Properties

Label 403.1.p.a
Level $403$
Weight $1$
Character orbit 403.p
Analytic conductor $0.201$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [403,1,Mod(61,403)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("403.61"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(403, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 403.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.201123200091\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.162409.1
Artin image: $\SL(2,3):C_2$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{2} q^{2} + \zeta_{12}^{5} q^{3} + \zeta_{12} q^{6} - \zeta_{12}^{4} q^{7} - q^{8} - \zeta_{12}^{5} q^{11} - \zeta_{12}^{3} q^{13} - q^{14} + \zeta_{12}^{2} q^{16} - \zeta_{12} q^{17} + \cdots + \zeta_{12}^{4} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{7} - 4 q^{8} - 4 q^{14} + 2 q^{16} + 2 q^{19} - 4 q^{25} - 2 q^{33} - 4 q^{38} + 2 q^{39} + 2 q^{41} + 2 q^{50} + 4 q^{51} - 2 q^{56} + 2 q^{59} + 4 q^{64} + 4 q^{66} + 2 q^{67} - 2 q^{69}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(\zeta_{12}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
61.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.500000 + 0.866025i −0.866025 0.500000i 0 0 0.866025 0.500000i 0.500000 + 0.866025i −1.00000 0 0
61.2 −0.500000 + 0.866025i 0.866025 + 0.500000i 0 0 −0.866025 + 0.500000i 0.500000 + 0.866025i −1.00000 0 0
185.1 −0.500000 0.866025i −0.866025 + 0.500000i 0 0 0.866025 + 0.500000i 0.500000 0.866025i −1.00000 0 0
185.2 −0.500000 0.866025i 0.866025 0.500000i 0 0 −0.866025 0.500000i 0.500000 0.866025i −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner
31.b odd 2 1 inner
403.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 403.1.p.a 4
3.b odd 2 1 3627.1.cl.a 4
13.c even 3 1 inner 403.1.p.a 4
31.b odd 2 1 inner 403.1.p.a 4
39.i odd 6 1 3627.1.cl.a 4
93.c even 2 1 3627.1.cl.a 4
403.p odd 6 1 inner 403.1.p.a 4
1209.be even 6 1 3627.1.cl.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
403.1.p.a 4 1.a even 1 1 trivial
403.1.p.a 4 13.c even 3 1 inner
403.1.p.a 4 31.b odd 2 1 inner
403.1.p.a 4 403.p odd 6 1 inner
3627.1.cl.a 4 3.b odd 2 1
3627.1.cl.a 4 39.i odd 6 1
3627.1.cl.a 4 93.c even 2 1
3627.1.cl.a 4 1209.be even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(403, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$19$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$31$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$41$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$97$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
show more
show less