Properties

Label 4025.2.a.c.1.1
Level 4025
Weight 2
Character 4025.1
Self dual yes
Analytic conductor 32.140
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4025 = 5^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4025.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.1397868136\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 805)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 4025.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{4} +1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -2.00000 q^{4} +1.00000 q^{7} -2.00000 q^{9} -1.00000 q^{11} +2.00000 q^{12} -1.00000 q^{13} +4.00000 q^{16} -1.00000 q^{17} +2.00000 q^{19} -1.00000 q^{21} -1.00000 q^{23} +5.00000 q^{27} -2.00000 q^{28} +7.00000 q^{29} +4.00000 q^{31} +1.00000 q^{33} +4.00000 q^{36} -8.00000 q^{37} +1.00000 q^{39} -6.00000 q^{41} +8.00000 q^{43} +2.00000 q^{44} +7.00000 q^{47} -4.00000 q^{48} +1.00000 q^{49} +1.00000 q^{51} +2.00000 q^{52} -4.00000 q^{53} -2.00000 q^{57} -4.00000 q^{59} -10.0000 q^{61} -2.00000 q^{63} -8.00000 q^{64} +14.0000 q^{67} +2.00000 q^{68} +1.00000 q^{69} -2.00000 q^{73} -4.00000 q^{76} -1.00000 q^{77} -15.0000 q^{79} +1.00000 q^{81} +8.00000 q^{83} +2.00000 q^{84} -7.00000 q^{87} +6.00000 q^{89} -1.00000 q^{91} +2.00000 q^{92} -4.00000 q^{93} +7.00000 q^{97} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 2.00000 0.577350
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) −2.00000 −0.377964
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 4.00000 0.666667
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) −4.00000 −0.577350
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 2.00000 0.277350
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 14.0000 1.71037 0.855186 0.518321i \(-0.173443\pi\)
0.855186 + 0.518321i \(0.173443\pi\)
\(68\) 2.00000 0.242536
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −15.0000 −1.68763 −0.843816 0.536633i \(-0.819696\pi\)
−0.843816 + 0.536633i \(0.819696\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) −7.00000 −0.750479
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 2.00000 0.208514
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −7.00000 −0.689730 −0.344865 0.938652i \(-0.612075\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −10.0000 −0.962250
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 4.00000 0.377964
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −14.0000 −1.29987
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) −8.00000 −0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −2.00000 −0.174078
\(133\) 2.00000 0.173422
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −7.00000 −0.589506
\(142\) 0 0
\(143\) 1.00000 0.0836242
\(144\) −8.00000 −0.666667
\(145\) 0 0
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 16.0000 1.31519
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) −1.00000 −0.0813788 −0.0406894 0.999172i \(-0.512955\pi\)
−0.0406894 + 0.999172i \(0.512955\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 4.00000 0.317221
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) −16.0000 −1.21999
\(173\) −7.00000 −0.532200 −0.266100 0.963945i \(-0.585735\pi\)
−0.266100 + 0.963945i \(0.585735\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.00000 0.0731272
\(188\) −14.0000 −1.02105
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −25.0000 −1.80894 −0.904468 0.426541i \(-0.859732\pi\)
−0.904468 + 0.426541i \(0.859732\pi\)
\(192\) 8.00000 0.577350
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.00000 −0.142857
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 12.0000 0.850657 0.425329 0.905039i \(-0.360158\pi\)
0.425329 + 0.905039i \(0.360158\pi\)
\(200\) 0 0
\(201\) −14.0000 −0.987484
\(202\) 0 0
\(203\) 7.00000 0.491304
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) −4.00000 −0.277350
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 8.00000 0.549442
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 1.00000 0.0672673
\(222\) 0 0
\(223\) −25.0000 −1.67412 −0.837062 0.547108i \(-0.815729\pi\)
−0.837062 + 0.547108i \(0.815729\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.0000 −0.995585 −0.497792 0.867296i \(-0.665856\pi\)
