Properties

Label 4018.2.a.t
Level 4018
Weight 2
Character orbit 4018.a
Self dual Yes
Analytic conductor 32.084
Analytic rank 1
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4018 = 2 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4018.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0838915322\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(- q^{2}\) \(- q^{3}\) \(+ q^{4}\) \( + \beta q^{5} \) \(+ q^{6}\) \(- q^{8}\) \( -2 q^{9} \) \(+O(q^{10})\) \( q\) \(- q^{2}\) \(- q^{3}\) \(+ q^{4}\) \( + \beta q^{5} \) \(+ q^{6}\) \(- q^{8}\) \( -2 q^{9} \) \( -\beta q^{10} \) \( + 2 \beta q^{11} \) \(- q^{12}\) \( + ( -2 - 2 \beta ) q^{13} \) \( -\beta q^{15} \) \(+ q^{16}\) \( -3 q^{17} \) \( + 2 q^{18} \) \( + 4 q^{19} \) \( + \beta q^{20} \) \( -2 \beta q^{22} \) \( + ( 4 - 2 \beta ) q^{23} \) \(+ q^{24}\) \( + ( 2 + 2 \beta ) q^{26} \) \( + 5 q^{27} \) \( + ( 4 + \beta ) q^{29} \) \( + \beta q^{30} \) \( + ( -4 + \beta ) q^{31} \) \(- q^{32}\) \( -2 \beta q^{33} \) \( + 3 q^{34} \) \( -2 q^{36} \) \( + ( -4 - 2 \beta ) q^{37} \) \( -4 q^{38} \) \( + ( 2 + 2 \beta ) q^{39} \) \( -\beta q^{40} \) \(+ q^{41}\) \( + 9 q^{43} \) \( + 2 \beta q^{44} \) \( -2 \beta q^{45} \) \( + ( -4 + 2 \beta ) q^{46} \) \( + ( 4 - 4 \beta ) q^{47} \) \(- q^{48}\) \( + 3 q^{51} \) \( + ( -2 - 2 \beta ) q^{52} \) \( -3 \beta q^{53} \) \( -5 q^{54} \) \( + 10 q^{55} \) \( -4 q^{57} \) \( + ( -4 - \beta ) q^{58} \) \( + ( -8 + 2 \beta ) q^{59} \) \( -\beta q^{60} \) \( + ( -8 + 3 \beta ) q^{61} \) \( + ( 4 - \beta ) q^{62} \) \(+ q^{64}\) \( + ( -10 - 2 \beta ) q^{65} \) \( + 2 \beta q^{66} \) \( + ( 2 - 6 \beta ) q^{67} \) \( -3 q^{68} \) \( + ( -4 + 2 \beta ) q^{69} \) \( + \beta q^{71} \) \( + 2 q^{72} \) \( -6 q^{73} \) \( + ( 4 + 2 \beta ) q^{74} \) \( + 4 q^{76} \) \( + ( -2 - 2 \beta ) q^{78} \) \( + ( 4 - 3 \beta ) q^{79} \) \( + \beta q^{80} \) \(+ q^{81}\) \(- q^{82}\) \( + ( -6 + 4 \beta ) q^{83} \) \( -3 \beta q^{85} \) \( -9 q^{86} \) \( + ( -4 - \beta ) q^{87} \) \( -2 \beta q^{88} \) \( + 3 q^{89} \) \( + 2 \beta q^{90} \) \( + ( 4 - 2 \beta ) q^{92} \) \( + ( 4 - \beta ) q^{93} \) \( + ( -4 + 4 \beta ) q^{94} \) \( + 4 \beta q^{95} \) \(+ q^{96}\) \(- q^{97}\) \( -4 \beta q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 2q^{6} \) \(\mathstrut -\mathstrut 2q^{8} \) \(\mathstrut -\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 2q^{6} \) \(\mathstrut -\mathstrut 2q^{8} \) \(\mathstrut -\mathstrut 4q^{9} \) \(\mathstrut -\mathstrut 2q^{12} \) \(\mathstrut -\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut +\mathstrut 4q^{18} \) \(\mathstrut +\mathstrut 8q^{19} \) \(\mathstrut +\mathstrut 8q^{23} \) \(\mathstrut +\mathstrut 2q^{24} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut +\mathstrut 10q^{27} \) \(\mathstrut +\mathstrut 8q^{29} \) \(\mathstrut -\mathstrut 8q^{31} \) \(\mathstrut -\mathstrut 2q^{32} \) \(\mathstrut +\mathstrut 6q^{34} \) \(\mathstrut -\mathstrut 4q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut -\mathstrut 8q^{38} \) \(\mathstrut +\mathstrut 4q^{39} \) \(\mathstrut +\mathstrut 2q^{41} \) \(\mathstrut +\mathstrut 18q^{43} \) \(\mathstrut -\mathstrut 8q^{46} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut -\mathstrut 2q^{48} \) \(\mathstrut +\mathstrut 6q^{51} \) \(\mathstrut -\mathstrut 4q^{52} \) \(\mathstrut -\mathstrut 10q^{54} \) \(\mathstrut +\mathstrut 20q^{55} \) \(\mathstrut -\mathstrut 8q^{57} \) \(\mathstrut -\mathstrut 8q^{58} \) \(\mathstrut -\mathstrut 16q^{59} \) \(\mathstrut -\mathstrut 16q^{61} \) \(\mathstrut +\mathstrut 8q^{62} \) \(\mathstrut +\mathstrut 2q^{64} \) \(\mathstrut -\mathstrut 20q^{65} \) \(\mathstrut +\mathstrut 4q^{67} \) \(\mathstrut -\mathstrut 6q^{68} \) \(\mathstrut -\mathstrut 8q^{69} \) \(\mathstrut +\mathstrut 4q^{72} \) \(\mathstrut -\mathstrut 12q^{73} \) \(\mathstrut +\mathstrut 8q^{74} \) \(\mathstrut +\mathstrut 8q^{76} \) \(\mathstrut -\mathstrut 4q^{78} \) \(\mathstrut +\mathstrut 8q^{79} \) \(\mathstrut +\mathstrut 2q^{81} \) \(\mathstrut -\mathstrut 2q^{82} \) \(\mathstrut -\mathstrut 12q^{83} \) \(\mathstrut -\mathstrut 18q^{86} \) \(\mathstrut -\mathstrut 8q^{87} \) \(\mathstrut +\mathstrut 6q^{89} \) \(\mathstrut +\mathstrut 8q^{92} \) \(\mathstrut +\mathstrut 8q^{93} \) \(\mathstrut -\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 2q^{96} \) \(\mathstrut -\mathstrut 2q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−1.00000 −1.00000 1.00000 −2.23607 1.00000 0 −1.00000 −2.00000 2.23607
1.2 −1.00000 −1.00000 1.00000 2.23607 1.00000 0 −1.00000 −2.00000 −2.23607
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4018))\):

\(T_{3} \) \(\mathstrut +\mathstrut 1 \)
\(T_{5}^{2} \) \(\mathstrut -\mathstrut 5 \)
\(T_{11}^{2} \) \(\mathstrut -\mathstrut 20 \)