Properties

Label 4014.2.a.p
Level 4014
Weight 2
Character orbit 4014.a
Self dual Yes
Analytic conductor 32.052
Analytic rank 0
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4014 = 2 \cdot 3^{2} \cdot 223 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4014.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0519513713\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.473.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{2}\) \(+ q^{4}\) \( + \beta_{2} q^{5} \) \( + ( 3 - \beta_{1} ) q^{7} \) \(+ q^{8}\) \(+O(q^{10})\) \( q\) \(+ q^{2}\) \(+ q^{4}\) \( + \beta_{2} q^{5} \) \( + ( 3 - \beta_{1} ) q^{7} \) \(+ q^{8}\) \( + \beta_{2} q^{10} \) \( + ( -2 + \beta_{1} ) q^{11} \) \( + ( 4 - \beta_{2} ) q^{13} \) \( + ( 3 - \beta_{1} ) q^{14} \) \(+ q^{16}\) \( + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{17} \) \( + ( 2 + \beta_{1} - \beta_{2} ) q^{19} \) \( + \beta_{2} q^{20} \) \( + ( -2 + \beta_{1} ) q^{22} \) \( + ( -\beta_{1} + 2 \beta_{2} ) q^{23} \) \( + ( 1 + \beta_{1} - \beta_{2} ) q^{25} \) \( + ( 4 - \beta_{2} ) q^{26} \) \( + ( 3 - \beta_{1} ) q^{28} \) \( + ( 3 + \beta_{1} ) q^{29} \) \( + ( -2 - 3 \beta_{1} + \beta_{2} ) q^{31} \) \(+ q^{32}\) \( + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{34} \) \( + ( -1 - 2 \beta_{1} + 3 \beta_{2} ) q^{35} \) \( + ( -\beta_{1} + 4 \beta_{2} ) q^{37} \) \( + ( 2 + \beta_{1} - \beta_{2} ) q^{38} \) \( + \beta_{2} q^{40} \) \( + ( -3 - 5 \beta_{1} + \beta_{2} ) q^{41} \) \( + ( 1 + 3 \beta_{1} - \beta_{2} ) q^{43} \) \( + ( -2 + \beta_{1} ) q^{44} \) \( + ( -\beta_{1} + 2 \beta_{2} ) q^{46} \) \( + ( 4 - 2 \beta_{1} - \beta_{2} ) q^{47} \) \( + ( 5 - 6 \beta_{1} + \beta_{2} ) q^{49} \) \( + ( 1 + \beta_{1} - \beta_{2} ) q^{50} \) \( + ( 4 - \beta_{2} ) q^{52} \) \( + ( \beta_{1} - 3 \beta_{2} ) q^{53} \) \( + ( 1 + 2 \beta_{1} - 2 \beta_{2} ) q^{55} \) \( + ( 3 - \beta_{1} ) q^{56} \) \( + ( 3 + \beta_{1} ) q^{58} \) \( + ( 3 - 3 \beta_{2} ) q^{59} \) \( + ( -1 - 5 \beta_{1} + 2 \beta_{2} ) q^{61} \) \( + ( -2 - 3 \beta_{1} + \beta_{2} ) q^{62} \) \(+ q^{64}\) \( + ( -6 - \beta_{1} + 5 \beta_{2} ) q^{65} \) \( + ( 4 + 3 \beta_{2} ) q^{67} \) \( + ( 1 + 2 \beta_{1} - \beta_{2} ) q^{68} \) \( + ( -1 - 2 \beta_{1} + 3 \beta_{2} ) q^{70} \) \( + ( 5 + 2 \beta_{1} ) q^{71} \) \( + ( -1 + 6 \beta_{1} - \beta_{2} ) q^{73} \) \( + ( -\beta_{1} + 4 \beta_{2} ) q^{74} \) \( + ( 2 + \beta_{1} - \beta_{2} ) q^{76} \) \( + ( -9 + 5 \beta_{1} - \beta_{2} ) q^{77} \) \( + ( 8 + 5 \beta_{1} - 2 \beta_{2} ) q^{79} \) \( + \beta_{2} q^{80} \) \( + ( -3 - 5 \beta_{1} + \beta_{2} ) q^{82} \) \( + ( -6 + 3 \beta_{1} + 3 \beta_{2} ) q^{83} \) \( + ( -4 + 3 \beta_{1} + 2 \beta_{2} ) q^{85} \) \( + ( 1 + 3 \beta_{1} - \beta_{2} ) q^{86} \) \( + ( -2 + \beta_{1} ) q^{88} \) \( + ( 1 + \beta_{1} - 6 \beta_{2} ) q^{89} \) \( + ( 13 - 2 \beta_{1} - 3 \beta_{2} ) q^{91} \) \( + ( -\beta_{1} + 2 \beta_{2} ) q^{92} \) \( + ( 4 - 2 \beta_{1} - \beta_{2} ) q^{94} \) \( + ( -5 + \beta_{1} + 3 \beta_{2} ) q^{95} \) \( + ( 5 \beta_{1} - \beta_{2} ) q^{97} \) \( + ( 5 - 6 \beta_{1} + \beta_{2} ) q^{98} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(3q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut +\mathstrut 3q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut +\mathstrut 9q^{7} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(3q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut +\mathstrut 3q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut +\mathstrut 9q^{7} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut q^{10} \) \(\mathstrut -\mathstrut 6q^{11} \) \(\mathstrut +\mathstrut 11q^{13} \) \(\mathstrut +\mathstrut 9q^{14} \) \(\mathstrut +\mathstrut 3q^{16} \) \(\mathstrut +\mathstrut 2q^{17} \) \(\mathstrut +\mathstrut 5q^{19} \) \(\mathstrut +\mathstrut q^{20} \) \(\mathstrut -\mathstrut 6q^{22} \) \(\mathstrut +\mathstrut 2q^{23} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 11q^{26} \) \(\mathstrut +\mathstrut 9q^{28} \) \(\mathstrut +\mathstrut 9q^{29} \) \(\mathstrut -\mathstrut 5q^{31} \) \(\mathstrut +\mathstrut 3q^{32} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut +\mathstrut 4q^{37} \) \(\mathstrut +\mathstrut 5q^{38} \) \(\mathstrut +\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 2q^{43} \) \(\mathstrut -\mathstrut 6q^{44} \) \(\mathstrut +\mathstrut 2q^{46} \) \(\mathstrut +\mathstrut 11q^{47} \) \(\mathstrut +\mathstrut 16q^{49} \) \(\mathstrut +\mathstrut 2q^{50} \) \(\mathstrut +\mathstrut 11q^{52} \) \(\mathstrut -\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut q^{55} \) \(\mathstrut +\mathstrut 9q^{56} \) \(\mathstrut +\mathstrut 9q^{58} \) \(\mathstrut +\mathstrut 6q^{59} \) \(\mathstrut -\mathstrut q^{61} \) \(\mathstrut -\mathstrut 5q^{62} \) \(\mathstrut +\mathstrut 3q^{64} \) \(\mathstrut -\mathstrut 13q^{65} \) \(\mathstrut +\mathstrut 15q^{67} \) \(\mathstrut +\mathstrut 2q^{68} \) \(\mathstrut +\mathstrut 15q^{71} \) \(\mathstrut -\mathstrut 4q^{73} \) \(\mathstrut +\mathstrut 4q^{74} \) \(\mathstrut +\mathstrut 5q^{76} \) \(\mathstrut -\mathstrut 28q^{77} \) \(\mathstrut +\mathstrut 22q^{79} \) \(\mathstrut +\mathstrut q^{80} \) \(\mathstrut -\mathstrut 8q^{82} \) \(\mathstrut -\mathstrut 15q^{83} \) \(\mathstrut -\mathstrut 10q^{85} \) \(\mathstrut +\mathstrut 2q^{86} \) \(\mathstrut -\mathstrut 6q^{88} \) \(\mathstrut -\mathstrut 3q^{89} \) \(\mathstrut +\mathstrut 36q^{91} \) \(\mathstrut +\mathstrut 2q^{92} \) \(\mathstrut +\mathstrut 11q^{94} \) \(\mathstrut -\mathstrut 12q^{95} \) \(\mathstrut -\mathstrut q^{97} \) \(\mathstrut +\mathstrut 16q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3}\mathstrut -\mathstrut \) \(5\) \(x\mathstrut -\mathstrut \) \(1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\mathstrut +\mathstrut \) \(3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.201640
−2.12842
2.33006
1.00000 0 1.00000 −2.95934 0 3.20164 1.00000 0 −2.95934
1.2 1.00000 0 1.00000 1.53017 0 5.12842 1.00000 0 1.53017
1.3 1.00000 0 1.00000 2.42917 0 0.669941 1.00000 0 2.42917
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(223\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4014))\):

\(T_{5}^{3} \) \(\mathstrut -\mathstrut T_{5}^{2} \) \(\mathstrut -\mathstrut 8 T_{5} \) \(\mathstrut +\mathstrut 11 \)
\(T_{7}^{3} \) \(\mathstrut -\mathstrut 9 T_{7}^{2} \) \(\mathstrut +\mathstrut 22 T_{7} \) \(\mathstrut -\mathstrut 11 \)
\(T_{11}^{3} \) \(\mathstrut +\mathstrut 6 T_{11}^{2} \) \(\mathstrut +\mathstrut 7 T_{11} \) \(\mathstrut -\mathstrut 3 \)