Properties

Label 403.2.c.b
Level $403$
Weight $2$
Character orbit 403.c
Analytic conductor $3.218$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [403,2,Mod(311,403)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("403.311"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(403, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 4 q^{3} - 36 q^{4} + 20 q^{9} + 4 q^{10} - 16 q^{12} + 10 q^{13} - 16 q^{14} + 28 q^{16} - 8 q^{17} - 16 q^{22} - 8 q^{23} + 4 q^{25} + 18 q^{26} + 20 q^{27} - 16 q^{29} + 40 q^{30} - 4 q^{35} - 44 q^{36}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
311.1 2.71381i 0.265781 −5.36475 0.954130i 0.721280i 4.28452i 9.13130i −2.92936 2.58933
311.2 2.67507i −1.67043 −5.15599 2.86564i 4.46851i 5.21058i 8.44248i −0.209666 −7.66579
311.3 2.45635i 2.80039 −4.03363 3.48535i 6.87871i 3.54003i 4.99531i 4.84216 8.56123
311.4 2.44691i 2.35527 −3.98738 2.67528i 5.76313i 0.955539i 4.86294i 2.54728 −6.54617
311.5 2.21678i −2.59178 −2.91410 1.00571i 5.74540i 1.82096i 2.02635i 3.71732 2.22943
311.6 1.99449i −1.58843 −1.97798 2.66789i 3.16810i 1.73927i 0.0439183i −0.476895 −5.32107
311.7 1.88981i −0.327950 −1.57140 1.75790i 0.619765i 0.652358i 0.809976i −2.89245 3.32211
311.8 1.48947i 2.99747 −0.218531 0.692562i 4.46466i 1.15260i 2.65345i 5.98485 1.03155
311.9 1.44935i 0.0382575 −0.100611 3.85977i 0.0554484i 1.66255i 2.75288i −2.99854 5.59415
311.10 1.44015i −2.79139 −0.0740342 2.61757i 4.02002i 4.99660i 2.77368i 4.79185 3.76969
311.11 1.40506i 1.52886 0.0258025 1.01618i 2.14814i 2.90958i 2.84638i −0.662589 −1.42779
311.12 1.01245i −1.05136 0.974950 3.24438i 1.06445i 1.79572i 3.01198i −1.89463 −3.28477
311.13 0.937316i 1.68575 1.12144 0.290760i 1.58008i 3.85549i 2.92577i −0.158249 0.272534
311.14 0.624841i −2.78388 1.60957 0.619834i 1.73948i 2.35216i 2.25541i 4.74999 −0.387298
311.15 0.475674i 0.345654 1.77373 0.161594i 0.164419i 4.07996i 1.79507i −2.88052 −0.0768661
311.16 0.327248i −1.21221 1.89291 2.01769i 0.396693i 0.699230i 1.27395i −1.53055 −0.660284
311.17 0.327248i −1.21221 1.89291 2.01769i 0.396693i 0.699230i 1.27395i −1.53055 −0.660284
311.18 0.475674i 0.345654 1.77373 0.161594i 0.164419i 4.07996i 1.79507i −2.88052 −0.0768661
311.19 0.624841i −2.78388 1.60957 0.619834i 1.73948i 2.35216i 2.25541i 4.74999 −0.387298
311.20 0.937316i 1.68575 1.12144 0.290760i 1.58008i 3.85549i 2.92577i −0.158249 0.272534
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 311.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 403.2.c.b 32
13.b even 2 1 inner 403.2.c.b 32
13.d odd 4 1 5239.2.a.k 16
13.d odd 4 1 5239.2.a.l 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
403.2.c.b 32 1.a even 1 1 trivial
403.2.c.b 32 13.b even 2 1 inner
5239.2.a.k 16 13.d odd 4 1
5239.2.a.l 16 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} + 50 T_{2}^{30} + 1125 T_{2}^{28} + 15072 T_{2}^{26} + 134100 T_{2}^{24} + 836896 T_{2}^{22} + \cdots + 21609 \) acting on \(S_{2}^{\mathrm{new}}(403, [\chi])\). Copy content Toggle raw display