Properties

Label 4002.2.a.y.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.32803\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +3.32803 q^{5} +1.00000 q^{6} +5.20191 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +3.32803 q^{5} +1.00000 q^{6} +5.20191 q^{7} -1.00000 q^{8} +1.00000 q^{9} -3.32803 q^{10} +3.32803 q^{11} -1.00000 q^{12} -1.32803 q^{13} -5.20191 q^{14} -3.32803 q^{15} +1.00000 q^{16} +4.00000 q^{17} -1.00000 q^{18} -1.20191 q^{19} +3.32803 q^{20} -5.20191 q^{21} -3.32803 q^{22} +1.00000 q^{23} +1.00000 q^{24} +6.07579 q^{25} +1.32803 q^{26} -1.00000 q^{27} +5.20191 q^{28} -1.00000 q^{29} +3.32803 q^{30} -1.32803 q^{31} -1.00000 q^{32} -3.32803 q^{33} -4.00000 q^{34} +17.3121 q^{35} +1.00000 q^{36} -5.07579 q^{37} +1.20191 q^{38} +1.32803 q^{39} -3.32803 q^{40} -0.924208 q^{41} +5.20191 q^{42} +11.8580 q^{43} +3.32803 q^{44} +3.32803 q^{45} -1.00000 q^{46} -10.6561 q^{47} -1.00000 q^{48} +20.0599 q^{49} -6.07579 q^{50} -4.00000 q^{51} -1.32803 q^{52} +6.65606 q^{53} +1.00000 q^{54} +11.0758 q^{55} -5.20191 q^{56} +1.20191 q^{57} +1.00000 q^{58} +11.3280 q^{59} -3.32803 q^{60} +1.32803 q^{61} +1.32803 q^{62} +5.20191 q^{63} +1.00000 q^{64} -4.41973 q^{65} +3.32803 q^{66} +1.32803 q^{67} +4.00000 q^{68} -1.00000 q^{69} -17.3121 q^{70} -9.58027 q^{71} -1.00000 q^{72} -2.25224 q^{73} +5.07579 q^{74} -6.07579 q^{75} -1.20191 q^{76} +17.3121 q^{77} -1.32803 q^{78} -8.40382 q^{79} +3.32803 q^{80} +1.00000 q^{81} +0.924208 q^{82} -9.60574 q^{83} -5.20191 q^{84} +13.3121 q^{85} -11.8580 q^{86} +1.00000 q^{87} -3.32803 q^{88} -10.6561 q^{89} -3.32803 q^{90} -6.90830 q^{91} +1.00000 q^{92} +1.32803 q^{93} +10.6561 q^{94} -4.00000 q^{95} +1.00000 q^{96} +13.4542 q^{97} -20.0599 q^{98} +3.32803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 6 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 6 q^{7} - 3 q^{8} + 3 q^{9} + q^{10} - q^{11} - 3 q^{12} + 7 q^{13} - 6 q^{14} + q^{15} + 3 q^{16} + 12 q^{17} - 3 q^{18} + 6 q^{19} - q^{20} - 6 q^{21} + q^{22} + 3 q^{23} + 3 q^{24} + 10 q^{25} - 7 q^{26} - 3 q^{27} + 6 q^{28} - 3 q^{29} - q^{30} + 7 q^{31} - 3 q^{32} + q^{33} - 12 q^{34} + 8 q^{35} + 3 q^{36} - 7 q^{37} - 6 q^{38} - 7 q^{39} + q^{40} - 11 q^{41} + 6 q^{42} + 4 q^{43} - q^{44} - q^{45} - 3 q^{46} - 10 q^{47} - 3 q^{48} + 19 q^{49} - 10 q^{50} - 12 q^{51} + 7 q^{52} - 2 q^{53} + 3 q^{54} + 25 q^{55} - 6 q^{56} - 6 q^{57} + 3 q^{58} + 23 q^{59} + q^{60} - 7 q^{61} - 7 q^{62} + 6 q^{63} + 3 q^{64} - 27 q^{65} - q^{66} - 7 q^{67} + 12 q^{68} - 3 q^{69} - 8 q^{70} - 15 q^{71} - 3 q^{72} - 4 q^{73} + 7 q^{74} - 10 q^{75} + 6 q^{76} + 8 q^{77} + 7 q^{78} - 6 q^{79} - q^{80} + 3 q^{81} + 11 q^{82} - 6 q^{84} - 4 q^{85} - 4 q^{86} + 3 q^{87} + q^{88} - 10 q^{89} + q^{90} + 4 q^{91} + 3 q^{92} - 7 q^{93} + 10 q^{94} - 12 q^{95} + 3 q^{96} + 28 q^{97} - 19 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 3.32803 1.48834 0.744170 0.667990i \(-0.232845\pi\)
0.744170 + 0.667990i \(0.232845\pi\)
\(6\) 1.00000 0.408248
\(7\) 5.20191 1.96614 0.983069 0.183236i \(-0.0586573\pi\)
0.983069 + 0.183236i \(0.0586573\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −3.32803 −1.05242
\(11\) 3.32803 1.00344 0.501720 0.865030i \(-0.332701\pi\)
0.501720 + 0.865030i \(0.332701\pi\)
\(12\) −1.00000 −0.288675
\(13\) −1.32803 −0.368330 −0.184165 0.982895i \(-0.558958\pi\)
−0.184165 + 0.982895i \(0.558958\pi\)
\(14\) −5.20191 −1.39027
\(15\) −3.32803 −0.859294
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.20191 −0.275737 −0.137869 0.990451i \(-0.544025\pi\)
−0.137869 + 0.990451i \(0.544025\pi\)
\(20\) 3.32803 0.744170
\(21\) −5.20191 −1.13515
\(22\) −3.32803 −0.709539
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) 6.07579 1.21516
\(26\) 1.32803 0.260448
\(27\) −1.00000 −0.192450
\(28\) 5.20191 0.983069
\(29\) −1.00000 −0.185695
\(30\) 3.32803 0.607613
\(31\) −1.32803 −0.238521 −0.119261 0.992863i \(-0.538052\pi\)
