Properties

Label 4005.2.a.h
Level 4005
Weight 2
Character orbit 4005.a
Self dual Yes
Analytic conductor 31.980
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4005 = 3^{2} \cdot 5 \cdot 89 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4005.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(31.9800860095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{2}\) \(- q^{4}\) \(+ q^{5}\) \( + ( 1 + \beta ) q^{7} \) \( -3 q^{8} \) \(+O(q^{10})\) \( q\) \(+ q^{2}\) \(- q^{4}\) \(+ q^{5}\) \( + ( 1 + \beta ) q^{7} \) \( -3 q^{8} \) \(+ q^{10}\) \( + ( 2 + 2 \beta ) q^{11} \) \( + ( 2 + 2 \beta ) q^{13} \) \( + ( 1 + \beta ) q^{14} \) \(- q^{16}\) \( + 2 q^{17} \) \( + ( -5 + \beta ) q^{19} \) \(- q^{20}\) \( + ( 2 + 2 \beta ) q^{22} \) \( + ( 3 - \beta ) q^{23} \) \(+ q^{25}\) \( + ( 2 + 2 \beta ) q^{26} \) \( + ( -1 - \beta ) q^{28} \) \( -2 \beta q^{29} \) \( + ( 1 - \beta ) q^{31} \) \( + 5 q^{32} \) \( + 2 q^{34} \) \( + ( 1 + \beta ) q^{35} \) \( + ( -2 - 2 \beta ) q^{37} \) \( + ( -5 + \beta ) q^{38} \) \( -3 q^{40} \) \( + 10 q^{41} \) \( + ( 3 - \beta ) q^{43} \) \( + ( -2 - 2 \beta ) q^{44} \) \( + ( 3 - \beta ) q^{46} \) \( -8 q^{47} \) \( + ( -1 + 2 \beta ) q^{49} \) \(+ q^{50}\) \( + ( -2 - 2 \beta ) q^{52} \) \( -2 q^{53} \) \( + ( 2 + 2 \beta ) q^{55} \) \( + ( -3 - 3 \beta ) q^{56} \) \( -2 \beta q^{58} \) \( + ( 1 - \beta ) q^{59} \) \( + ( -4 - 2 \beta ) q^{61} \) \( + ( 1 - \beta ) q^{62} \) \( + 7 q^{64} \) \( + ( 2 + 2 \beta ) q^{65} \) \( + ( 2 - 2 \beta ) q^{67} \) \( -2 q^{68} \) \( + ( 1 + \beta ) q^{70} \) \( + ( 10 - 2 \beta ) q^{71} \) \( + 2 q^{73} \) \( + ( -2 - 2 \beta ) q^{74} \) \( + ( 5 - \beta ) q^{76} \) \( + ( 12 + 4 \beta ) q^{77} \) \( + ( 4 - 4 \beta ) q^{79} \) \(- q^{80}\) \( + 10 q^{82} \) \( + ( 13 + \beta ) q^{83} \) \( + 2 q^{85} \) \( + ( 3 - \beta ) q^{86} \) \( + ( -6 - 6 \beta ) q^{88} \) \(+ q^{89}\) \( + ( 12 + 4 \beta ) q^{91} \) \( + ( -3 + \beta ) q^{92} \) \( -8 q^{94} \) \( + ( -5 + \beta ) q^{95} \) \( -6 q^{97} \) \( + ( -1 + 2 \beta ) q^{98} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut +\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut +\mathstrut 2q^{2} \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut +\mathstrut 2q^{10} \) \(\mathstrut +\mathstrut 4q^{11} \) \(\mathstrut +\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut +\mathstrut 4q^{17} \) \(\mathstrut -\mathstrut 10q^{19} \) \(\mathstrut -\mathstrut 2q^{20} \) \(\mathstrut +\mathstrut 4q^{22} \) \(\mathstrut +\mathstrut 6q^{23} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 4q^{26} \) \(\mathstrut -\mathstrut 2q^{28} \) \(\mathstrut +\mathstrut 2q^{31} \) \(\mathstrut +\mathstrut 10q^{32} \) \(\mathstrut +\mathstrut 4q^{34} \) \(\mathstrut +\mathstrut 2q^{35} \) \(\mathstrut -\mathstrut 4q^{37} \) \(\mathstrut -\mathstrut 10q^{38} \) \(\mathstrut -\mathstrut 6q^{40} \) \(\mathstrut +\mathstrut 20q^{41} \) \(\mathstrut +\mathstrut 6q^{43} \) \(\mathstrut -\mathstrut 4q^{44} \) \(\mathstrut +\mathstrut 6q^{46} \) \(\mathstrut -\mathstrut 16q^{47} \) \(\mathstrut -\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 2q^{50} \) \(\mathstrut -\mathstrut 4q^{52} \) \(\mathstrut -\mathstrut 4q^{53} \) \(\mathstrut +\mathstrut 4q^{55} \) \(\mathstrut -\mathstrut 6q^{56} \) \(\mathstrut +\mathstrut 2q^{59} \) \(\mathstrut -\mathstrut 8q^{61} \) \(\mathstrut +\mathstrut 2q^{62} \) \(\mathstrut +\mathstrut 14q^{64} \) \(\mathstrut +\mathstrut 4q^{65} \) \(\mathstrut +\mathstrut 4q^{67} \) \(\mathstrut -\mathstrut 4q^{68} \) \(\mathstrut +\mathstrut 2q^{70} \) \(\mathstrut +\mathstrut 20q^{71} \) \(\mathstrut +\mathstrut 4q^{73} \) \(\mathstrut -\mathstrut 4q^{74} \) \(\mathstrut +\mathstrut 10q^{76} \) \(\mathstrut +\mathstrut 24q^{77} \) \(\mathstrut +\mathstrut 8q^{79} \) \(\mathstrut -\mathstrut 2q^{80} \) \(\mathstrut +\mathstrut 20q^{82} \) \(\mathstrut +\mathstrut 26q^{83} \) \(\mathstrut +\mathstrut 4q^{85} \) \(\mathstrut +\mathstrut 6q^{86} \) \(\mathstrut -\mathstrut 12q^{88} \) \(\mathstrut +\mathstrut 2q^{89} \) \(\mathstrut +\mathstrut 24q^{91} \) \(\mathstrut -\mathstrut 6q^{92} \) \(\mathstrut -\mathstrut 16q^{94} \) \(\mathstrut -\mathstrut 10q^{95} \) \(\mathstrut -\mathstrut 12q^{97} \) \(\mathstrut -\mathstrut 2q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
1.00000 0 −1.00000 1.00000 0 −1.23607 −3.00000 0 1.00000
1.2 1.00000 0 −1.00000 1.00000 0 3.23607 −3.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(89\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4005))\):

\(T_{2} \) \(\mathstrut -\mathstrut 1 \)
\(T_{7}^{2} \) \(\mathstrut -\mathstrut 2 T_{7} \) \(\mathstrut -\mathstrut 4 \)
\(T_{11}^{2} \) \(\mathstrut -\mathstrut 4 T_{11} \) \(\mathstrut -\mathstrut 16 \)