Properties

Label 4004.2.a.d
Level $4004$
Weight $2$
Character orbit 4004.a
Self dual yes
Analytic conductor $31.972$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4004,2,Mod(1,4004)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4004, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4004.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4004 = 2^{2} \cdot 7 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4004.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9721009693\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.3981.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 1) q^{3} + (\beta_{3} + \beta_{2}) q^{5} + q^{7} + (2 \beta_{3} - \beta_1 + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} - 1) q^{3} + (\beta_{3} + \beta_{2}) q^{5} + q^{7} + (2 \beta_{3} - \beta_1 + 1) q^{9} + q^{11} + q^{13} + ( - \beta_1 - 1) q^{15} + ( - \beta_{3} - \beta_{2} - 2) q^{17} + ( - \beta_{2} - \beta_1 - 2) q^{19} + ( - \beta_{3} - 1) q^{21} + ( - \beta_{2} + 3 \beta_1) q^{23} + ( - 3 \beta_{3} - 2 \beta_{2} + \cdots - 2) q^{25}+ \cdots + (2 \beta_{3} - \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} - q^{5} + 4 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 3 q^{3} - q^{5} + 4 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} - 5 q^{15} - 7 q^{17} - 9 q^{19} - 3 q^{21} + 3 q^{23} - 3 q^{25} - 9 q^{27} - 3 q^{29} - 3 q^{33} - q^{35} - 18 q^{37} - 3 q^{39} - 14 q^{41} - q^{43} + 11 q^{45} - 3 q^{47} + 4 q^{49} + 11 q^{51} + 4 q^{53} - q^{55} + 6 q^{57} - 7 q^{59} - 14 q^{61} + q^{63} - q^{65} - 20 q^{69} - 6 q^{73} + 16 q^{75} + 4 q^{77} + 7 q^{79} - 4 q^{81} + 8 q^{83} - 15 q^{85} + 11 q^{87} + 9 q^{89} + 4 q^{91} + 13 q^{93} - 9 q^{95} - 16 q^{97} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} + 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.318459
2.28400
0.785261
−1.75080
0 −2.82166 0 0.241539 0 1.00000 0 4.96179 0
1.2 0 −1.84617 0 1.77882 0 1.00000 0 0.408340 0
1.3 0 0.488200 0 −3.65683 0 1.00000 0 −2.76166 0
1.4 0 1.17963 0 0.636469 0 1.00000 0 −1.60847 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4004.2.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4004.2.a.d 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 3T_{3}^{3} - 2T_{3}^{2} - 6T_{3} + 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4004))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 3 T^{3} + \cdots + 3 \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} - 8 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( (T - 1)^{4} \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 7 T^{3} + \cdots - 37 \) Copy content Toggle raw display
$19$ \( T^{4} + 9 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots - 135 \) Copy content Toggle raw display
$29$ \( T^{4} + 3 T^{3} + \cdots + 201 \) Copy content Toggle raw display
$31$ \( T^{4} - 22 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$37$ \( T^{4} + 18 T^{3} + \cdots - 1053 \) Copy content Toggle raw display
$41$ \( T^{4} + 14 T^{3} + \cdots + 379 \) Copy content Toggle raw display
$43$ \( T^{4} + T^{3} - 63 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{4} + 3 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots - 117 \) Copy content Toggle raw display
$59$ \( T^{4} + 7 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} + 14 T^{3} + \cdots - 139 \) Copy content Toggle raw display
$67$ \( T^{4} - 50 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{4} - 88 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$73$ \( T^{4} + 6 T^{3} + \cdots + 1115 \) Copy content Toggle raw display
$79$ \( T^{4} - 7 T^{3} + \cdots + 2099 \) Copy content Toggle raw display
$83$ \( T^{4} - 8 T^{3} + \cdots + 3769 \) Copy content Toggle raw display
$89$ \( T^{4} - 9 T^{3} + \cdots + 2087 \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots - 27 \) Copy content Toggle raw display
show more
show less