−0.119261 + 0.992863i \(0.538052\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.32803 −0.579336
\(34\) −4.00000 −0.685994
\(35\) 17.3121 2.92628
\(36\) 1.00000 0.166667
\(37\) −5.07579 −0.834455 −0.417228 0.908802i \(-0.636998\pi\)
−0.417228 + 0.908802i \(0.636998\pi\)
\(38\) 1.20191 0.194976
\(39\) 1.32803 0.212655
\(40\) −3.32803 −0.526208
\(41\) −0.924208 −0.144337 −0.0721685 0.997392i \(-0.522992\pi\)
−0.0721685 + 0.997392i \(0.522992\pi\)
\(42\) 5.20191 0.802672
\(43\) 11.8580 1.80832 0.904162 0.427190i \(-0.140496\pi\)
0.904162 + 0.427190i \(0.140496\pi\)
\(44\) 3.32803 0.501720
\(45\) 3.32803 0.496114
\(46\) −1.00000 −0.147442
\(47\) −10.6561 −1.55435 −0.777173 0.629287i \(-0.783347\pi\)
−0.777173 + 0.629287i \(0.783347\pi\)
\(48\) −1.00000 −0.144338
\(49\) 20.0599 2.86570
\(50\) −6.07579 −0.859247
\(51\) −4.00000 −0.560112
\(52\) −1.32803 −0.184165
\(53\) 6.65606 0.914281 0.457140 0.889395i \(-0.348874\pi\)
0.457140 + 0.889395i \(0.348874\pi\)
\(54\) 1.00000 0.136083
\(55\) 11.0758 1.49346
\(56\) −5.20191 −0.695135
\(57\) 1.20191 0.159197
\(58\) 1.00000 0.131306
\(59\) 11.3280 1.47478 0.737392 0.675465i \(-0.236057\pi\)
0.737392 + 0.675465i \(0.236057\pi\)
\(60\) −3.32803 −0.429647
\(61\) 1.32803 0.170037 0.0850185 0.996379i \(-0.472905\pi\)
0.0850185 + 0.996379i \(0.472905\pi\)
\(62\) 1.32803 0.168660
\(63\) 5.20191 0.655379
\(64\) 1.00000 0.125000
\(65\) −4.41973 −0.548200
\(66\) 3.32803 0.409652
\(67\) 1.32803 0.162245 0.0811224 0.996704i \(-0.474150\pi\)
0.0811224 + 0.996704i \(0.474150\pi\)
\(68\) 4.00000 0.485071
\(69\) −1.00000 −0.120386
\(70\) −17.3121 −2.06919
\(71\) −9.58027 −1.13697 −0.568484 0.822694i \(-0.692470\pi\)
−0.568484 + 0.822694i \(0.692470\pi\)
\(72\) −1.00000 −0.117851
\(73\) −2.25224 −0.263605 −0.131802 0.991276i \(-0.542076\pi\)
−0.131802 + 0.991276i \(0.542076\pi\)
\(74\) 5.07579 0.590049
\(75\) −6.07579 −0.701572
\(76\) −1.20191 −0.137869
\(77\) 17.3121 1.97290
\(78\) −1.32803 −0.150370
\(79\) −8.40382 −0.945504 −0.472752 0.881196i \(-0.656739\pi\)
−0.472752 + 0.881196i \(0.656739\pi\)
\(80\) 3.32803 0.372085
\(81\) 1.00000 0.111111
\(82\) 0.924208 0.102062
\(83\) −9.60574 −1.05437 −0.527183 0.849752i \(-0.676752\pi\)
−0.527183 + 0.849752i \(0.676752\pi\)
\(84\) −5.20191 −0.567575
\(85\) 13.3121 1.44390
\(86\) −11.8580 −1.27868
\(87\) 1.00000 0.107211
\(88\) −3.32803 −0.354769
\(89\) −10.6561 −1.12954 −0.564770 0.825248i \(-0.691035\pi\)
−0.564770 + 0.825248i \(0.691035\pi\)
\(90\) −3.32803 −0.350805
\(91\) −6.90830 −0.724187
\(92\) 1.00000 0.104257
\(93\) 1.32803 0.137710
\(94\) 10.6561 1.09909
\(95\) −4.00000 −0.410391
\(96\) 1.00000 0.102062
\(97\) 13.4542 1.36606 0.683031 0.730389i \(-0.260661\pi\)
0.683031 + 0.730389i \(0.260661\pi\)
\(98\) −20.0599 −2.02635
\(99\) 3.32803 0.334480
\(100\) 6.07579 0.607579
\(101\) 19.4796 1.93829 0.969147 0.246483i \(-0.0792750\pi\)
0.969147 + 0.246483i \(0.0792750\pi\)
\(102\) 4.00000 0.396059
\(103\) 6.12612 0.603624 0.301812 0.953367i \(-0.402408\pi\)
0.301812 + 0.953367i \(0.402408\pi\)
\(104\) 1.32803 0.130224
\(105\) −17.3121 −1.68949
\(106\) −6.65606 −0.646494
\(107\) −7.45415 −0.720620 −0.360310 0.932833i \(-0.617329\pi\)
−0.360310 + 0.932833i \(0.617329\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 3.05033 0.292168 0.146084 0.989272i \(-0.453333\pi\)
0.146084 + 0.989272i \(0.453333\pi\)
\(110\) −11.0758 −1.05604
\(111\) 5.07579 0.481773
\(112\) 5.20191 0.491534
\(113\) −16.5554 −1.55740 −0.778701 0.627395i \(-0.784121\pi\)
−0.778701 + 0.627395i \(0.784121\pi\)
\(114\) −1.20191 −0.112569
\(115\) 3.32803 0.310341
\(116\) −1.00000 −0.0928477
\(117\) −1.32803 −0.122777
\(118\) −11.3280 −1.04283
\(119\) 20.8076 1.90743
\(120\) 3.32803 0.303806
\(121\) 0.0757923 0.00689021
\(122\) −1.32803 −0.120234
\(123\) 0.924208 0.0833330
\(124\) −1.32803 −0.119261
\(125\) 3.58027 0.320229
\(126\) −5.20191 −0.463423
\(127\) 0.924208 0.0820102 0.0410051 0.999159i \(-0.486944\pi\)
0.0410051 + 0.999159i \(0.486944\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −11.8580 −1.04404
