Properties

Label 4005.2.a.b
Level 4005
Weight 2
Character orbit 4005.a
Self dual Yes
Analytic conductor 31.980
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4005 = 3^{2} \cdot 5 \cdot 89 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4005.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(31.9800860095\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{4} - q^{5} - 4q^{7} + O(q^{10}) \) \( q - 2q^{4} - q^{5} - 4q^{7} - 2q^{11} + 4q^{13} + 4q^{16} + 6q^{17} + 2q^{20} - 5q^{23} + q^{25} + 8q^{28} + 5q^{29} - 2q^{31} + 4q^{35} - 2q^{37} - 5q^{41} + 2q^{43} + 4q^{44} + 8q^{47} + 9q^{49} - 8q^{52} - 8q^{53} + 2q^{55} + 9q^{59} + 14q^{61} - 8q^{64} - 4q^{65} + 15q^{67} - 12q^{68} - 12q^{71} - 15q^{73} + 8q^{77} - 5q^{79} - 4q^{80} + 11q^{83} - 6q^{85} - q^{89} - 16q^{91} + 10q^{92} - 5q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 −1.00000 0 −4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(89\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4005))\):

\( T_{2} \)
\( T_{7} + 4 \)
\( T_{11} + 2 \)