−0.497792 + 0.867296i \(0.665856\pi\)
\(228\) 4.00000 0.264906
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 1.00000 0.0657952
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 15.0000 0.974355
\(238\) 0 0
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 20.0000 1.28037
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 4.00000 0.251976
\(253\) 1.00000 0.0628695
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) −14.0000 −0.866578
\(262\) 0 0
\(263\) −2.00000 −0.123325 −0.0616626 0.998097i \(-0.519640\pi\)
−0.0616626 + 0.998097i \(0.519640\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) −28.0000 −1.71037
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) −4.00000 −0.242536
\(273\) 1.00000 0.0605228
\(274\) 0 0
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) −24.0000 −1.44202 −0.721010 0.692925i \(-0.756322\pi\)
−0.721010 + 0.692925i \(0.756322\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 0 0
\(283\) −17.0000 −1.01055 −0.505273 0.862960i \(-0.668608\pi\)
−0.505273 + 0.862960i \(0.668608\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) −7.00000 −0.410347
\(292\) 4.00000 0.234082
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) 1.00000 0.0578315
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 4.00000 0.229794
\(304\) 8.00000 0.458831
\(305\) 0 0
\(306\) 0 0
\(307\) 9.00000 0.513657 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(308\) 2.00000 0.113961
\(309\) 7.00000 0.398216
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 30.0000 1.68763
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −7.00000 −0.391925
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) −2.00000 −0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 5.00000 0.276501
\(328\) 0 0
\(329\) 7.00000 0.385922
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −16.0000 −0.878114
\(333\) 16.0000 0.876795
\(334\) 0 0
\(335\) 0 0
\(336\) −4.00000 −0.218218
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 14.0000 0.750479
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 1.00000 0.0529256
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) −23.0000 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(368\) −4.00000 −0.208514
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) 8.00000 0.414781
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.00000 −0.360518
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −16.0000 −0.813326
\(388\) −14.0000 −0.710742
\(389\) −29.0000 −1.47036 −0.735179 0.677873i \(-0.762902\pi\)
−0.735179 + 0.677873i \(0.762902\pi\)
\(390\) 0 0
\(391\) 1.00000 0.0505722
\(392\) 0 0
\(393\) 20.0000 1.00887
\(394\) 0 0
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) 33.0000 1.65622 0.828111 0.560564i \(-0.189416\pi\)
0.828111 + 0.560564i \(0.189416\pi\)
\(398\) 0 0
\(399\) −2.00000 −0.100125
\(400\) 0 0
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) 8.00000 0.398015
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) 14.0000 0.689730
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −5.00000 −0.243685 −0.121843 0.992549i \(-0.538880\pi\)
−0.121843 + 0.992549i \(0.538880\pi\)
\(422\) 0 0
\(423\) −14.0000 −0.680703
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) 0 0
\(429\) −1.00000 −0.0482805
\(430\) 0 0
\(431\) 11.0000 0.529851 0.264926 0.964269i \(-0.414653\pi\)
0.264926 + 0.964269i \(0.414653\pi\)
\(432\) 20.0000 0.962250
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) −34.0000 −1.62273 −0.811366 0.584539i \(-0.801275\pi\)
−0.811366 + 0.584539i \(0.801275\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) −40.0000 −1.90046 −0.950229 0.311553i \(-0.899151\pi\)
−0.950229 + 0.311553i \(0.899151\pi\)
\(444\) −16.0000 −0.759326
\(445\) 0 0
\(446\) 0 0
\(447\) −14.0000 −0.662177
\(448\) −8.00000 −0.377964
\(449\) 15.0000 0.707894 0.353947 0.935266i \(-0.384839\pi\)
0.353947 + 0.935266i \(0.384839\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) −36.0000 −1.69330
\(453\) 1.00000 0.0469841
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) −5.00000 −0.233380
\(460\) 0 0