\(130\) 4.41973 0.387636
\(131\) −21.4637 −1.87529 −0.937647 0.347590i \(-0.887000\pi\)
−0.937647 + 0.347590i \(0.887000\pi\)
\(132\) −3.32803 −0.289668
\(133\) −6.25224 −0.542138
\(134\) −1.32803 −0.114724
\(135\) −3.32803 −0.286431
\(136\) −4.00000 −0.342997
\(137\) −14.9083 −1.27370 −0.636851 0.770987i \(-0.719763\pi\)
−0.636851 + 0.770987i \(0.719763\pi\)
\(138\) 1.00000 0.0851257
\(139\) −0.403824 −0.0342519 −0.0171259 0.999853i \(-0.505452\pi\)
−0.0171259 + 0.999853i \(0.505452\pi\)
\(140\) 17.3121 1.46314
\(141\) 10.6561 0.897402
\(142\) 9.58027 0.803958
\(143\) −4.41973 −0.369596
\(144\) 1.00000 0.0833333
\(145\) −3.32803 −0.276378
\(146\) 2.25224 0.186397
\(147\) −20.0599 −1.65451
\(148\) −5.07579 −0.417228
\(149\) −18.2363 −1.49398 −0.746989 0.664836i \(-0.768501\pi\)
−0.746989 + 0.664836i \(0.768501\pi\)
\(150\) 6.07579 0.496086
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 1.20191 0.0974879
\(153\) 4.00000 0.323381
\(154\) −17.3121 −1.39505
\(155\) −4.41973 −0.355001
\(156\) 1.32803 0.106328
\(157\) −5.49552 −0.438590 −0.219295 0.975659i \(-0.570376\pi\)
−0.219295 + 0.975659i \(0.570376\pi\)
\(158\) 8.40382 0.668572
\(159\) −6.65606 −0.527860
\(160\) −3.32803 −0.263104
\(161\) 5.20191 0.409968
\(162\) −1.00000 −0.0785674
\(163\) −9.47962 −0.742501 −0.371250 0.928533i \(-0.621071\pi\)
−0.371250 + 0.928533i \(0.621071\pi\)
\(164\) −0.924208 −0.0721685
\(165\) −11.0758 −0.862249
\(166\) 9.60574 0.745550
\(167\) −16.3879 −1.26814 −0.634068 0.773278i \(-0.718616\pi\)
−0.634068 + 0.773278i \(0.718616\pi\)
\(168\) 5.20191 0.401336
\(169\) −11.2363 −0.864333
\(170\) −13.3121 −1.02099
\(171\) −1.20191 −0.0919125
\(172\) 11.8580 0.904162
\(173\) −14.6561 −1.11428 −0.557140 0.830419i \(-0.688101\pi\)
−0.557140 + 0.830419i \(0.688101\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 31.6057 2.38917
\(176\) 3.32803 0.250860
\(177\) −11.3280 −0.851467
\(178\) 10.6561 0.798706
\(179\) 22.4038 1.67454 0.837270 0.546789i \(-0.184150\pi\)
0.837270 + 0.546789i \(0.184150\pi\)
\(180\) 3.32803 0.248057
\(181\) 1.45415 0.108086 0.0540431 0.998539i \(-0.482789\pi\)
0.0540431 + 0.998539i \(0.482789\pi\)
\(182\) 6.90830 0.512077
\(183\) −1.32803 −0.0981709
\(184\) −1.00000 −0.0737210
\(185\) −16.8924 −1.24195
\(186\) −1.32803 −0.0973760
\(187\) 13.3121 0.973479
\(188\) −10.6561 −0.777173
\(189\) −5.20191 −0.378383
\(190\) 4.00000 0.290191
\(191\) 13.1860 0.954106 0.477053 0.878875i \(-0.341705\pi\)
0.477053 + 0.878875i \(0.341705\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −8.65606 −0.623077 −0.311539 0.950234i \(-0.600844\pi\)
−0.311539 + 0.950234i \(0.600844\pi\)
\(194\) −13.4542 −0.965952
\(195\) 4.41973 0.316503
\(196\) 20.0599 1.43285
\(197\) −2.50448 −0.178437 −0.0892183 0.996012i \(-0.528437\pi\)
−0.0892183 + 0.996012i \(0.528437\pi\)
\(198\) −3.32803 −0.236513
\(199\) 12.5299 0.888224 0.444112 0.895971i \(-0.353519\pi\)
0.444112 + 0.895971i \(0.353519\pi\)
\(200\) −6.07579 −0.429623
\(201\) −1.32803 −0.0936721
\(202\) −19.4796 −1.37058
\(203\) −5.20191 −0.365103
\(204\) −4.00000 −0.280056
\(205\) −3.07579 −0.214823
\(206\) −6.12612 −0.426827
\(207\) 1.00000 0.0695048
\(208\) −1.32803 −0.0920824
\(209\) −4.00000 −0.276686
\(210\) 17.3121 1.19465
\(211\) 0.671969 0.0462602 0.0231301 0.999732i \(-0.492637\pi\)
0.0231301 + 0.999732i \(0.492637\pi\)
\(212\) 6.65606 0.457140
\(213\) 9.58027 0.656429
\(214\) 7.45415 0.509555
\(215\) 39.4637 2.69140
\(216\) 1.00000 0.0680414
\(217\) −6.90830 −0.468966
\(218\) −3.05033 −0.206594
\(219\) 2.25224 0.152192
\(220\) 11.0758 0.746730
\(221\) −5.31213 −0.357332
\(222\) −5.07579 −0.340665
\(223\) 29.3121 1.96289 0.981443 0.191756i \(-0.0614184\pi\)
0.981443 + 0.191756i \(0.0614184\pi\)
\(224\) −5.20191 −0.347567
\(225\) 6.07579 0.405053
\(226\) 16.5554 1.10125
\(227\) 9.60574 0.637555 0.318778 0.947830i \(-0.396728\pi\)
0.318778 + 0.947830i \(0.396728\pi\)
\(228\) 1.20191 0.0795986
\(229\) −21.2962 −1.40729 −0.703647 0.710550i \(-0.748446\pi\)
