Properties

Label 4005.2.a.v
Level 4005
Weight 2
Character orbit 4005.a
Self dual Yes
Analytic conductor 31.980
Analytic rank 1
Dimension 12
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4005 = 3^{2} \cdot 5 \cdot 89 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4005.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(31.9800860095\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( + \beta_{1} q^{2} \) \( + ( 1 + \beta_{2} ) q^{4} \) \(- q^{5}\) \( + ( -1 - \beta_{2} + \beta_{5} ) q^{7} \) \( + ( 1 + \beta_{1} + \beta_{2} + \beta_{6} + \beta_{7} ) q^{8} \) \(+O(q^{10})\) \( q\) \( + \beta_{1} q^{2} \) \( + ( 1 + \beta_{2} ) q^{4} \) \(- q^{5}\) \( + ( -1 - \beta_{2} + \beta_{5} ) q^{7} \) \( + ( 1 + \beta_{1} + \beta_{2} + \beta_{6} + \beta_{7} ) q^{8} \) \( -\beta_{1} q^{10} \) \( + ( -\beta_{2} + \beta_{9} ) q^{11} \) \( + ( -1 - \beta_{2} + \beta_{4} + \beta_{7} + \beta_{8} + \beta_{9} ) q^{13} \) \( + ( -3 \beta_{1} - \beta_{3} + \beta_{4} - \beta_{6} - \beta_{7} ) q^{14} \) \( + ( 2 \beta_{1} + 2 \beta_{2} + \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} - 2 \beta_{9} + \beta_{11} ) q^{16} \) \( + ( -\beta_{1} - \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} ) q^{17} \) \( + ( -2 + \beta_{1} - \beta_{3} - \beta_{5} - \beta_{8} - \beta_{11} ) q^{19} \) \( + ( -1 - \beta_{2} ) q^{20} \) \( + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{22} \) \( + ( 2 - \beta_{1} + \beta_{8} - \beta_{11} ) q^{23} \) \(+ q^{25}\) \( + ( -\beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{7} + \beta_{8} - \beta_{9} - \beta_{10} ) q^{26} \) \( + ( -4 - \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} ) q^{28} \) \( + ( -1 + \beta_{3} - \beta_{4} + \beta_{5} + \beta_{7} + \beta_{10} + \beta_{11} ) q^{29} \) \( + ( 2 \beta_{2} + \beta_{3} - 2 \beta_{5} - 2 \beta_{7} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{31} \) \( + ( 3 + 3 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} + \beta_{8} - 2 \beta_{9} + \beta_{10} + 2 \beta_{11} ) q^{32} \) \( + ( -2 - \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - \beta_{8} + \beta_{9} + \beta_{10} ) q^{34} \) \( + ( 1 + \beta_{2} - \beta_{5} ) q^{35} \) \( + ( -1 + \beta_{2} + \beta_{3} - 3 \beta_{4} - \beta_{5} - \beta_{7} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{37} \) \( + ( -3 \beta_{1} - \beta_{3} - 2 \beta_{6} - \beta_{7} - 2 \beta_{8} - \beta_{11} ) q^{38} \) \( + ( -1 - \beta_{1} - \beta_{2} - \beta_{6} - \beta_{7} ) q^{40} \) \( + ( 1 - 2 \beta_{1} + \beta_{3} + \beta_{5} + \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{41} \) \( + ( -4 - \beta_{1} + \beta_{2} - 2 \beta_{4} - \beta_{6} - 2 \beta_{7} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{43} \) \( + ( -4 - 2 \beta_{1} - 5 \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} - 2 \beta_{6} + 3 \beta_{9} - 2 \beta_{11} ) q^{44} \) \( + ( -3 + 