Properties

Label 4018.2.a.bi
Level 4018
Weight 2
Character orbit 4018.a
Self dual yes
Analytic conductor 32.084
Analytic rank 1
Dimension 4
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4018 = 2 \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4018.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.0838915322\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.113481.1
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 574)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + ( -1 + \beta_{3} ) q^{5} + q^{6} - q^{8} -2 q^{9} +O(q^{10})\) \( q - q^{2} - q^{3} + q^{4} + ( -1 + \beta_{3} ) q^{5} + q^{6} - q^{8} -2 q^{9} + ( 1 - \beta_{3} ) q^{10} + ( \beta_{1} + \beta_{2} ) q^{11} - q^{12} + ( 1 + \beta_{2} - \beta_{3} ) q^{13} + ( 1 - \beta_{3} ) q^{15} + q^{16} + ( 2 - 2 \beta_{1} - \beta_{3} ) q^{17} + 2 q^{18} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{19} + ( -1 + \beta_{3} ) q^{20} + ( -\beta_{1} - \beta_{2} ) q^{22} + ( -2 - \beta_{1} + \beta_{3} ) q^{23} + q^{24} + ( 4 - \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{25} + ( -1 - \beta_{2} + \beta_{3} ) q^{26} + 5 q^{27} + ( -5 - \beta_{2} ) q^{29} + ( -1 + \beta_{3} ) q^{30} + ( 3 + 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{31} - q^{32} + ( -\beta_{1} - \beta_{2} ) q^{33} + ( -2 + 2 \beta_{1} + \beta_{3} ) q^{34} -2 q^{36} + ( 2 - 3 \beta_{1} ) q^{37} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{38} + ( -1 - \beta_{2} + \beta_{3} ) q^{39} + ( 1 - \beta_{3} ) q^{40} + q^{41} + ( 1 - \beta_{2} - \beta_{3} ) q^{43} + ( \beta_{1} + \beta_{2} ) q^{44} + ( 2 - 2 \beta_{3} ) q^{45} + ( 2 + \beta_{1} - \beta_{3} ) q^{46} + ( 1 - \beta_{1} + \beta_{2} ) q^{47} - q^{48} + ( -4 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{50} + ( -2 + 2 \beta_{1} + \beta_{3} ) q^{51} + ( 1 + \beta_{2} - \beta_{3} ) q^{52} + ( 2 - \beta_{1} ) q^{53} -5 q^{54} + ( 1 - 2 \beta_{2} - 2 \beta_{3} ) q^{55} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{57} + ( 5 + \beta_{2} ) q^{58} + ( -1 + 3 \beta_{1} - \beta_{2} - \beta_{3} ) q^{59} + ( 1 - \beta_{3} ) q^{60} + ( 3 - 2 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} ) q^{61} + ( -3 - 2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{62} + q^{64} + ( -7 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{65} + ( \beta_{1} + \beta_{2} ) q^{66} + ( 3 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{67} + ( 2 - 2 \beta_{1} - \beta_{3} ) q^{68} + ( 2 + \beta_{1} - \beta_{3} ) q^{69} + ( -3 + 3 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{71} + 2 q^{72} + ( 7 - 2 \beta_{1} + \beta_{2} ) q^{73} + ( -2 + 3 \beta_{1} ) q^{74} + ( -4 