−0.703647 + 0.710550i \(0.748446\pi\)
\(230\) −3.32803 −0.219444
\(231\) −17.3121 −1.13905
\(232\) 1.00000 0.0656532
\(233\) 13.7478 0.900646 0.450323 0.892866i \(-0.351309\pi\)
0.450323 + 0.892866i \(0.351309\pi\)
\(234\) 1.32803 0.0868161
\(235\) −35.4637 −2.31340
\(236\) 11.3280 0.737392
\(237\) 8.40382 0.545887
\(238\) −20.8076 −1.34876
\(239\) 12.2363 0.791503 0.395751 0.918358i \(-0.370484\pi\)
0.395751 + 0.918358i \(0.370484\pi\)
\(240\) −3.32803 −0.214823
\(241\) −7.05989 −0.454767 −0.227384 0.973805i \(-0.573017\pi\)
−0.227384 + 0.973805i \(0.573017\pi\)
\(242\) −0.0757923 −0.00487211
\(243\) −1.00000 −0.0641500
\(244\) 1.32803 0.0850185
\(245\) 66.7599 4.26514
\(246\) −0.924208 −0.0589253
\(247\) 1.59618 0.101562
\(248\) 1.32803 0.0843301
\(249\) 9.60574 0.608739
\(250\) −3.58027 −0.226436
\(251\) −9.98409 −0.630190 −0.315095 0.949060i \(-0.602036\pi\)
−0.315095 + 0.949060i \(0.602036\pi\)
\(252\) 5.20191 0.327690
\(253\) 3.32803 0.209232
\(254\) −0.924208 −0.0579900
\(255\) −13.3121 −0.833638
\(256\) 1.00000 0.0625000
\(257\) −13.2115 −0.824109 −0.412054 0.911159i \(-0.635189\pi\)
−0.412054 + 0.911159i \(0.635189\pi\)
\(258\) 11.8580 0.738245
\(259\) −26.4038 −1.64065
\(260\) −4.41973 −0.274100
\(261\) −1.00000 −0.0618984
\(262\) 21.4637 1.32603
\(263\) 17.3535 1.07006 0.535031 0.844832i \(-0.320300\pi\)
0.535031 + 0.844832i \(0.320300\pi\)
\(264\) 3.32803 0.204826
\(265\) 22.1516 1.36076
\(266\) 6.25224 0.383349
\(267\) 10.6561 0.652140
\(268\) 1.32803 0.0811224
\(269\) −28.4886 −1.73698 −0.868489 0.495708i \(-0.834909\pi\)
−0.868489 + 0.495708i \(0.834909\pi\)
\(270\) 3.32803 0.202538
\(271\) −8.41973 −0.511462 −0.255731 0.966748i \(-0.582316\pi\)
−0.255731 + 0.966748i \(0.582316\pi\)
\(272\) 4.00000 0.242536
\(273\) 6.90830 0.418109
\(274\) 14.9083 0.900643
\(275\) 20.2204 1.21934
\(276\) −1.00000 −0.0601929
\(277\) −1.83251 −0.110105 −0.0550524 0.998483i \(-0.517533\pi\)
−0.0550524 + 0.998483i \(0.517533\pi\)
\(278\) 0.403824 0.0242197
\(279\) −1.32803 −0.0795072
\(280\) −17.3121 −1.03460
\(281\) 2.11021 0.125885 0.0629424 0.998017i \(-0.479952\pi\)
0.0629424 + 0.998017i \(0.479952\pi\)
\(282\) −10.6561 −0.634559
\(283\) 20.8236 1.23783 0.618916 0.785457i \(-0.287572\pi\)
0.618916 + 0.785457i \(0.287572\pi\)
\(284\) −9.58027 −0.568484
\(285\) 4.00000 0.236940
\(286\) 4.41973 0.261344
\(287\) −4.80765 −0.283786
\(288\) −1.00000 −0.0589256
\(289\) −1.00000 −0.0588235
\(290\) 3.32803 0.195429
\(291\) −13.4542 −0.788696
\(292\) −2.25224 −0.131802
\(293\) −16.2618 −0.950024 −0.475012 0.879979i \(-0.657556\pi\)
−0.475012 + 0.879979i \(0.657556\pi\)
\(294\) 20.0599 1.16992
\(295\) 37.7000 2.19498
\(296\) 5.07579 0.295024
\(297\) −3.32803 −0.193112
\(298\) 18.2363 1.05640
\(299\) −1.32803 −0.0768020
\(300\) −6.07579 −0.350786
\(301\) 61.6841 3.55541
\(302\) −4.00000 −0.230174
\(303\) −19.4796 −1.11907
\(304\) −1.20191 −0.0689344
\(305\) 4.41973 0.253073
\(306\) −4.00000 −0.228665
\(307\) −20.1357 −1.14920 −0.574602 0.818433i \(-0.694843\pi\)
−0.574602 + 0.818433i \(0.694843\pi\)
\(308\) 17.3121 0.986450
\(309\) −6.12612 −0.348503
\(310\) 4.41973 0.251024
\(311\) −4.25224 −0.241122 −0.120561 0.992706i \(-0.538469\pi\)
−0.120561 + 0.992706i \(0.538469\pi\)
\(312\) −1.32803 −0.0751850
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 5.49552 0.310130
\(315\) 17.3121 0.975428
\(316\) −8.40382 −0.472752
\(317\) 24.4886 1.37542 0.687708 0.725988i \(-0.258617\pi\)
0.687708 + 0.725988i \(0.258617\pi\)
\(318\) 6.65606 0.373253
\(319\) −3.32803 −0.186334
\(320\) 3.32803 0.186043
\(321\) 7.45415 0.416050
\(322\) −5.20191 −0.289891
\(323\) −4.80765 −0.267505
\(324\) 1.00000 0.0555556
\(325\) −8.06884 −0.447579
\(326\) 9.47962 0.525027
\(327\) −3.05033 −0.168683
\(328\) 0.924208 0.0510308
\(329\) −55.4319 −3.05606
\(330\) 11.0758 0.609702
\(331\) 23.7159 1.30355 0.651773 0.758414i \(-0.274025\pi\)
0.651773 + 0.758414i \(0.274025\pi\)
\(332\) −9.60574 −0.527183