4 \beta_{1} - 3 \beta_{2} + \beta_{4} + \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{9} - \beta_{11} ) q^{46} \) \( + ( 3 + \beta_{2} - 2 \beta_{5} + 2 \beta_{6} + \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{47} \) \( + ( 1 - \beta_{1} + \beta_{2} + 2 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{8} - \beta_{10} - \beta_{11} ) q^{49} \) \( + \beta_{1} q^{50} \) \( + ( -2 + 2 \beta_{1} - 3 \beta_{2} + \beta_{4} - \beta_{5} + 2 \beta_{6} + 3 \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{11} ) q^{52} \) \( + ( -2 \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} - 2 \beta_{8} + \beta_{11} ) q^{53} \) \( + ( \beta_{2} - \beta_{9} ) q^{55} \) \( + ( -2 - 4 \beta_{1} - 3 \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - 2 \beta_{6} - 3 \beta_{7} - 2 \beta_{8} + \beta_{9} - \beta_{11} ) q^{56} \) \( + ( 2 \beta_{2} + \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} + \beta_{8} - 3 \beta_{9} - 2 \beta_{10} ) q^{58} \) \( + ( -3 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} + \beta_{6} + 2 \beta_{8} + 2 \beta_{9} ) q^{59} \) \( + ( -5 + \beta_{1} - 3 \beta_{2} - \beta_{3} + \beta_{4} - \beta_{6} + 2 \beta_{7} + \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{61} \) \( + ( 2 - \beta_{1} + \beta_{2} + \beta_{5} + 2 \beta_{6} + 2 \beta_{9} + 3 \beta_{10} + 2 \beta_{11} ) q^{62} \) \( + ( 1 + 4 \beta_{1} + \beta_{2} + 3 \beta_{3} - \beta_{4} + 4 \beta_{6} + 4 \beta_{7} + 3 \beta_{8} - \beta_{9} + \beta_{11} ) q^{64} \) \( + ( 1 + \beta_{2} - \beta_{4} - \beta_{7} - \beta_{8} - \beta_{9} ) q^{65} \) \( + ( -3 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{67} \) \( + ( -2 - 4 \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} - 2 \beta_{6} - 3 \beta_{7} - \beta_{8} - \beta_{10} - \beta_{11} ) q^{68} \) \( + ( 3 \beta_{1} + \beta_{3} - \beta_{4} + \beta_{6} + \beta_{7} ) q^{70} \) \( + ( -1 - 3 \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{6} + \beta_{7} + \beta_{9} - \beta_{11} ) q^{71} \) \( + ( -4 \beta_{1} + \beta_{2} - \beta_{3} + 2 \beta_{4} - 2 \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + 2 \beta_{11} ) q^{73} \) \( + ( -1 + 3 \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + 5 \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{10} - \beta_{11} ) q^{74} \) \( + ( -5 - \beta_{1} - 5 \beta_{2} - 2 \beta_{3} + 3 \beta_{4} + 2 \beta_{5} - 3 \beta_{6} - \beta_{8} + 2 \beta_{9} - \beta_{10} - \beta_{11} ) q^{76} \) \( + ( 2 + \beta_{1} + 4 \beta_{2} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + \beta_{7} - 2 \beta_{9} + \beta_{11} ) q^{77} \) \( + ( -1 - \beta_{1} + 2 \beta_{2} - \beta_{3} - \beta_{5} + 2 \beta_{6} - \beta_{7} - \beta_{9} - \beta_{11} ) q^{79} \) \( + ( -2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} - \beta_{6} + 2 \beta_{9} - \beta_{11} ) q^{80} \) \( + ( -3 + \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} - \beta_{9} + 