Properties

Label 4025.2.a.d
Level 4025
Weight 2
Character orbit 4025.a
Self dual yes
Analytic conductor 32.140
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4025 = 5^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4025.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.1397868136\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 805)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - 2q^{4} - q^{7} - 2q^{9} + O(q^{10}) \) \( q + q^{3} - 2q^{4} - q^{7} - 2q^{9} - q^{11} - 2q^{12} + q^{13} + 4q^{16} + q^{17} + 2q^{19} - q^{21} + q^{23} - 5q^{27} + 2q^{28} + 7q^{29} + 4q^{31} - q^{33} + 4q^{36} + 8q^{37} + q^{39} - 6q^{41} - 8q^{43} + 2q^{44} - 7q^{47} + 4q^{48} + q^{49} + q^{51} - 2q^{52} + 4q^{53} + 2q^{57} - 4q^{59} - 10q^{61} + 2q^{63} - 8q^{64} - 14q^{67} - 2q^{68} + q^{69} + 2q^{73} - 4q^{76} + q^{77} - 15q^{79} + q^{81} - 8q^{83} + 2q^{84} + 7q^{87} + 6q^{89} - q^{91} - 2q^{92} + 4q^{93} - 7q^{97} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 −2.00000 0 0 −1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4025.2.a.d 1
5.b even 2 1 4025.2.a.c 1
5.c odd 4 2 805.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
805.2.c.a 2 5.c odd 4 2
4025.2.a.c 1 5.b even 2 1
4025.2.a.d 1 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(5\) \(-1\)
\(7\) \(1\)
\(23\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4025))\):

\( T_{2} \)
\( T_{3} - 1 \)
\( T_{11} + 1 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2 T^{2} \)
$3$ \( 1 - T + 3 T^{2} \)
$5$ \( \)
$7$ \( 1 + T \)
$11$ \( 1 + T + 11 T^{2} \)
$13$ \( 1 - T + 13 T^{2} \)
$17$ \( 1 - T + 17 T^{2} \)
$19$ \( 1 - 2 T + 19 T^{2} \)
$23$ \( 1 - T \)
$29$ \( 1 - 7 T + 29 T^{2} \)
$31$ \( 1 - 4 T + 31 T^{2} \)
$37$ \( 1 - 8 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 + 8 T + 43 T^{2} \)
$47$ \( 1 + 7 T + 47 T^{2} \)
$53$ \( 1 - 4 T + 53 T^{2} \)
$59$ \( 1 + 4 T + 59 T^{2} \)
$61$ \( 1 + 10 T + 61 T^{2} \)
$67$ \( 1 + 14 T + 67 T^{2} \)
$71$ \( 1 + 71 T^{2} \)
$73$ \( 1 - 2 T + 73 T^{2} \)
$79$ \( 1 + 15 T + 79 T^{2} \)
$83$ \( 1 + 8 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 + 7 T + 97 T^{2} \)
show more
show less