\(333\) −5.07579 −0.278152
\(334\) 16.3879 0.896707
\(335\) 4.41973 0.241476
\(336\) −5.20191 −0.283788
\(337\) 31.1860 1.69881 0.849405 0.527742i \(-0.176961\pi\)
0.849405 + 0.527742i \(0.176961\pi\)
\(338\) 11.2363 0.611176
\(339\) 16.5554 0.899166
\(340\) 13.3121 0.721951
\(341\) −4.41973 −0.239342
\(342\) 1.20191 0.0649919
\(343\) 67.9364 3.66822
\(344\) −11.8580 −0.639339
\(345\) −3.32803 −0.179175
\(346\) 14.6561 0.787915
\(347\) −10.1198 −0.543258 −0.271629 0.962402i \(-0.587562\pi\)
−0.271629 + 0.962402i \(0.587562\pi\)
\(348\) 1.00000 0.0536056
\(349\) 7.42869 0.397648 0.198824 0.980035i \(-0.436288\pi\)
0.198824 + 0.980035i \(0.436288\pi\)
\(350\) −31.6057 −1.68940
\(351\) 1.32803 0.0708851
\(352\) −3.32803 −0.177385
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 11.3280 0.602078
\(355\) −31.8834 −1.69220
\(356\) −10.6561 −0.564770
\(357\) −20.8076 −1.10126
\(358\) −22.4038 −1.18408
\(359\) 28.7663 1.51823 0.759113 0.650959i \(-0.225633\pi\)
0.759113 + 0.650959i \(0.225633\pi\)
\(360\) −3.32803 −0.175403
\(361\) −17.5554 −0.923969
\(362\) −1.45415 −0.0764285
\(363\) −0.0757923 −0.00397806
\(364\) −6.90830 −0.362093
\(365\) −7.49552 −0.392334
\(366\) 1.32803 0.0694173
\(367\) 15.5962 0.814114 0.407057 0.913403i \(-0.366555\pi\)
0.407057 + 0.913403i \(0.366555\pi\)
\(368\) 1.00000 0.0521286
\(369\) −0.924208 −0.0481123
\(370\) 16.8924 0.878194
\(371\) 34.6243 1.79760
\(372\) 1.32803 0.0688552
\(373\) −29.1701 −1.51037 −0.755185 0.655511i \(-0.772453\pi\)
−0.755185 + 0.655511i \(0.772453\pi\)
\(374\) −13.3121 −0.688354
\(375\) −3.58027 −0.184884
\(376\) 10.6561 0.549544
\(377\) 1.32803 0.0683971
\(378\) 5.20191 0.267557
\(379\) −6.26180 −0.321647 −0.160823 0.986983i \(-0.551415\pi\)
−0.160823 + 0.986983i \(0.551415\pi\)
\(380\) −4.00000 −0.205196
\(381\) −0.924208 −0.0473486
\(382\) −13.1860 −0.674655
\(383\) 30.1516 1.54067 0.770337 0.637637i \(-0.220088\pi\)
0.770337 + 0.637637i \(0.220088\pi\)
\(384\) 1.00000 0.0510310
\(385\) 57.6153 2.93635
\(386\) 8.65606 0.440582
\(387\) 11.8580 0.602775
\(388\) 13.4542 0.683031
\(389\) −18.3625 −0.931013 −0.465507 0.885044i \(-0.654128\pi\)
−0.465507 + 0.885044i \(0.654128\pi\)
\(390\) −4.41973 −0.223802
\(391\) 4.00000 0.202289
\(392\) −20.0599 −1.01318
\(393\) 21.4637 1.08270
\(394\) 2.50448 0.126174
\(395\) −27.9682 −1.40723
\(396\) 3.32803 0.167240
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) −12.5299 −0.628069
\(399\) 6.25224 0.313003
\(400\) 6.07579 0.303790
\(401\) −5.18601 −0.258977 −0.129488 0.991581i \(-0.541333\pi\)
−0.129488 + 0.991581i \(0.541333\pi\)
\(402\) 1.32803 0.0662362
\(403\) 1.76367 0.0878545
\(404\) 19.4796 0.969147
\(405\) 3.32803 0.165371
\(406\) 5.20191 0.258167
\(407\) −16.8924 −0.837325
\(408\) 4.00000 0.198030
\(409\) 11.8166 0.584293 0.292147 0.956374i \(-0.405630\pi\)
0.292147 + 0.956374i \(0.405630\pi\)
\(410\) 3.07579 0.151903
\(411\) 14.9083 0.735372
\(412\) 6.12612 0.301812
\(413\) 58.9274 2.89963
\(414\) −1.00000 −0.0491473
\(415\) −31.9682 −1.56926
\(416\) 1.32803 0.0651121
\(417\) 0.403824 0.0197753
\(418\) 4.00000 0.195646
\(419\) −26.1102 −1.27557 −0.637784 0.770216i \(-0.720149\pi\)
−0.637784 + 0.770216i \(0.720149\pi\)
\(420\) −17.3121 −0.844745
\(421\) 4.48857 0.218760 0.109380 0.994000i \(-0.465114\pi\)
0.109380 + 0.994000i \(0.465114\pi\)
\(422\) −0.671969 −0.0327109
\(423\) −10.6561 −0.518115
\(424\) −6.65606 −0.323247
\(425\) 24.3032 1.17888
\(426\) −9.58027 −0.464166
\(427\) 6.90830 0.334316
\(428\) −7.45415 −0.360310
\(429\) 4.41973 0.213387
\(430\) −39.4637 −1.90311
\(431\) −9.56436 −0.460699 −0.230350 0.973108i \(-0.573987\pi\)
−0.230350 + 0.973108i \(0.573987\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 23.3535 1.12230 0.561149 0.827715i \(-0.310360\pi\)
0.561149 + 0.827715i \(0.310360\pi\)
\(434\) 6.90830 0.331609
\(435\) 3.32803 0.159567
\(436\) 3.05033 0.146084
\(437\) −1.20191 −0.0574952
\(438\) −2.25224 −0.107616
\(439\) 4.83946 0.230975 0.115487 0.993309i \(-0.463157\pi\)
