Properties

Label 4018.2.a.q
Level 4018
Weight 2
Character orbit 4018.a
Self dual Yes
Analytic conductor 32.084
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4018 = 2 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4018.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0838915322\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + 3q^{5} + q^{6} + q^{8} - 2q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + 3q^{5} + q^{6} + q^{8} - 2q^{9} + 3q^{10} + 4q^{11} + q^{12} - 2q^{13} + 3q^{15} + q^{16} + 7q^{17} - 2q^{18} - 4q^{19} + 3q^{20} + 4q^{22} - 4q^{23} + q^{24} + 4q^{25} - 2q^{26} - 5q^{27} + 9q^{29} + 3q^{30} - q^{31} + q^{32} + 4q^{33} + 7q^{34} - 2q^{36} + 8q^{37} - 4q^{38} - 2q^{39} + 3q^{40} + q^{41} - 3q^{43} + 4q^{44} - 6q^{45} - 4q^{46} + 8q^{47} + q^{48} + 4q^{50} + 7q^{51} - 2q^{52} - 11q^{53} - 5q^{54} + 12q^{55} - 4q^{57} + 9q^{58} + 6q^{59} + 3q^{60} + 9q^{61} - q^{62} + q^{64} - 6q^{65} + 4q^{66} - 2q^{67} + 7q^{68} - 4q^{69} - 7q^{71} - 2q^{72} + 4q^{73} + 8q^{74} + 4q^{75} - 4q^{76} - 2q^{78} - 15q^{79} + 3q^{80} + q^{81} + q^{82} - 4q^{83} + 21q^{85} - 3q^{86} + 9q^{87} + 4q^{88} + q^{89} - 6q^{90} - 4q^{92} - q^{93} + 8q^{94} - 12q^{95} + q^{96} + 5q^{97} - 8q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 3.00000 1.00000 0 1.00000 −2.00000 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4018))\):

\( T_{3} - 1 \)
\( T_{5} - 3 \)
\( T_{11} - 4 \)