2 \beta_{10} + 3 \beta_{11} ) q^{82} \) \( + ( 2 + 3 \beta_{2} - \beta_{5} - \beta_{8} - \beta_{10} - \beta_{11} ) q^{83} \) \( + ( \beta_{1} + \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} ) q^{85} \) \( + ( -1 - 4 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 4 \beta_{4} + \beta_{7} - \beta_{8} + \beta_{9} - \beta_{11} ) q^{86} \) \( + ( -6 - 6 \beta_{1} - 7 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} - 2 \beta_{7} - \beta_{8} + 2 \beta_{9} - \beta_{10} - 3 \beta_{11} ) q^{88} \) \(- q^{89}\) \( + ( -4 + \beta_{1} + \beta_{2} + 2 \beta_{3} - 5 \beta_{4} - 2 \beta_{6} - 3 \beta_{7} - 3 \beta_{9} + \beta_{11} ) q^{91} \) \( + ( 4 - 5 \beta_{1} + 3 \beta_{2} + \beta_{3} - 2 \beta_{4} - \beta_{5} - 2 \beta_{6} - 3 \beta_{7} - \beta_{8} - 2 \beta_{9} - \beta_{10} + 2 \beta_{11} ) q^{92} \) \( + ( -3 + 3 \beta_{1} + 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{9} + 3 \beta_{10} + 2 \beta_{11} ) q^{94} \) \( + ( 2 - \beta_{1} + \beta_{3} + \beta_{5} + \beta_{8} + \beta_{11} ) q^{95} \) \( + ( 1 + \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} + 3 \beta_{6} + 3 \beta_{7} + \beta_{9} + 3 \beta_{10} + \beta_{11} ) q^{97} \) \( + ( -4 + 4 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} - 6 \beta_{4} + \beta_{5} + 2 \beta_{6} + \beta_{7} + \beta_{8} - 2 \beta_{9} + \beta_{10} + 2 \beta_{11} ) q^{98} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(12q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut +\mathstrut 11q^{4} \) \(\mathstrut -\mathstrut 12q^{5} \) \(\mathstrut -\mathstrut 8q^{7} \) \(\mathstrut +\mathstrut 9q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(12q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut +\mathstrut 11q^{4} \) \(\mathstrut -\mathstrut 12q^{5} \) \(\mathstrut -\mathstrut 8q^{7} \) \(\mathstrut +\mathstrut 9q^{8} \) \(\mathstrut -\mathstrut 3q^{10} \) \(\mathstrut -\mathstrut 12q^{13} \) \(\mathstrut -\mathstrut 4q^{14} \) \(\mathstrut +\mathstrut q^{16} \) \(\mathstrut -\mathstrut 24q^{19} \) \(\mathstrut -\mathstrut 11q^{20} \) \(\mathstrut -\mathstrut 16q^{22} \) \(\mathstrut +\mathstrut 24q^{23} \) \(\mathstrut +\mathstrut 12q^{25} \) \(\mathstrut +\mathstrut q^{26} \) \(\mathstrut -\mathstrut 44q^{28} \) \(\mathstrut -\mathstrut 8q^{29} \) \(\mathstrut -\mathstrut 12q^{31} \) \(\mathstrut +\mathstrut 31q^{32} \) \(\mathstrut -\mathstrut 18q^{34} \) \(\mathstrut +\mathstrut 8q^{35} \) \(\mathstrut -\mathstrut 10q^{37} \) \(\mathstrut -\mathstrut 2q^{38} \) \(\mathstrut -\mathstrut 9q^{40} \) \(\mathstrut +\mathstrut 10q^{41} \) \(\mathstrut -\mathstrut 42q^{43} \) \(\mathstrut -\mathstrut 42q^{44} \) \(\mathstrut -\mathstrut 24q^{46} \) \(\mathstrut +\mathstrut 22q^{47} \) \(\mathstrut -\mathstrut 4q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 30q^{52} \) \(\mathstrut -\mathstrut 8q^{53} \) \(\mathstrut -\mathstrut 27q^{56} \) \(\mathstrut -\mathstrut 12q^{58} \) \(\mathstrut -\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 52q^{61} \) \(\mathstrut +\mathstrut 14q^{62} \) \(\mathstrut +\mathstrut 7q^{64} \) \(\mathstrut +\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 40q^{67} \) \(\mathstrut -\mathstrut 23q^{68} \) \(\mathstrut +\mathstrut 4q^{70} \) \(\mathstrut -\mathstrut 2q^{71} \) \(\mathstrut -\mathstrut 8q^{73} \) \(\mathstrut -\mathstrut 26q^{74} \) \(\mathstrut -\mathstrut 46q^{76} \) \(\mathstrut +\mathstrut 12q^{77} \) \(\mathstrut -\mathstrut 26q^{79} \) \(\mathstrut -\mathstrut q^{80} \) \(\mathstrut -\mathstrut 26q^{82} \) \(\mathstrut +\mathstrut 14q^{83} \) \(\mathstrut -\mathstrut 32q^{86} \) \(\mathstrut -\mathstrut 60q^{88} \) \(\mathstrut -\mathstrut 12q^{89} \) \(\mathstrut -\mathstrut 24q^{91} \) \(\mathstrut +\mathstrut 38q^{92} \) \(\mathstrut -\mathstrut 26q^{94} \) \(\mathstrut +\mathstrut 24q^{95} \) \(\mathstrut -\mathstrut 6q^{97} \) \(\mathstrut -\mathstrut 30q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12}\mathstrut -\mathstrut \) \(3\) \(x^{11}\mathstrut -\mathstrut \) \(13\) \(x^{10}\mathstrut +\mathstrut \) \(41\) \(x^{9}\mathstrut +\mathstrut \) \(58\) \(x^{8}\mathstrut -\mathstrut \) \(202\) \(x^{7}\mathstrut -\mathstrut \) \(95\) \(x^{6}\mathstrut +\mathstrut \) \(432\) \(x^{5}\mathstrut +\mathstrut \) \(4\) \(x^{4}\mathstrut -\mathstrut \) \(368\) \(x^{3}\mathstrut +\mathstrut \) \(94\) \(x^{2}\mathstrut +\mathstrut \) \(77\) \(x\mathstrut -\mathstrut \) \(27\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(\beta_{3}\)\(=\)\((\)\( -5 \nu^{11} + 8 \nu^{10} + 87 \nu^{9} - 121 \nu^{8} - 562 \nu^{7} + 666 \nu^{6} + 1618 \nu^{5} - 1612 \nu^{4} - 1915 \nu^{3} + 1616 \nu^{2} + 599 \nu - 432 \)\()/27\)
\(\beta_{4}\)\(=\)\((\)\( 2 \nu^{11} - 5 \nu^{10} - 33 \nu^{9} + 79 \nu^{8} + 196 \nu^{7} - 441 \nu^{6} - 496 \nu^{5} + 1021 \nu^{4} + 478 \nu^{3} - 866 \nu^{2} - 92 \nu + 153 \)\()/9\)
\(\beta_{5}\)\(=\)\((\)\( 31 \nu^{11} - 82 \nu^{10} - 426 \nu^{9} + 1085 \nu^{8} + 2156 \nu^{7} - 5112 \nu^{6} - 4934 \nu^{5} + 10286 \nu^{4} + 4799 \nu^{3} - 8059 \nu^{2} - 1273 \nu + 1512 \)\()/27\)
\(\beta_{6}\)\(=\)\((\)\( -35 \nu^{11} + 83 \nu^{10} + 501 \nu^{9} - 1117 \nu^{8} - 2638 \nu^{7} + 5391 \nu^{6} + 6196 \nu^{5} - 11203 \nu^{4} - 5953 \nu^{3} + 9125 \nu^{2} + 1331 \nu - 1728 \)\()/27\)
\(\beta_{7}\)\(=\)\((\)\( 35 \nu^{11} - 83 \nu^{10} - 501 \nu^{9} + 1117 \nu^{8} + 2638 \nu^{7} - 5391 \nu^{6} - 6196 \nu^{5} + 11203 \nu^{4} + 5980 \nu^{3} - 9152 \nu^{2} - 1466 \nu + 1782 \)\()/27\)
\(\beta_{8}\)\(=\)\((\)\( -43 \nu^{11} + 112 \nu^{10} + 597 \nu^{9} - 1505 \nu^{8} - 3035 \nu^{7} + 7245 \nu^{6} + 6884 \nu^{5} - 15008 \nu^{4} - 6506 \nu^{3} + 12229 \nu^{2} + 1690 \nu - 2403 \)\()/27\)
