Properties

Label 4017.2.a.a
Level 4017
Weight 2
Character orbit 4017.a
Self dual yes
Analytic conductor 32.076
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4017 = 3 \cdot 13 \cdot 103 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4017.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.0759064919\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} - q^{4} + 2q^{5} + q^{6} - 2q^{7} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} - q^{4} + 2q^{5} + q^{6} - 2q^{7} + 3q^{8} + q^{9} - 2q^{10} + 4q^{11} + q^{12} - q^{13} + 2q^{14} - 2q^{15} - q^{16} - 6q^{17} - q^{18} - 2q^{19} - 2q^{20} + 2q^{21} - 4q^{22} + 6q^{23} - 3q^{24} - q^{25} + q^{26} - q^{27} + 2q^{28} + 6q^{29} + 2q^{30} - 5q^{32} - 4q^{33} + 6q^{34} - 4q^{35} - q^{36} - 8q^{37} + 2q^{38} + q^{39} + 6q^{40} + 6q^{41} - 2q^{42} - 12q^{43} - 4q^{44} + 2q^{45} - 6q^{46} + q^{48} - 3q^{49} + q^{50} + 6q^{51} + q^{52} + q^{54} + 8q^{55} - 6q^{56} + 2q^{57} - 6q^{58} + 8q^{59} + 2q^{60} - 2q^{61} - 2q^{63} + 7q^{64} - 2q^{65} + 4q^{66} - 4q^{67} + 6q^{68} - 6q^{69} + 4q^{70} + 3q^{72} - 4q^{73} + 8q^{74} + q^{75} + 2q^{76} - 8q^{77} - q^{78} - 2q^{80} + q^{81} - 6q^{82} + 4q^{83} - 2q^{84} - 12q^{85} + 12q^{86} - 6q^{87} + 12q^{88} + 6q^{89} - 2q^{90} + 2q^{91} - 6q^{92} - 4q^{95} + 5q^{96} - 14q^{97} + 3q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 −1.00000 2.00000 1.00000 −2.00000 3.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4017.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4017.2.a.a 1 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(13\) \(1\)
\(103\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4017))\):

\( T_{2} + 1 \)
\( T_{23} - 6 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + 2 T^{2} \)
$3$ \( 1 + T \)
$5$ \( 1 - 2 T + 5 T^{2} \)
$7$ \( 1 + 2 T + 7 T^{2} \)
$11$ \( 1 - 4 T + 11 T^{2} \)
$13$ \( 1 + T \)
$17$ \( 1 + 6 T + 17 T^{2} \)
$19$ \( 1 + 2 T + 19 T^{2} \)
$23$ \( 1 - 6 T + 23 T^{2} \)
$29$ \( 1 - 6 T + 29 T^{2} \)
$31$ \( 1 + 31 T^{2} \)
$37$ \( 1 + 8 T + 37 T^{2} \)
$41$ \( 1 - 6 T + 41 T^{2} \)
$43$ \( 1 + 12 T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 + 53 T^{2} \)
$59$ \( 1 - 8 T + 59 T^{2} \)
$61$ \( 1 + 2 T + 61 T^{2} \)
$67$ \( 1 + 4 T + 67 T^{2} \)
$71$ \( 1 + 71 T^{2} \)
$73$ \( 1 + 4 T + 73 T^{2} \)
$79$ \( 1 + 79 T^{2} \)
$83$ \( 1 - 4 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 + 14 T + 97 T^{2} \)
show more
show less