0.115487 + 0.993309i \(0.463157\pi\)
\(440\) −11.0758 −0.528018
\(441\) 20.0599 0.955233
\(442\) 5.31213 0.252672
\(443\) 37.4319 1.77844 0.889222 0.457477i \(-0.151247\pi\)
0.889222 + 0.457477i \(0.151247\pi\)
\(444\) 5.07579 0.240886
\(445\) −35.4637 −1.68114
\(446\) −29.3121 −1.38797
\(447\) 18.2363 0.862549
\(448\) 5.20191 0.245767
\(449\) −1.42869 −0.0674239 −0.0337119 0.999432i \(-0.510733\pi\)
−0.0337119 + 0.999432i \(0.510733\pi\)
\(450\) −6.07579 −0.286416
\(451\) −3.07579 −0.144833
\(452\) −16.5554 −0.778701
\(453\) −4.00000 −0.187936
\(454\) −9.60574 −0.450819
\(455\) −22.9910 −1.07784
\(456\) −1.20191 −0.0562847
\(457\) −7.84842 −0.367133 −0.183567 0.983007i \(-0.558764\pi\)
−0.183567 + 0.983007i \(0.558764\pi\)
\(458\) 21.2962 0.995107
\(459\) −4.00000 −0.186704
\(460\) 3.32803 0.155170
\(461\) −35.9523 −1.67446 −0.837232 0.546847i \(-0.815828\pi\)
−0.837232 + 0.546847i \(0.815828\pi\)
\(462\) 17.3121 0.805433
\(463\) 28.3032 1.31536 0.657680 0.753298i \(-0.271538\pi\)
0.657680 + 0.753298i \(0.271538\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 4.41973 0.204960
\(466\) −13.7478 −0.636853
\(467\) −37.7000 −1.74455 −0.872275 0.489016i \(-0.837356\pi\)
−0.872275 + 0.489016i \(0.837356\pi\)
\(468\) −1.32803 −0.0613883
\(469\) 6.90830 0.318996
\(470\) 35.4637 1.63582
\(471\) 5.49552 0.253220
\(472\) −11.3280 −0.521415
\(473\) 39.4637 1.81454
\(474\) −8.40382 −0.386000
\(475\) −7.30257 −0.335065
\(476\) 20.8076 0.953717
\(477\) 6.65606 0.304760
\(478\) −12.2363 −0.559677
\(479\) −13.7732 −0.629315 −0.314657 0.949205i \(-0.601890\pi\)
−0.314657 + 0.949205i \(0.601890\pi\)
\(480\) 3.32803 0.151903
\(481\) 6.74081 0.307355
\(482\) 7.05989 0.321569
\(483\) −5.20191 −0.236695
\(484\) 0.0757923 0.00344510
\(485\) 44.7758 2.03317
\(486\) 1.00000 0.0453609
\(487\) −16.3032 −0.738767 −0.369384 0.929277i \(-0.620431\pi\)
−0.369384 + 0.929277i \(0.620431\pi\)
\(488\) −1.32803 −0.0601172
\(489\) 9.47962 0.428683
\(490\) −66.7599 −3.01591
\(491\) 3.31213 0.149474 0.0747371 0.997203i \(-0.476188\pi\)
0.0747371 + 0.997203i \(0.476188\pi\)
\(492\) 0.924208 0.0416665
\(493\) −4.00000 −0.180151
\(494\) −1.59618 −0.0718154
\(495\) 11.0758 0.497820
\(496\) −1.32803 −0.0596304
\(497\) −49.8357 −2.23544
\(498\) −9.60574 −0.430443
\(499\) −31.0281 −1.38901 −0.694504 0.719489i \(-0.744376\pi\)
−0.694504 + 0.719489i \(0.744376\pi\)
\(500\) 3.58027 0.160115
\(501\) 16.3879 0.732158
\(502\) 9.98409 0.445612
\(503\) 29.8580 1.33130 0.665651 0.746264i \(-0.268154\pi\)
0.665651 + 0.746264i \(0.268154\pi\)
\(504\) −5.20191 −0.231712
\(505\) 64.8288 2.88484
\(506\) −3.32803 −0.147949
\(507\) 11.2363 0.499023
\(508\) 0.924208 0.0410051
\(509\) 23.1605 1.02657 0.513286 0.858217i \(-0.328428\pi\)
0.513286 + 0.858217i \(0.328428\pi\)
\(510\) 13.3121 0.589471
\(511\) −11.7159 −0.518283
\(512\) −1.00000 −0.0441942
\(513\) 1.20191 0.0530657
\(514\) 13.2115 0.582733
\(515\) 20.3879 0.898399
\(516\) −11.8580 −0.522018
\(517\) −35.4637 −1.55969
\(518\) 26.4038 1.16012
\(519\) 14.6561 0.643330
\(520\) 4.41973 0.193818
\(521\) −25.6057 −1.12181 −0.560904 0.827881i \(-0.689546\pi\)
−0.560904 + 0.827881i \(0.689546\pi\)
\(522\) 1.00000 0.0437688
\(523\) 1.83251 0.0801300 0.0400650 0.999197i \(-0.487243\pi\)
0.0400650 + 0.999197i \(0.487243\pi\)
\(524\) −21.4637 −0.937647
\(525\) −31.6057 −1.37939
\(526\) −17.3535 −0.756648
\(527\) −5.31213 −0.231400
\(528\) −3.32803 −0.144834
\(529\) 1.00000 0.0434783
\(530\) −22.1516 −0.962203
\(531\) 11.3280 0.491595
\(532\) −6.25224 −0.271069
\(533\) 1.22738 0.0531636
\(534\) −10.6561 −0.461133
\(535\) −24.8076 −1.07253
\(536\) −1.32803 −0.0573622
\(537\) −22.4038 −0.966796
\(538\) 28.4886 1.22823
\(539\) 66.7599 2.87555
\(540\) −3.32803 −0.143216
\(541\) 2.94011 0.126405 0.0632027 0.998001i \(-0.479869\pi\)
0.0632027 + 0.998001i \(0.479869\pi\)
\(542\) 8.41973 0.361658
\(543\) −1.45415 −0.0624036
\(544\) −4.00000 −0.171499
\(545\) 10.1516 0.434846
\(546\) −6.90830 −0.295648