\(\beta_{9}\)\(=\)\((\)\( 67 \nu^{11} - 172 \nu^{10} - 939 \nu^{9} + 2318 \nu^{8} + 4847 \nu^{7} - 11214 \nu^{6} - 11270 \nu^{5} + 23399 \nu^{4} + 11054 \nu^{3} - 19192 \nu^{2} - 2902 \nu + 3726 \)\()/27\)
\(\beta_{10}\)\(=\)\((\)\( -68 \nu^{11} + 170 \nu^{10} + 969 \nu^{9} - 2308 \nu^{8} - 5089 \nu^{7} + 11241 \nu^{6} + 11995 \nu^{5} - 23554 \nu^{4} - 11806 \nu^{3} + 19346 \nu^{2} + 3056 \nu - 3789 \)\()/9\)
\(\beta_{11}\)\(=\)\((\)\( 217 \nu^{11} - 547 \nu^{10} - 3090 \nu^{9} + 7433 \nu^{8} + 16226 \nu^{7} - 36243 \nu^{6} - 38264 \nu^{5} + 76052 \nu^{4} + 37643 \nu^{3} - 62596 \nu^{2} - 9613 \nu + 12312 \)\()/27\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\mathstrut +\mathstrut \) \(3\)
\(\nu^{3}\)\(=\)\(\beta_{7}\mathstrut +\mathstrut \) \(\beta_{6}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(5\) \(\beta_{1}\mathstrut +\mathstrut \) \(1\)
\(\nu^{4}\)\(=\)\(\beta_{11}\mathstrut -\mathstrut \) \(2\) \(\beta_{9}\mathstrut +\mathstrut \) \(\beta_{6}\mathstrut -\mathstrut \) \(\beta_{5}\mathstrut -\mathstrut \) \(2\) \(\beta_{4}\mathstrut +\mathstrut \) \(\beta_{3}\mathstrut +\mathstrut \) \(8\) \(\beta_{2}\mathstrut +\mathstrut \) \(2\) \(\beta_{1}\mathstrut +\mathstrut \) \(14\)
\(\nu^{5}\)\(=\)\(2\) \(\beta_{11}\mathstrut +\mathstrut \) \(\beta_{10}\mathstrut -\mathstrut \) \(2\) \(\beta_{9}\mathstrut +\mathstrut \) \(\beta_{8}\mathstrut +\mathstrut \) \(9\) \(\beta_{7}\mathstrut +\mathstrut \) \(9\) \(\beta_{6}\mathstrut -\mathstrut \) \(\beta_{5}\mathstrut -\mathstrut \) \(2\) \(\beta_{4}\mathstrut +\mathstrut \) \(2\) \(\beta_{3}\mathstrut +\mathstrut \) \(11\) \(\beta_{2}\mathstrut +\mathstrut \) \(28\) \(\beta_{1}\mathstrut +\mathstrut \) \(11\)
\(\nu^{6}\)\(=\)\(11\) \(\beta_{11}\mathstrut -\mathstrut \) \(21\) \(\beta_{9}\mathstrut +\mathstrut \) \(3\) \(\beta_{8}\mathstrut +\mathstrut \) \(4\) \(\beta_{7}\mathstrut +\mathstrut \) \(14\) \(\beta_{6}\mathstrut -\mathstrut \) \(10\) \(\beta_{5}\mathstrut -\mathstrut \) \(21\) \(\beta_{4}\mathstrut +\mathstrut \) \(13\) \(\beta_{3}\mathstrut +\mathstrut \) \(57\) \(\beta_{2}\mathstrut +\mathstrut \) \(24\) \(\beta_{1}\mathstrut +\mathstrut \) \(77\)
\(\nu^{7}\)\(=\)\(25\) \(\beta_{11}\mathstrut +\mathstrut \) \(10\) \(\beta_{10}\mathstrut -\mathstrut \) \(27\) \(\beta_{9}\mathstrut +\mathstrut \) \(16\) \(\beta_{8}\mathstrut +\mathstrut \) \(69\) \(\beta_{7}\mathstrut +\mathstrut \) \(73\) \(\beta_{6}\mathstrut -\mathstrut \) \(14\) \(\beta_{5}\mathstrut -\mathstrut \) \(29\) \(\beta_{4}\mathstrut +\mathstrut \) \(28\) \(\beta_{3}\mathstrut +\mathstrut \) \(97\) \(\beta_{2}\mathstrut +\mathstrut \) \(172\) \(\beta_{1}\mathstrut +\mathstrut \) \(94\)
\(\nu^{8}\)\(=\)\(96\) \(\beta_{11}\mathstrut +\mathstrut \) \(2\) \(\beta_{10}\mathstrut -\mathstrut \) \(172\) \(\beta_{9}\mathstrut +\mathstrut \) \(44\) \(\beta_{8}\mathstrut +\mathstrut \) \(62\) \(\beta_{7}\mathstrut +\mathstrut \) \(141\) \(\beta_{6}\mathstrut -\mathstrut \) \(83\) \(\beta_{5}\mathstrut -\mathstrut \) \(175\) \(\beta_{4}\mathstrut +\mathstrut \) \(124\) \(\beta_{3}\mathstrut +\mathstrut \) \(404\) \(\beta_{2}\mathstrut +\mathstrut \) \(222\) \(\beta_{1}\mathstrut +\mathstrut \) \(469\)