\(461\) 28.0000 1.30409 0.652045 0.758180i \(-0.273911\pi\)
0.652045 + 0.758180i \(0.273911\pi\)
\(462\) 0 0
\(463\) 30.0000 1.39422 0.697109 0.716965i \(-0.254469\pi\)
0.697109 + 0.716965i \(0.254469\pi\)
\(464\) 28.0000 1.29987
\(465\) 0 0
\(466\) 0 0
\(467\) 27.0000 1.24941 0.624705 0.780860i \(-0.285219\pi\)
0.624705 + 0.780860i \(0.285219\pi\)
\(468\) −4.00000 −0.184900
\(469\) 14.0000 0.646460
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 8.00000 0.366295
\(478\) 0 0
\(479\) −10.0000 −0.456912 −0.228456 0.973554i \(-0.573368\pi\)
−0.228456 + 0.973554i \(0.573368\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) 1.00000 0.0455016
\(484\) 20.0000 0.909091
\(485\) 0 0
\(486\) 0 0
\(487\) 14.0000 0.634401 0.317200 0.948359i \(-0.397257\pi\)
0.317200 + 0.948359i \(0.397257\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) −12.0000 −0.541002
\(493\) −7.00000 −0.315264
\(494\) 0 0
\(495\) 0 0
\(496\) 16.0000 0.718421
\(497\) 0 0
\(498\) 0 0
\(499\) 25.0000 1.11915 0.559577 0.828778i \(-0.310964\pi\)
0.559577 + 0.828778i \(0.310964\pi\)
\(500\) 0 0
\(501\) −3.00000 −0.134030
\(502\) 0 0
\(503\) −5.00000 −0.222939 −0.111469 0.993768i \(-0.535556\pi\)
−0.111469 + 0.993768i \(0.535556\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 4.00000 0.177471
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 0 0
\(513\) 10.0000 0.441511
\(514\) 0 0
\(515\) 0 0
\(516\) 16.0000 0.704361
\(517\) −7.00000 −0.307860
\(518\) 0 0
\(519\) 7.00000 0.307266
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 24.0000 1.04945 0.524723 0.851273i \(-0.324169\pi\)
0.524723 + 0.851273i \(0.324169\pi\)
\(524\) 40.0000 1.74741
\(525\) 0 0
\(526\) 0 0
\(527\) −4.00000 −0.174243
\(528\) 4.00000 0.174078
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) −4.00000 −0.173422
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.00000 0.172613
\(538\) 0 0
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 43.0000 1.84871 0.924357 0.381528i \(-0.124602\pi\)
0.924357 + 0.381528i \(0.124602\pi\)
\(542\) 0 0
\(543\) 16.0000 0.686626
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.0000 1.62476 0.812381 0.583127i \(-0.198171\pi\)
0.812381 + 0.583127i \(0.198171\pi\)
\(548\) 20.0000 0.854358
\(549\) 20.0000 0.853579
\(550\) 0 0
\(551\) 14.0000 0.596420
\(552\) 0 0
\(553\) −15.0000 −0.637865
\(554\) 0 0
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −1.00000 −0.0422200
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 14.0000 0.589506
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −36.0000 −1.50655 −0.753277 0.657704i \(-0.771528\pi\)
−0.753277 + 0.657704i \(0.771528\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 25.0000 1.04439
\(574\) 0 0
\(575\) 0 0
\(576\) 16.0000 0.666667
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) 0 0
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 2.00000 0.0824786
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) −32.0000 −1.31519
\(593\) −37.0000 −1.51941 −0.759704 0.650269i \(-0.774656\pi\)
−0.759704 + 0.650269i \(0.774656\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −28.0000 −1.14692
\(597\) −12.0000 −0.491127
\(598\) 0 0
\(599\) 25.0000 1.02147 0.510736 0.859738i \(-0.329373\pi\)
0.510736 + 0.859738i \(0.329373\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) −28.0000 −1.14025
\(604\) 2.00000 0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) 25.0000 1.01472 0.507359 0.861735i \(-0.330622\pi\)
0.507359 + 0.861735i \(0.330622\pi\)
\(608\) 0 0
\(609\) −7.00000 −0.283654
\(610\) 0 0
\(611\) −7.00000 −0.283190
\(612\) −4.00000 −0.161690
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.0000 −1.12724 −0.563619 0.826035i \(-0.690591\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(618\) 0 0
\(619\) 22.0000 0.884255 0.442127 0.896952i \(-0.354224\pi\)
0.442127 + 0.896952i \(0.354224\pi\)
\(620\) 0 0
\(621\) −5.00000 −0.200643
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 4.00000 0.160128
\(625\) 0 0
\(626\) 0 0
\(627\) 2.00000 0.0798723
\(628\) 36.0000 1.43656
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) 5.00000 0.198732
\(634\) 0 0
\(635\) 0 0
\(636\) −8.00000 −0.317221
