Properties

Label 4017.2.a.c
Level 4017
Weight 2
Character orbit 4017.a
Self dual Yes
Analytic conductor 32.076
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4017 = 3 \cdot 13 \cdot 103 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4017.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0759064919\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - 2q^{4} + q^{5} + 2q^{7} + q^{9} + O(q^{10}) \) \( q + q^{3} - 2q^{4} + q^{5} + 2q^{7} + q^{9} - 2q^{12} - q^{13} + q^{15} + 4q^{16} - 3q^{17} - 4q^{19} - 2q^{20} + 2q^{21} - 8q^{23} - 4q^{25} + q^{27} - 4q^{28} + 5q^{29} - q^{31} + 2q^{35} - 2q^{36} + q^{37} - q^{39} - 6q^{41} - 8q^{43} + q^{45} + 3q^{47} + 4q^{48} - 3q^{49} - 3q^{51} + 2q^{52} - 4q^{57} - 2q^{60} + 6q^{61} + 2q^{63} - 8q^{64} - q^{65} - 12q^{67} + 6q^{68} - 8q^{69} - q^{71} - 7q^{73} - 4q^{75} + 8q^{76} + 13q^{79} + 4q^{80} + q^{81} - 6q^{83} - 4q^{84} - 3q^{85} + 5q^{87} + 2q^{89} - 2q^{91} + 16q^{92} - q^{93} - 4q^{95} + 6q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 −2.00000 1.00000 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(13\) \(1\)
\(103\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4017))\):

\( T_{2} \)
\( T_{23} + 8 \)