Properties

Label 4026.2.a.r
Level 4026
Weight 2
Character orbit 4026.a
Self dual Yes
Analytic conductor 32.148
Analytic rank 1
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4026 = 2 \cdot 3 \cdot 11 \cdot 61 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4026.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.1477718538\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.7537.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} -\beta_{2} q^{5} - q^{6} + ( -1 - \beta_{3} ) q^{7} - q^{8} + q^{9} +O(q^{10})\) \( q - q^{2} + q^{3} + q^{4} -\beta_{2} q^{5} - q^{6} + ( -1 - \beta_{3} ) q^{7} - q^{8} + q^{9} + \beta_{2} q^{10} - q^{11} + q^{12} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{13} + ( 1 + \beta_{3} ) q^{14} -\beta_{2} q^{15} + q^{16} + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{17} - q^{18} + ( -1 - \beta_{1} - \beta_{2} ) q^{19} -\beta_{2} q^{20} + ( -1 - \beta_{3} ) q^{21} + q^{22} + ( 3 - \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{23} - q^{24} + ( -2 - \beta_{2} + \beta_{3} ) q^{25} + ( 1 - 2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{26} + q^{27} + ( -1 - \beta_{3} ) q^{28} + ( -3 + 2 \beta_{1} + \beta_{3} ) q^{29} + \beta_{2} q^{30} + ( -1 - 3 \beta_{1} + 2 \beta_{2} ) q^{31} - q^{32} - q^{33} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{34} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{35} + q^{36} + ( -1 - 3 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{37} + ( 1 + \beta_{1} + \beta_{2} ) q^{38} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{39} + \beta_{2} q^{40} + ( 3 \beta_{1} + \beta_{3} ) q^{41} + ( 1 + \beta_{3} ) q^{42} + ( -4 - 3 \beta_{1} - \beta_{2} + \beta_{3} ) q^{43} - q^{44} -\beta_{2} q^{45} + ( -3 + \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{46} + ( 6 - 2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{47} + q^{48} + ( -3 + \beta_{1} - \beta_{2} + \beta_{3} ) q^{49} + ( 2 + \beta_{2} - \beta_{3} ) q^{50} + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{51} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{52} + ( -6 + \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{53} - q^{54} + \beta_{2} q^{55} + ( 1 + \beta_{3} ) q^{56} + ( -1 - \beta_{1} - \beta_{2} ) q^{57} + ( 3 - 2 \beta_{1} - \beta_{3} ) q^{58} + ( 3 - \beta_{1} + 6 \beta_{2} ) q^{59} -\beta_{2} q^{60} + q^{61} + ( 1 + 3 \beta_{1} - 2 \beta_{2} ) q^{62} + ( -1 - \beta_{3} ) q^{63} + q^{64} + ( -3 - 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{65} + q^{66} + ( -1 + \beta_{1} ) q^{67} + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{68} + ( 3 - \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{69} + ( -\beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{70} + ( -3 + 3 \beta_{1} + 2 \beta_{3} ) q^{71} - q^{72} + ( -1 + 4 \beta_{1} + 5 \beta_{3} ) q^{73} + ( 1 + 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{74} + ( -2 - \beta_{2} + \beta_{3} ) q^{75} + ( -1 - \beta_{1} - \beta_{2} ) q^{76} + ( 1 + \beta_{3} ) q^{77} + ( 1 - 2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{78} + ( -7 - 2 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{79} -\beta_{2} q^{80} + q^{81} + ( -3 \beta_{1} - \beta_{3} ) q^{82} + ( -3 + 4 \beta_{1} + \beta_{3} ) q^{83} + ( -1 - \beta_{3} ) q^{84} + ( -6 + 2 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} ) q^{85} + ( 4 + 3 \beta_{1} + \beta_{2} - \beta_{3} ) q^{86} + ( -3 + 2 \beta_{1} + \beta_{3} ) q^{87} + q^{88} + ( 4 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{89} + \beta_{2} q^{90} + ( -2 - 4 \beta_{1} - 3 \beta_{2} ) q^{91} + ( 3 - \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{92} + ( -1 - 3 \beta_{1} + 2 \beta_{2} ) q^{93} + ( -6 + 2 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{94} + ( 3 + \beta_{1} + 2 \beta_{3} ) q^{95} - q^{96} + ( -7 + 5 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{97} + ( 3 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{98} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} + 4q^{3} + 4q^{4} + q^{5} - 4q^{6} - 4q^{7} - 4q^{8} + 4q^{9} + O(q^{10}) \) \( 4q - 4q^{2} + 4q^{3} + 4q^{4} + q^{5} - 4q^{6} - 4q^{7} - 4q^{8} + 4q^{9} - q^{10} - 4q^{11} + 4q^{12} - 3q^{13} + 4q^{14} + q^{15} + 4q^{16} - 3q^{17} - 4q^{18} - 4q^{19} + q^{20} - 4q^{21} + 4q^{22} + 10q^{23} - 4q^{24} - 7q^{25} + 3q^{26} + 4q^{27} - 4q^{28} - 10q^{29} - q^{30} - 9q^{31} - 4q^{32} - 4q^{33} + 3q^{34} - q^{35} + 4q^{36} - 6q^{37} + 4q^{38} - 3q^{39} - q^{40} + 3q^{41} + 4q^{42} - 18q^{43} - 4q^{44} + q^{45} - 10q^{46} + 21q^{47} + 4q^{48} - 10q^{49} + 7q^{50} - 3q^{51} - 3q^{52} - 20q^{53} - 4q^{54} - q^{55} + 4q^{56} - 4q^{57} + 10q^{58} + 5q^{59} + q^{60} + 4q^{61} + 9q^{62} - 4q^{63} + 4q^{64} - 16q^{65} + 4q^{66} - 3q^{67} - 3q^{68} + 10q^{69} + q^{70} - 9q^{71} - 4q^{72} + 6q^{74} - 7q^{75} - 4q^{76} + 4q^{77} + 3q^{78} - 31q^{79} + q^{80} + 4q^{81} - 3q^{82} - 8q^{83} - 4q^{84} - 25q^{85} + 18q^{86} - 10q^{87} + 4q^{88} + 5q^{89} - q^{90} - 9q^{91} + 10q^{92} - 9q^{93} - 21q^{94} + 13q^{95} - 4q^{96} - 25q^{97} + 10q^{98} - 4q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 5 x^{2} + 4 x + 3\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 4 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 4 \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.15976
−2.04717
1.37933
−0.491918
−1.00000 1.00000 1.00000 −1.66454 −1.00000 −2.43525 −1.00000 1.00000 1.66454
1.2 −1.00000 1.00000 1.00000 −1.19091 −1.00000 −0.609175 −1.00000 1.00000 1.19091
1.3 −1.00000 1.00000 1.00000 1.09744 −1.00000 1.89307 −1.00000 1.00000 −1.09744
1.4 −1.00000 1.00000 1.00000 2.75802 −1.00000 −2.84864 −1.00000 1.00000 −2.75802
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(11\) \(1\)
\(61\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4026))\):

\( T_{5}^{4} - T_{5}^{3} - 6 T_{5}^{2} + T_{5} + 6 \)
\( T_{7}^{4} + 4 T_{7}^{3} - T_{7}^{2} - 15 T_{7} - 8 \)
\( T_{13}^{4} + 3 T_{13}^{3} - 32 T_{13}^{2} - 155 T_{13} - 178 \)