Properties

Label 403.2.c.a
Level $403$
Weight $2$
Character orbit 403.c
Analytic conductor $3.218$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [403,2,Mod(311,403)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("403.311"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(403, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{3} + 2 q^{4} + 4 i q^{5} - 2 i q^{7} + q^{9} + i q^{11} + 4 q^{12} + ( - 3 i - 2) q^{13} + 8 i q^{15} + 4 q^{16} - 2 q^{17} - 2 i q^{19} + 8 i q^{20} - 4 i q^{21} - 4 q^{23} - 11 q^{25} - 4 q^{27} + \cdots + i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 4 q^{4} + 2 q^{9} + 8 q^{12} - 4 q^{13} + 8 q^{16} - 4 q^{17} - 8 q^{23} - 22 q^{25} - 8 q^{27} + 16 q^{29} + 16 q^{35} + 4 q^{36} - 8 q^{39} + 8 q^{43} + 16 q^{48} + 6 q^{49} - 8 q^{51}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
311.1
1.00000i
1.00000i
0 2.00000 2.00000 4.00000i 0 2.00000i 0 1.00000 0
311.2 0 2.00000 2.00000 4.00000i 0 2.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 403.2.c.a 2
13.b even 2 1 inner 403.2.c.a 2
13.d odd 4 1 5239.2.a.b 1
13.d odd 4 1 5239.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
403.2.c.a 2 1.a even 1 1 trivial
403.2.c.a 2 13.b even 2 1 inner
5239.2.a.b 1 13.d odd 4 1
5239.2.a.c 1 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(403, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 16 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 1 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 13 \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 8)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 9 \) Copy content Toggle raw display
$41$ \( T^{2} + 16 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 4 \) Copy content Toggle raw display
$53$ \( (T + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 36 \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 256 \) Copy content Toggle raw display
$71$ \( T^{2} + 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 49 \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( T^{2} + 225 \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less