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{75} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{76} + ( 1 + \beta_{2} - \beta_{3} ) q^{78} + ( -6 + \beta_{2} - 2 \beta_{3} ) q^{79} + ( -1 + \beta_{3} ) q^{80} + q^{81} - q^{82} + ( 6 - 5 \beta_{1} - 2 \beta_{3} ) q^{83} + ( -8 + 3 \beta_{1} + 2 \beta_{3} ) q^{85} + ( -1 + \beta_{2} + \beta_{3} ) q^{86} + ( 5 + \beta_{2} ) q^{87} + ( -\beta_{1} - \beta_{2} ) q^{88} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{89} + ( -2 + 2 \beta_{3} ) q^{90} + ( -2 - \beta_{1} + \beta_{3} ) q^{92} + ( -3 - 2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{93} + ( -1 + \beta_{1} - \beta_{2} ) q^{94} + ( -2 - 3 \beta_{1} + 5 \beta_{2} - 3 \beta_{3} ) q^{95} + q^{96} + ( -1 - \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{97} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} - 4q^{3} + 4q^{4} - 3q^{5} + 4q^{6} - 4q^{8} - 8q^{9} + O(q^{10}) \) \( 4q - 4q^{2} - 4q^{3} + 4q^{4} - 3q^{5} + 4q^{6} - 4q^{8} - 8q^{9} + 3q^{10} - 4q^{12} + q^{13} + 3q^{15} + 4q^{16} + 3q^{17} + 8q^{18} - 2q^{19} - 3q^{20} - 9q^{23} + 4q^{24} + 19q^{25} - q^{26} + 20q^{27} - 18q^{29} - 3q^{30} + 19q^{31} - 4q^{32} - 3q^{34} - 8q^{36} + 2q^{37} + 2q^{38} - q^{39} + 3q^{40} + 4q^{41} + 5q^{43} + 6q^{45} + 9q^{46} - 4q^{48} - 19q^{50} - 3q^{51} + q^{52} + 6q^{53} - 20q^{54} + 6q^{55} + 2q^{57} + 18q^{58} + 3q^{59} + 3q^{60} + q^{61} - 19q^{62} + 4q^{64} - 24q^{65} + 11q^{67} + 3q^{68} + 9q^{69} - 9q^{71} + 8q^{72} + 22q^{73} - 2q^{74} - 19q^{75} - 2q^{76} + q^{78} - 28q^{79} - 3q^{80} + 4q^{81} - 4q^{82} + 12q^{83} - 24q^{85} - 5q^{86} + 18q^{87} - 6q^{89} - 6q^{90} - 9q^{92} - 19q^{93} - 27q^{95} + 4q^{96} - 11q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{3} - 9 x^{2} + 3 x + 12\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 2 \nu - 5 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 3 \nu^{2} - 5 \nu + 6 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 2 \beta_{1} + 5\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 3 \beta_{2} + 11 \beta_{1} + 9\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.26053
−1.84745
3.90611
−1.31920
−1.00000 −1.00000 1.00000 −4.06659 1.00000 0 −1.00000 −2.00000 4.06659
1.2 −1.00000 −1.00000 1.00000 −2.30741 1.00000 0 −1.00000 −2.00000 2.30741
1.3 −1.00000 −1.00000 1.00000 −0.705371 1.00000 0 −1.00000 −2.00000 0.705371
1.4 −1.00000 −1.00000 1.00000 4.07936 1.00000 0 −1.00000 −2.00000 −4.07936
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4018.2.a.bi 4
7.b odd 2 1 4018.2.a.bk 4
7.d odd 6 2 574.2.e.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
574.2.e.f 8 7.d odd 6 2
4018.2.a.bi 4 1.a even 1 1 trivial
4018.2.a.bk 4 7.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(41\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4018))\):