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 49.0000 1.93237 0.966186 0.257847i \(-0.0830131\pi\)
0.966186 + 0.257847i \(0.0830131\pi\)
\(644\) 2.00000 0.0788110
\(645\) 0 0
\(646\) 0 0
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) −8.00000 −0.313304
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −24.0000 −0.937043
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) −41.0000 −1.59713 −0.798567 0.601906i \(-0.794408\pi\)
−0.798567 + 0.601906i \(0.794408\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) 0 0
\(663\) −1.00000 −0.0388368
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.00000 −0.271041
\(668\) −6.00000 −0.232147
\(669\) 25.0000 0.966556
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) 21.0000 0.807096 0.403548 0.914959i \(-0.367777\pi\)
0.403548 + 0.914959i \(0.367777\pi\)
\(678\) 0 0
\(679\) 7.00000 0.268635
\(680\) 0 0
\(681\) 15.0000 0.574801
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 8.00000 0.305888
\(685\) 0 0
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) 32.0000 1.21999
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 18.0000 0.684752 0.342376 0.939563i \(-0.388768\pi\)
0.342376 + 0.939563i \(0.388768\pi\)
\(692\) 14.0000 0.532200
\(693\) 2.00000 0.0759737
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 0 0
\(699\) 10.0000 0.378235
\(700\) 0 0
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) 0 0
\(703\) −16.0000 −0.603451
\(704\) 8.00000 0.301511
\(705\) 0 0
\(706\) 0 0
\(707\) −4.00000 −0.150435
\(708\) −8.00000 −0.300658
\(709\) −19.0000 −0.713560 −0.356780 0.934188i \(-0.616125\pi\)
−0.356780 + 0.934188i \(0.616125\pi\)
\(710\) 0 0
\(711\) 30.0000 1.12509
\(712\) 0 0
\(713\) −4.00000 −0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 8.00000 0.298974
\(717\) 9.00000 0.336111
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) −7.00000 −0.260694
\(722\) 0 0
\(723\) −10.0000 −0.371904
\(724\) 32.0000 1.18927
\(725\) 0 0
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) −20.0000 −0.739221
\(733\) −3.00000 −0.110808 −0.0554038 0.998464i \(-0.517645\pi\)
−0.0554038 + 0.998464i \(0.517645\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.0000 −0.515697
\(738\) 0 0
\(739\) −43.0000 −1.58178 −0.790890 0.611958i \(-0.790382\pi\)
−0.790890 + 0.611958i \(0.790382\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −16.0000 −0.585409
\(748\) −2.00000 −0.0731272
\(749\) 0 0
\(750\) 0 0
\(751\) −7.00000 −0.255434 −0.127717 0.991811i \(-0.540765\pi\)
−0.127717 + 0.991811i \(0.540765\pi\)
\(752\) 28.0000 1.02105
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) −10.0000 −0.363696
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) 0 0
\(759\) −1.00000 −0.0362977
\(760\) 0 0
\(761\) −28.0000 −1.01500 −0.507500 0.861652i \(-0.669430\pi\)
−0.507500 + 0.861652i \(0.669430\pi\)
\(762\) 0 0
\(763\) −5.00000 −0.181012
\(764\) 50.0000 1.80894
\(765\) 0 0
\(766\) 0 0
\(767\) 4.00000 0.144432
\(768\) −16.0000 −0.577350
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) −28.0000 −1.00774
\(773\) 49.0000 1.76241 0.881204 0.472737i \(-0.156734\pi\)
0.881204 + 0.472737i \(0.156734\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.00000 0.286998
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 35.0000 1.25080
\(784\) 4.00000 0.142857
\(785\) 0 0
\(786\) 0 0
\(787\) −35.0000 −1.24762 −0.623808 0.781578i \(-0.714415\pi\)
−0.623808 + 0.781578i \(0.714415\pi\)
\(788\) 36.0000 1.28245
\(789\) 2.00000 0.0712019
\(790\) 0 0
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 0 0
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) −17.0000 −0.602171 −0.301085 0.953597i \(-0.597349\pi\)
−0.301085 + 0.953597i \(0.597349\pi\)
\(798\) 0 0
\(799\) −7.00000 −0.247642
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) 2.00000 0.0705785
\(804\) 28.0000 0.987484
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) −14.0000 −0.491304
\(813\) −10.0000 −0.350715
\(814\) 0 0
\(815\) 0 0
\(816\) 4.00000 0.140028
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) −47.0000 −1.64031 −0.820156 0.572140i \(-0.806113\pi\)
−0.820156 + 0.572140i \(0.806113\pi\)
