0.0620770i
\(581\) 49.6295 2.05898
\(582\) 0.0602076 0.00249568
\(583\) 23.2683i 0.963673i
\(584\) −8.91062 −0.368724
\(585\) −0.226939 1.66288i −0.00938276 0.0687517i
\(586\) −12.0640 −0.498361
\(587\) 19.2852i 0.795983i 0.917389 + 0.397992i \(0.130293\pi\)
−0.917389 + 0.397992i \(0.869707\pi\)
\(588\) −5.91398 −0.243889
\(589\) −6.07852 −0.250461
\(590\) 0.613445i 0.0252551i
\(591\) 1.72687i 0.0710338i
\(592\) 31.6657i 1.30145i
\(593\) 16.2964i 0.669214i −0.942358 0.334607i \(-0.891397\pi\)
0.942358 0.334607i \(-0.108603\pi\)
\(594\) 3.65179 0.149835
\(595\) −1.20827 −0.0495341
\(596\) 30.2477i 1.23899i
\(597\) −6.27441 −0.256794
\(598\) 1.99107 + 14.5895i 0.0814210 + 0.596608i
\(599\) −24.5049 −1.00124 −0.500622 0.865666i \(-0.666895\pi\)
−0.500622 + 0.865666i \(0.666895\pi\)
\(600\) 3.08616i 0.125992i
\(601\) −6.30942 −0.257367 −0.128683 0.991686i \(-0.541075\pi\)
−0.128683 + 0.991686i \(0.541075\pi\)
\(602\) −12.1201 −0.493979
\(603\) 22.1745i 0.903015i
\(604\) 26.0542i 1.06013i
\(605\) 0.527638i 0.0214515i
\(606\) 0.725200i 0.0294592i
\(607\) 1.35917 0.0551672 0.0275836 0.999620i \(-0.491219\pi\)
0.0275836 + 0.999620i \(0.491219\pi\)
\(608\) 29.6109 1.20088
\(609\) 7.35577i 0.298071i
\(610\) 0.347538 0.0140714
\(611\) −2.29582 16.8225i −0.0928789 0.680565i
\(612\) −9.36358 −0.378500
\(613\) 29.2724i 1.18230i 0.806562 + 0.591150i \(0.201326\pi\)
−0.806562 + 0.591150i \(0.798674\pi\)
\(614\) 11.6917 0.471837
\(615\) −0.266047 −0.0107281
\(616\) 27.6615i 1.11451i
\(617\) 19.6789i 0.792241i −0.918198 0.396121i \(-0.870356\pi\)
0.918198 0.396121i \(-0.129644\pi\)
\(618\) 0.957309i 0.0385086i
\(619\) 20.4145i 0.820528i 0.911967 + 0.410264i \(0.134563\pi\)
−0.911967 + 0.410264i \(0.865437\pi\)
\(620\) 0.286625 0.0115111
\(621\) −17.4512 −0.700291
\(622\) 5.69701i 0.228429i
\(623\) 12.9358 0.518261
\(624\) −3.32614 + 0.453928i −0.133152 + 0.0181717i
\(625\) 24.6090 0.984360
\(626\) 1.97192i 0.0788137i
\(627\) 7.93558 0.316916
\(628\) 5.40496 0.215681
\(629\) 21.5445i 0.859037i
\(630\) 0.903362i 0.0359908i
\(631\) 23.8412i 0.949104i −0.880228 0.474552i \(-0.842610\pi\)
0.880228 0.474552i \(-0.157390\pi\)
\(632\) 14.8424i 0.590398i
\(633\) −6.05592 −0.240701
\(634\) 14.9206 0.592573
\(635\) 1.72509i 0.0684580i
\(636\) 3.77707 0.149771
\(637\) 34.4599 4.70285i 1.36535 0.186334i
\(638\) 9.37084 0.370995
\(639\) 22.3860i 0.885578i
\(640\) −1.81036 −0.0715608
\(641\) 14.6516 0.578705 0.289352 0.957223i \(-0.406560\pi\)
0.289352 + 0.957223i \(0.406560\pi\)
\(642\) 2.75452i 0.108712i
\(643\) 41.7544i 1.64663i 0.567582 + 0.823317i \(0.307879\pi\)
−0.567582 + 0.823317i \(0.692121\pi\)
\(644\) 62.1313i 2.44832i
\(645\) 0.348827i 0.0137350i
\(646\) 5.29893 0.208484