\( T_{3} + 1 \)
\( T_{5}^{4} + 3 T_{5}^{3} - 15 T_{5}^{2} - 50 T_{5} - 27 \)
\( T_{11}^{4} - 33 T_{11}^{2} - 49 T_{11} + 15 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{4} \)
$3$ \( ( 1 + T + 3 T^{2} )^{4} \)
$5$ \( 1 + 3 T + 5 T^{2} - 5 T^{3} - 27 T^{4} - 25 T^{5} + 125 T^{6} + 375 T^{7} + 625 T^{8} \)
$7$ \( \)
$11$ \( 1 + 11 T^{2} - 49 T^{3} + 15 T^{4} - 539 T^{5} + 1331 T^{6} + 14641 T^{8} \)
$13$ \( 1 - T + 25 T^{2} - 14 T^{3} + 434 T^{4} - 182 T^{5} + 4225 T^{6} - 2197 T^{7} + 28561 T^{8} \)
$17$ \( 1 - 3 T + 26 T^{2} - 62 T^{3} + 354 T^{4} - 1054 T^{5} + 7514 T^{6} - 14739 T^{7} + 83521 T^{8} \)
$19$ \( 1 + 2 T + 13 T^{2} + 63 T^{3} + 453 T^{4} + 1197 T^{5} + 4693 T^{6} + 13718 T^{7} + 130321 T^{8} \)
$23$ \( 1 + 9 T + 86 T^{2} + 440 T^{3} + 2670 T^{4} + 10120 T^{5} + 45494 T^{6} + 109503 T^{7} + 279841 T^{8} \)
$29$ \( 1 + 18 T + 215 T^{2} + 1689 T^{3} + 10572 T^{4} + 48981 T^{5} + 180815 T^{6} + 439002 T^{7} + 707281 T^{8} \)
$31$ \( 1 - 19 T + 205 T^{2} - 1484 T^{3} + 8978 T^{4} - 46004 T^{5} + 197005 T^{6} - 566029 T^{7} + 923521 T^{8} \)
$37$ \( 1 - 2 T + 55 T^{2} + 61 T^{3} + 2110 T^{4} + 2257 T^{5} + 75295 T^{6} - 101306 T^{7} + 1874161 T^{8} \)
$41$ \( ( 1 - T )^{4} \)
$43$ \( 1 - 5 T + 127 T^{2} - 696 T^{3} + 7236 T^{4} - 29928 T^{5} + 234823 T^{6} - 397535 T^{7} + 3418801 T^{8} \)
$47$ \( 1 + 155 T^{2} + 37 T^{3} + 10176 T^{4} + 1739 T^{5} + 342395 T^{6} + 4879681 T^{8} \)
$53$ \( 1 - 6 T + 215 T^{2} - 929 T^{3} + 17154 T^{4} - 49237 T^{5} + 603935 T^{6} - 893262 T^{7} + 7890481 T^{8} \)
$59$ \( 1 - 3 T + 68 T^{2} - 322 T^{3} + 7560 T^{4} - 18998 T^{5} + 236708 T^{6} - 616137 T^{7} + 12117361 T^{8} \)
$61$ \( 1 - T + 73 T^{2} - 671 T^{3} + 1181 T^{4} - 40931 T^{5} + 271633 T^{6} - 226981 T^{7} + 13845841 T^{8} \)
$67$ \( 1 - 11 T + 268 T^{2} - 2026 T^{3} + 26702 T^{4} - 135742 T^{5} + 1203052 T^{6} - 3308393 T^{7} + 20151121 T^{8} \)
$71$ \( 1 + 9 T + 107 T^{2} + 199 T^{3} + 1653 T^{4} + 14129 T^{5} + 539387 T^{6} + 3221199 T^{7} + 25411681 T^{8} \)
$73$ \( 1 - 22 T + 409 T^{2} - 4787 T^{3} + 48782 T^{4} - 349451 T^{5} + 2179561 T^{6} - 8558374 T^{7} + 28398241 T^{8} \)
$79$ \( 1 + 28 T + 541 T^{2} + 7283 T^{3} + 73511 T^{4} + 575357 T^{5} + 3376381 T^{6} + 13805092 T^{7} + 38950081 T^{8} \)
$83$ \( 1 - 12 T + 125 T^{2} - 957 T^{3} + 3390 T^{4} - 79431 T^{5} + 861125 T^{6} - 6861444 T^{7} + 47458321 T^{8} \)
$89$ \( 1 + 6 T + 305 T^{2} + 1435 T^{3} + 39018 T^{4} + 127715 T^{5} + 2415905 T^{6} + 4229814 T^{7} + 62742241 T^{8} \)
$97$ \( 1 + 11 T + 298 T^{2} + 2922 T^{3} + 39354 T^{4} + 283434 T^{5} + 2803882 T^{6} + 10039403 T^{7} + 88529281 T^{8} \)
show more
show less