\(547\) −24.8765 −1.06364 −0.531821 0.846857i \(-0.678492\pi\)
−0.531821 + 0.846857i \(0.678492\pi\)
\(548\) −14.9083 −0.636851
\(549\) 1.32803 0.0566790
\(550\) −20.2204 −0.862202
\(551\) 1.20191 0.0512032
\(552\) 1.00000 0.0425628
\(553\) −43.7159 −1.85899
\(554\) 1.83251 0.0778559
\(555\) 16.8924 0.717042
\(556\) −0.403824 −0.0171259
\(557\) −19.6312 −0.831801 −0.415900 0.909410i \(-0.636533\pi\)
−0.415900 + 0.909410i \(0.636533\pi\)
\(558\) 1.32803 0.0562200
\(559\) −15.7478 −0.666059
\(560\) 17.3121 0.731571
\(561\) −13.3121 −0.562038
\(562\) −2.11021 −0.0890140
\(563\) −3.02486 −0.127483 −0.0637414 0.997966i \(-0.520303\pi\)
−0.0637414 + 0.997966i \(0.520303\pi\)
\(564\) 10.6561 0.448701
\(565\) −55.0969 −2.31794
\(566\) −20.8236 −0.875279
\(567\) 5.20191 0.218460
\(568\) 9.58027 0.401979
\(569\) −17.8993 −0.750380 −0.375190 0.926948i \(-0.622422\pi\)
−0.375190 + 0.926948i \(0.622422\pi\)
\(570\) −4.00000 −0.167542
\(571\) −4.74081 −0.198397 −0.0991984 0.995068i \(-0.531628\pi\)
−0.0991984 + 0.995068i \(0.531628\pi\)
\(572\) −4.41973 −0.184798
\(573\) −13.1860 −0.550853
\(574\) 4.80765 0.200667
\(575\) 6.07579 0.253378
\(576\) 1.00000 0.0416667
\(577\) 20.6561 0.859923 0.429962 0.902847i \(-0.358527\pi\)
0.429962 + 0.902847i \(0.358527\pi\)
\(578\) 1.00000 0.0415945
\(579\) 8.65606 0.359734
\(580\) −3.32803 −0.138189
\(581\) −49.9682 −2.07303
\(582\) 13.4542 0.557692
\(583\) 22.1516 0.917425
\(584\) 2.25224 0.0931983
\(585\) −4.41973 −0.182733
\(586\) 16.2618 0.671769
\(587\) −14.6879 −0.606233 −0.303117 0.952953i \(-0.598027\pi\)
−0.303117 + 0.952953i \(0.598027\pi\)
\(588\) −20.0599 −0.827256
\(589\) 1.59618 0.0657693
\(590\) −37.7000 −1.55209
\(591\) 2.50448 0.103020
\(592\) −5.07579 −0.208614
\(593\) 1.16054 0.0476577 0.0238288 0.999716i \(-0.492414\pi\)
0.0238288 + 0.999716i \(0.492414\pi\)
\(594\) 3.32803 0.136551
\(595\) 69.2485 2.83891
\(596\) −18.2363 −0.746989
\(597\) −12.5299 −0.512816
\(598\) 1.32803 0.0543072
\(599\) 3.41278 0.139442 0.0697212 0.997567i \(-0.477789\pi\)
0.0697212 + 0.997567i \(0.477789\pi\)
\(600\) 6.07579 0.248043
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) −61.6841 −2.51406
\(603\) 1.32803 0.0540816
\(604\) 4.00000 0.162758
\(605\) 0.252239 0.0102550
\(606\) 19.4796 0.791305
\(607\) −4.94011 −0.200513 −0.100257 0.994962i \(-0.531966\pi\)
−0.100257 + 0.994962i \(0.531966\pi\)
\(608\) 1.20191 0.0487440
\(609\) 5.20191 0.210792
\(610\) −4.41973 −0.178950
\(611\) 14.1516 0.572512
\(612\) 4.00000 0.161690
\(613\) 44.3625 1.79178 0.895891 0.444273i \(-0.146538\pi\)
0.895891 + 0.444273i \(0.146538\pi\)
\(614\) 20.1357 0.812610
\(615\) 3.07579 0.124028
\(616\) −17.3121 −0.697525
\(617\) 25.5644 1.02918 0.514591 0.857436i \(-0.327944\pi\)
0.514591 + 0.857436i \(0.327944\pi\)
\(618\) 6.12612 0.246429
\(619\) 7.35350 0.295562 0.147781 0.989020i \(-0.452787\pi\)
0.147781 + 0.989020i \(0.452787\pi\)
\(620\) −4.41973 −0.177501
\(621\) −1.00000 −0.0401286
\(622\) 4.25224 0.170499
\(623\) −55.4319 −2.22083
\(624\) 1.32803 0.0531638
\(625\) −18.4637 −0.738548
\(626\) −14.0000 −0.559553
\(627\) 4.00000 0.159745
\(628\) −5.49552 −0.219295
\(629\) −20.3032 −0.809540
\(630\) −17.3121 −0.689732
\(631\) 34.0943 1.35727 0.678636 0.734474i \(-0.262571\pi\)
0.678636 + 0.734474i \(0.262571\pi\)
\(632\) 8.40382 0.334286
\(633\) −0.671969 −0.0267084
\(634\) −24.4886 −0.972565
\(635\) 3.07579 0.122059
\(636\) −6.65606 −0.263930
\(637\) −26.6402 −1.05552
\(638\) 3.32803 0.131758
\(639\) −9.58027 −0.378990
\(640\) −3.32803 −0.131552
\(641\) −14.9083 −0.588843 −0.294421 0.955676i \(-0.595127\pi\)
−0.294421 + 0.955676i \(0.595127\pi\)
\(642\) −7.45415 −0.294192
\(643\) −24.0688 −0.949182 −0.474591 0.880206i \(-0.657404\pi\)
−0.474591 + 0.880206i \(0.657404\pi\)
\(644\) 5.20191 0.204984
\(645\) −39.4637 −1.55388
\(646\) 4.80765 0.189154
\(647\) −17.3790 −0.683237 −0.341619 0.939839i \(-0.610975\pi\)
−0.341619 + 0.939839i \(0.610975\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 37.7000 1.47986
