Properties

Label 4026.2.a.e
Level 4026
Weight 2
Character orbit 4026.a
Self dual yes
Analytic conductor 32.148
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4026 = 2 \cdot 3 \cdot 11 \cdot 61 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4026.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.1477718538\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + 4q^{5} - q^{6} + 4q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + 4q^{5} - q^{6} + 4q^{7} - q^{8} + q^{9} - 4q^{10} - q^{11} + q^{12} + 6q^{13} - 4q^{14} + 4q^{15} + q^{16} - 6q^{17} - q^{18} + 4q^{20} + 4q^{21} + q^{22} - 4q^{23} - q^{24} + 11q^{25} - 6q^{26} + q^{27} + 4q^{28} - 6q^{29} - 4q^{30} - 6q^{31} - q^{32} - q^{33} + 6q^{34} + 16q^{35} + q^{36} + 6q^{39} - 4q^{40} + 12q^{41} - 4q^{42} + 10q^{43} - q^{44} + 4q^{45} + 4q^{46} - 6q^{47} + q^{48} + 9q^{49} - 11q^{50} - 6q^{51} + 6q^{52} - 14q^{53} - q^{54} - 4q^{55} - 4q^{56} + 6q^{58} + 12q^{59} + 4q^{60} - q^{61} + 6q^{62} + 4q^{63} + q^{64} + 24q^{65} + q^{66} + 4q^{67} - 6q^{68} - 4q^{69} - 16q^{70} + 8q^{71} - q^{72} - 6q^{73} + 11q^{75} - 4q^{77} - 6q^{78} + 4q^{79} + 4q^{80} + q^{81} - 12q^{82} + 6q^{83} + 4q^{84} - 24q^{85} - 10q^{86} - 6q^{87} + q^{88} - 6q^{89} - 4q^{90} + 24q^{91} - 4q^{92} - 6q^{93} + 6q^{94} - q^{96} + 2q^{97} - 9q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 4.00000 −1.00000 4.00000 −1.00000 1.00000 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4026.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4026.2.a.e 1 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(11\) \(1\)
\(61\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4026))\):

\( T_{5} - 4 \)
\( T_{7} - 4 \)
\( T_{13} - 6 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 - T \)
$5$ \( 1 - 4 T + 5 T^{2} \)
$7$ \( 1 - 4 T + 7 T^{2} \)
$11$ \( 1 + T \)
$13$ \( 1 - 6 T + 13 T^{2} \)
$17$ \( 1 + 6 T + 17 T^{2} \)
$19$ \( 1 + 19 T^{2} \)
$23$ \( 1 + 4 T + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 + 6 T + 31 T^{2} \)
$37$ \( 1 + 37 T^{2} \)
$41$ \( 1 - 12 T + 41 T^{2} \)
$43$ \( 1 - 10 T + 43 T^{2} \)
$47$ \( 1 + 6 T + 47 T^{2} \)
$53$ \( 1 + 14 T + 53 T^{2} \)
$59$ \( 1 - 12 T + 59 T^{2} \)
$61$ \( 1 + T \)
$67$ \( 1 - 4 T + 67 T^{2} \)
$71$ \( 1 - 8 T + 71 T^{2} \)
$73$ \( 1 + 6 T + 73 T^{2} \)
$79$ \( 1 - 4 T + 79 T^{2} \)
$83$ \( 1 - 6 T + 83 T^{2} \)
$89$ \( 1 + 6 T + 89 T^{2} \)
$97$ \( 1 - 2 T + 97 T^{2} \)
show more
show less