\(822\) 0 0
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0000 1.11275 0.556375 0.830932i \(-0.312192\pi\)
0.556375 + 0.830932i \(0.312192\pi\)
\(828\) −4.00000 −0.139010
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 24.0000 0.832551
\(832\) 8.00000 0.277350
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 0 0
\(836\) 4.00000 0.138343
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 0 0
\(843\) −9.00000 −0.309976
\(844\) 10.0000 0.344214
\(845\) 0 0
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) −16.0000 −0.549442
\(849\) 17.0000 0.583438
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16.0000 0.543388
\(868\) −8.00000 −0.271538
\(869\) 15.0000 0.508840
\(870\) 0 0
\(871\) −14.0000 −0.474372
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) −4.00000 −0.135147
\(877\) −46.0000 −1.55331 −0.776655 0.629926i \(-0.783085\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(878\) 0 0
\(879\) −27.0000 −0.910687
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 0 0
\(887\) −40.0000 −1.34307 −0.671534 0.740973i \(-0.734364\pi\)
−0.671534 + 0.740973i \(0.734364\pi\)
\(888\) 0 0
\(889\) −2.00000 −0.0670778
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 50.0000 1.67412
\(893\) 14.0000 0.468492
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.00000 −0.0333890
\(898\) 0 0
\(899\) 28.0000 0.933852
\(900\) 0 0
\(901\) 4.00000 0.133259
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −40.0000 −1.32818 −0.664089 0.747653i \(-0.731180\pi\)
−0.664089 + 0.747653i \(0.731180\pi\)
\(908\) 30.0000 0.995585
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) 44.0000 1.45779 0.728893 0.684628i \(-0.240035\pi\)
0.728893 + 0.684628i \(0.240035\pi\)
\(912\) −8.00000 −0.264906
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 0 0
\(916\) 28.0000 0.925146
\(917\) −20.0000 −0.660458
\(918\) 0 0
\(919\) −27.0000 −0.890648 −0.445324 0.895370i \(-0.646911\pi\)
−0.445324 + 0.895370i \(0.646911\pi\)
\(920\) 0 0
\(921\) −9.00000 −0.296560
\(922\) 0 0
\(923\) 0 0
\(924\) −2.00000 −0.0657952
\(925\) 0 0
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) −4.00000 −0.131236 −0.0656179 0.997845i \(-0.520902\pi\)
−0.0656179 + 0.997845i \(0.520902\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) 20.0000 0.655122
\(933\) 18.0000 0.589294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −29.0000 −0.947389 −0.473694 0.880689i \(-0.657080\pi\)
−0.473694 + 0.880689i \(0.657080\pi\)
\(938\) 0 0
\(939\) −9.00000 −0.293704
\(940\) 0 0
\(941\) 60.0000 1.95594 0.977972 0.208736i \(-0.0669349\pi\)
0.977972 + 0.208736i \(0.0669349\pi\)
\(942\) 0 0
\(943\) 6.00000 0.195387
\(944\) −16.0000 −0.520756
\(945\) 0 0
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) −30.0000 −0.974355
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) −6.00000 −0.194563
\(952\) 0 0
\(953\) −40.0000 −1.29573 −0.647864 0.761756i \(-0.724337\pi\)
−0.647864 + 0.761756i \(0.724337\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18.0000 0.582162
\(957\) 7.00000 0.226278
\(958\) 0 0
\(959\) −10.0000 −0.322917
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) −20.0000 −0.644157
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) 0 0
\(969\) 2.00000 0.0642493
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 32.0000 1.02640
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) −40.0000 −1.28037
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −21.0000 −0.669796 −0.334898 0.942254i \(-0.608702\pi\)
−0.334898 + 0.942254i \(0.608702\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −7.00000 −0.222812
\(988\) 4.00000 0.127257
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) 0 0
\(996\) 16.0000 0.506979
\(997\) 17.0000 0.538395 0.269198 0.963085i \(-0.413241\pi\)
0.269198 + 0.963085i \(0.413241\pi\)
\(998\) 0 0
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4025.2.a.c.1.1 1
5.2 odd 4 805.2.c.a.484.2 yes 2
5.3 odd 4 805.2.c.a.484.1 2
5.4 even 2 4025.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
805.2.c.a.484.1 2 5.3 odd 4
805.2.c.a.484.2 yes 2 5.2 odd 4
4025.2.a.c.1.1 1 1.1 even 1 trivial
4025.2.a.d.1.1 1 5.4 even 2