\(647\) 48.8162 1.91916 0.959582 0.281430i \(-0.0908087\pi\)
0.959582 + 0.281430i \(0.0908087\pi\)
\(648\) 14.2510i 0.559832i
\(649\) −30.1425 −1.18320
\(650\) 1.15350 + 8.45219i 0.0452439 + 0.331522i
\(651\) 1.41025 0.0552722
\(652\) 23.8390i 0.933607i
\(653\) −22.5149 −0.881076 −0.440538 0.897734i \(-0.645212\pi\)
−0.440538 + 0.897734i \(0.645212\pi\)
\(654\) 1.31313 0.0513474
\(655\) 3.17129i 0.123912i
\(656\) 12.8299i 0.500925i
\(657\) 14.2988i 0.557848i
\(658\) 9.13883i 0.356269i
\(659\) 5.23972 0.204110 0.102055 0.994779i \(-0.467458\pi\)
0.102055 + 0.994779i \(0.467458\pi\)
\(660\) −0.374193 −0.0145654
\(661\) 24.7912i 0.964266i −0.876098 0.482133i \(-0.839862\pi\)
0.876098 0.482133i \(-0.160138\pi\)
\(662\) 0.231012 0.00897852
\(663\) −2.26302 + 0.308841i −0.0878884 + 0.0119944i
\(664\) 21.8356 0.847385
\(665\) 4.00755i 0.155406i
\(666\) −16.1078 −0.624164
\(667\) −44.7813 −1.73394
\(668\) 33.6558i 1.30218i
\(669\) 5.15183i 0.199181i
\(670\) 0.591721i 0.0228602i
\(671\) 17.0768i 0.659243i
\(672\) −6.86993 −0.265013
\(673\) −26.8313 −1.03427 −0.517135 0.855904i \(-0.673001\pi\)
−0.517135 + 0.855904i \(0.673001\pi\)
\(674\) 4.98188i 0.191895i
\(675\) −10.1101 −0.389137
\(676\) 22.2153 6.17867i 0.854436 0.237641i
\(677\) −8.48908 −0.326262 −0.163131 0.986604i \(-0.552159\pi\)
−0.163131 + 0.986604i \(0.552159\pi\)
\(678\) 1.43632i 0.0551615i
\(679\) 1.49402 0.0573351
\(680\) −0.531604 −0.0203861
\(681\) 8.19615i 0.314077i
\(682\) 1.79659i 0.0687948i
\(683\) 33.5723i 1.28461i 0.766449 + 0.642305i \(0.222022\pi\)
−0.766449 + 0.642305i \(0.777978\pi\)
\(684\) 31.0569i 1.18749i
\(685\) 0.385576 0.0147321
\(686\) 5.13526 0.196065
\(687\) 4.69614i 0.179169i
\(688\) 16.8219 0.641330
\(689\) −22.0084 + 3.00356i −0.838455 + 0.114427i
\(690\) −0.228109 −0.00868397
\(691\) 39.7800i 1.51330i −0.653818 0.756652i \(-0.726834\pi\)
0.653818 0.756652i \(-0.273166\pi\)
\(692\) −8.08927 −0.307508
\(693\) 44.3880 1.68616
\(694\) 7.64888i 0.290348i
\(695\) 2.69671i 0.102292i
\(696\) 3.23633i 0.122673i
\(697\) 8.72916i 0.330641i
\(698\) 12.8967 0.488148
\(699\) −4.25250 −0.160844
\(700\) 35.9948i 1.36048i
\(701\) −5.79116 −0.218729 −0.109365 0.994002i \(-0.534882\pi\)
−0.109365 + 0.994002i \(0.534882\pi\)
\(702\) −0.471388 3.45407i −0.0177914 0.130366i
\(703\) −71.4584 −2.69510
\(704\) 11.5952i 0.437011i
\(705\) 0.263023 0.00990602
\(706\) −1.08237 −0.0407354
\(707\) 17.9954i 0.676788i
\(708\) 4.89295i 0.183888i
\(709\) 11.9447i 0.448594i 0.974521 + 0.224297i \(0.0720086\pi\)
−0.974521 + 0.224297i \(0.927991\pi\)
\(710\) 0.597366i 0.0224188i
\(711\) −23.8174 −0.893222
\(712\) 5.69137 0.213293
\(713\) 8.58551i 0.321530i
\(714\) −1.22939 −0.0460086