\(\nu^{9}\)\(=\)\(234\) \(\beta_{11}\mathstrut +\mathstrut \) \(76\) \(\beta_{10}\mathstrut -\mathstrut \) \(270\) \(\beta_{9}\mathstrut +\mathstrut \) \(168\) \(\beta_{8}\mathstrut +\mathstrut \) \(508\) \(\beta_{7}\mathstrut +\mathstrut \) \(572\) \(\beta_{6}\mathstrut -\mathstrut \) \(145\) \(\beta_{5}\mathstrut -\mathstrut \) \(300\) \(\beta_{4}\mathstrut +\mathstrut \) \(285\) \(\beta_{3}\mathstrut +\mathstrut \) \(795\) \(\beta_{2}\mathstrut +\mathstrut \) \(1130\) \(\beta_{1}\mathstrut +\mathstrut \) \(749\)
\(\nu^{10}\)\(=\)\(776\) \(\beta_{11}\mathstrut +\mathstrut \) \(34\) \(\beta_{10}\mathstrut -\mathstrut \) \(1311\) \(\beta_{9}\mathstrut +\mathstrut \) \(453\) \(\beta_{8}\mathstrut +\mathstrut \) \(666\) \(\beta_{7}\mathstrut +\mathstrut \) \(1248\) \(\beta_{6}\mathstrut -\mathstrut \) \(655\) \(\beta_{5}\mathstrut -\mathstrut \) \(1365\) \(\beta_{4}\mathstrut +\mathstrut \) \(1055\) \(\beta_{3}\mathstrut +\mathstrut \) \(2896\) \(\beta_{2}\mathstrut +\mathstrut \) \(1876\) \(\beta_{1}\mathstrut +\mathstrut \) \(3062\)
\(\nu^{11}\)\(=\)\(1970\) \(\beta_{11}\mathstrut +\mathstrut \) \(528\) \(\beta_{10}\mathstrut -\mathstrut \) \(2398\) \(\beta_{9}\mathstrut +\mathstrut \) \(1508\) \(\beta_{8}\mathstrut +\mathstrut \) \(3711\) \(\beta_{7}\mathstrut +\mathstrut \) \(4404\) \(\beta_{6}\mathstrut -\mathstrut \) \(1322\) \(\beta_{5}\mathstrut -\mathstrut \) \(2709\) \(\beta_{4}\mathstrut +\mathstrut \) \(2550\) \(\beta_{3}\mathstrut +\mathstrut \) \(6300\) \(\beta_{2}\mathstrut +\mathstrut \) \(7776\) \(\beta_{1}\mathstrut +\mathstrut \) \(5819\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.29792
−1.85231
−1.76848
−1.26525
−0.551952
0.478750
0.491103
1.02694
1.62987
2.11454
2.24327
2.75145
−2.29792 0 3.28045 −1.00000 0 −2.76426 −2.94239 0 2.29792
1.2 −1.85231 0 1.43107 −1.00000 0 −0.0119316 1.05384 0 1.85231
1.3 −1.76848 0 1.12751 −1.00000 0 −4.90565 1.54298 0 1.76848
1.4 −1.26525 0 −0.399141 −1.00000 0 3.64120 3.03551 0 1.26525
1.5 −0.551952 0 −1.69535 −1.00000 0 1.42988 2.03966 0 0.551952
1.6 0.478750 0 −1.77080 −1.00000 0 −0.0239408 −1.80527 0 −0.478750
1.7 0.491103 0 −1.75882 −1.00000 0 −1.39011 −1.84597 0 −0.491103
1.8 1.02694 0 −0.945401 −1.00000 0 2.58018 −3.02474 0 −1.02694
1.9 1.62987 0 0.656467 −1.00000 0 −1.43414 −2.18978 0 −1.62987
1.10 2.11454 0 2.47129 −1.00000 0 −2.16289 0.996554 0 −2.11454
1.11 2.24327 0 3.03225 −1.00000 0 1.09855 2.31562 0 −2.24327
1.12 2.75145 0 5.57047 −1.00000 0 −4.05689 9.82397 0 −2.75145
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(89\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4005))\):

\(T_{2}^{12} - \cdots\)
\(T_{7}^{12} + \cdots\)
\(T_{11}^{12} - \cdots\)