Properties

Label 4024.2
Level 4024
Weight 2
Dimension 283630
Nonzero newspaces 6
Sturm bound 2024064

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 4024 = 2^{3} \cdot 503 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(2024064\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4024))\).

Total New Old
Modular forms 509028 285634 223394
Cusp forms 503005 283630 219375
Eisenstein series 6023 2004 4019

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4024))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4024.2.a \(\chi_{4024}(1, \cdot)\) 4024.2.a.a 1 1
4024.2.a.b 1
4024.2.a.c 1
4024.2.a.d 28
4024.2.a.e 29
4024.2.a.f 33
4024.2.a.g 33
4024.2.b \(\chi_{4024}(4023, \cdot)\) None 0 1
4024.2.c \(\chi_{4024}(2013, \cdot)\) n/a 502 1
4024.2.h \(\chi_{4024}(2011, \cdot)\) n/a 502 1
4024.2.i \(\chi_{4024}(9, \cdot)\) n/a 31500 250
4024.2.j \(\chi_{4024}(19, \cdot)\) n/a 125500 250
4024.2.o \(\chi_{4024}(13, \cdot)\) n/a 125500 250
4024.2.p \(\chi_{4024}(15, \cdot)\) None 0 250

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4024))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4024)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(503))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1006))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2012))\)\(^{\oplus 2}\)