\(715\) 2.18037 0.297561i 0.0815410 0.0111282i
\(716\) 6.84021 0.255631
\(717\) 7.56601i 0.282558i
\(718\) 1.22843 0.0458446
\(719\) −39.8697 −1.48689 −0.743445 0.668797i \(-0.766809\pi\)
−0.743445 + 0.668797i \(0.766809\pi\)
\(720\) 1.25381i 0.0467266i
\(721\) 23.7551i 0.884686i
\(722\) 8.53756i 0.317735i
\(723\) 2.49389i 0.0927486i
\(724\) 15.0955 0.561018
\(725\) −25.9434 −0.963513
\(726\) 0.536860i 0.0199248i
\(727\) −45.0588 −1.67114 −0.835569 0.549385i \(-0.814862\pi\)
−0.835569 + 0.549385i \(0.814862\pi\)
\(728\) 26.1638 3.57065i 0.969694 0.132337i
\(729\) −20.7607 −0.768913
\(730\) 0.381559i 0.0141221i
\(731\) 11.4452 0.423316
\(732\) −2.77203 −0.102457
\(733\) 28.3348i 1.04657i −0.852158 0.523285i \(-0.824706\pi\)
0.852158 0.523285i \(-0.175294\pi\)
\(734\) 7.43857i 0.274563i
\(735\) 0.538787i 0.0198735i
\(736\) 41.8235i 1.54164i
\(737\) 29.0751 1.07100
\(738\) 6.52636 0.240239
\(739\) 2.93397i 0.107928i 0.998543 + 0.0539639i \(0.0171856\pi\)
−0.998543 + 0.0539639i \(0.982814\pi\)
\(740\) 3.36953 0.123867
\(741\) −1.02436 7.50592i −0.0376307 0.275737i
\(742\) −11.9561 −0.438922
\(743\) 0.923703i 0.0338874i 0.999856 + 0.0169437i \(0.00539360\pi\)
−0.999856 + 0.0169437i \(0.994606\pi\)
\(744\) 0.620472 0.0227476
\(745\) −2.75568 −0.100960
\(746\) 13.5084i 0.494579i
\(747\) 35.0393i 1.28202i
\(748\) 12.2775i 0.448909i
\(749\) 68.3518i 2.49752i
\(750\) −0.264997 −0.00967633
\(751\) 28.7114 1.04769 0.523847 0.851812i \(-0.324496\pi\)
0.523847 + 0.851812i \(0.324496\pi\)
\(752\) 12.6841i 0.462542i
\(753\) 4.77130 0.173876
\(754\) −1.20963 8.86348i −0.0440520 0.322789i
\(755\) 2.37364 0.0863856
\(756\) 14.7096i 0.534985i
\(757\) −5.59884 −0.203493 −0.101747 0.994810i \(-0.532443\pi\)
−0.101747 + 0.994810i \(0.532443\pi\)
\(758\) −1.74478 −0.0633731
\(759\) 11.2085i 0.406843i
\(760\) 1.76321i 0.0639583i
\(761\) 15.3752i 0.557351i 0.960385 + 0.278676i \(0.0898955\pi\)
−0.960385 + 0.278676i \(0.910105\pi\)
\(762\) 1.75524i 0.0635856i
\(763\) 32.5845 1.17964
\(764\) 15.0170 0.543294
\(765\) 0.853059i 0.0308424i
\(766\) 13.2014 0.476985
\(767\) 3.89092 + 28.5105i 0.140493 + 1.02946i
\(768\) 0.280319 0.0101151
\(769\) 15.2197i 0.548838i 0.961610 + 0.274419i \(0.0884855\pi\)
−0.961610 + 0.274419i \(0.911515\pi\)
\(770\) 1.18448 0.0426859
\(771\) 3.60429 0.129805
\(772\) 2.39996i 0.0863764i
\(773\) 22.8328i 0.821239i 0.911807 + 0.410620i \(0.134688\pi\)
−0.911807 + 0.410620i \(0.865312\pi\)
\(774\) 8.55702i 0.307576i
\(775\) 4.97389i 0.178667i
\(776\) 0.657325 0.0235966
\(777\) 16.5788 0.594761
\(778\) 3.71406i 0.133155i
\(779\) 28.9526 1.03734
\(780\) 0.0483023 + 0.353933i 0.00172950 + 0.0126728i
\(781\) −29.3525 −1.05031
\(782\) 7.48440i 0.267642i
\(783\) 10.6020