\(650\) 8.06884 0.316486
\(651\) 6.90830 0.270758
\(652\) −9.47962 −0.371250
\(653\) −35.1956 −1.37731 −0.688654 0.725090i \(-0.741798\pi\)
−0.688654 + 0.725090i \(0.741798\pi\)
\(654\) 3.05033 0.119277
\(655\) −71.4319 −2.79108
\(656\) −0.924208 −0.0360842
\(657\) −2.25224 −0.0878682
\(658\) 55.4319 2.16096
\(659\) 12.3032 0.479263 0.239632 0.970864i \(-0.422973\pi\)
0.239632 + 0.970864i \(0.422973\pi\)
\(660\) −11.0758 −0.431125
\(661\) 34.0096 1.32282 0.661409 0.750025i \(-0.269959\pi\)
0.661409 + 0.750025i \(0.269959\pi\)
\(662\) −23.7159 −0.921747
\(663\) 5.31213 0.206306
\(664\) 9.60574 0.372775
\(665\) −20.8076 −0.806886
\(666\) 5.07579 0.196683
\(667\) −1.00000 −0.0387202
\(668\) −16.3879 −0.634068
\(669\) −29.3121 −1.13327
\(670\) −4.41973 −0.170749
\(671\) 4.41973 0.170622
\(672\) 5.20191 0.200668
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) −31.1860 −1.20124
\(675\) −6.07579 −0.233857
\(676\) −11.2363 −0.432167
\(677\) −44.7854 −1.72124 −0.860621 0.509246i \(-0.829924\pi\)
−0.860621 + 0.509246i \(0.829924\pi\)
\(678\) −16.5554 −0.635807
\(679\) 69.9873 2.68587
\(680\) −13.3121 −0.510497
\(681\) −9.60574 −0.368093
\(682\) 4.41973 0.169240
\(683\) 24.9242 0.953698 0.476849 0.878985i \(-0.341779\pi\)
0.476849 + 0.878985i \(0.341779\pi\)
\(684\) −1.20191 −0.0459562
\(685\) −49.6153 −1.89570
\(686\) −67.9364 −2.59382
\(687\) 21.2962 0.812501
\(688\) 11.8580 0.452081
\(689\) −8.83946 −0.336757
\(690\) 3.32803 0.126696
\(691\) 42.9592 1.63425 0.817123 0.576463i \(-0.195568\pi\)
0.817123 + 0.576463i \(0.195568\pi\)
\(692\) −14.6561 −0.557140
\(693\) 17.3121 0.657633
\(694\) 10.1198 0.384141
\(695\) −1.34394 −0.0509785
\(696\) −1.00000 −0.0379049
\(697\) −3.69683 −0.140027
\(698\) −7.42869 −0.281180
\(699\) −13.7478 −0.519988
\(700\) 31.6057 1.19458
\(701\) −14.8236 −0.559878 −0.279939 0.960018i \(-0.590314\pi\)
−0.279939 + 0.960018i \(0.590314\pi\)
\(702\) −1.32803 −0.0501233
\(703\) 6.10065 0.230091
\(704\) 3.32803 0.125430
\(705\) 35.4637 1.33564
\(706\) −2.00000 −0.0752710
\(707\) 101.331 3.81095
\(708\) −11.3280 −0.425733
\(709\) 27.4044 1.02919 0.514597 0.857432i \(-0.327941\pi\)
0.514597 + 0.857432i \(0.327941\pi\)
\(710\) 31.8834 1.19656
\(711\) −8.40382 −0.315168
\(712\) 10.6561 0.399353
\(713\) −1.32803 −0.0497352
\(714\) 20.8076 0.778707
\(715\) −14.7090 −0.550085
\(716\) 22.4038 0.837270
\(717\) −12.2363 −0.456974
\(718\) −28.7663 −1.07355
\(719\) −2.06684 −0.0770800 −0.0385400 0.999257i \(-0.512271\pi\)
−0.0385400 + 0.999257i \(0.512271\pi\)
\(720\) 3.32803 0.124028
\(721\) 31.8675 1.18681
\(722\) 17.5554 0.653345
\(723\) 7.05989 0.262560
\(724\) 1.45415 0.0540431
\(725\) −6.07579 −0.225649
\(726\) 0.0757923 0.00281291
\(727\) −5.71595 −0.211993 −0.105996 0.994367i \(-0.533803\pi\)
−0.105996 + 0.994367i \(0.533803\pi\)
\(728\) 6.90830 0.256039
\(729\) 1.00000 0.0370370
\(730\) 7.49552 0.277422
\(731\) 47.4319 1.75433
\(732\) −1.32803 −0.0490854
\(733\) 46.6593 1.72340 0.861700 0.507418i \(-0.169400\pi\)
0.861700 + 0.507418i \(0.169400\pi\)
\(734\) −15.5962 −0.575665
\(735\) −66.7599 −2.46248
\(736\) −1.00000 −0.0368605
\(737\) 4.41973 0.162803
\(738\) 0.924208 0.0340206
\(739\) −26.5395 −0.976271 −0.488136 0.872768i \(-0.662323\pi\)
−0.488136 + 0.872768i \(0.662323\pi\)
\(740\) −16.8924 −0.620977
\(741\) −1.59618 −0.0586370
\(742\) −34.6243 −1.27110
\(743\) −12.6306 −0.463372 −0.231686 0.972791i \(-0.574424\pi\)
−0.231686 + 0.972791i \(0.574424\pi\)
\(744\) −1.32803 −0.0486880
\(745\) −60.6911 −2.22355
\(746\) 29.1701 1.06799
\(747\) −9.60574 −0.351455
\(748\) 13.3121 0.486740
\(749\) −38.7758 −1.41684
\(750\) 3.58027 0.130733
\(751\) 18.2522 0.666034 0.333017 0.942921i \(-0.391933\pi\)
0.333017 + 0.942921i \(0.391933\pi\)
\(752\) −10.6561 −0.388587
\(753\) 9.98409 0.363841
\(754\) −1.32803 −0.0483640
\(755\) 13.3121 0.484478
\(756\) −5.20191 −0.189192
\(757\) 19.4478 0.706842 0.353421 0.935464i \(-0.385018\pi\)
0.353421 + 0.935464i \(0.385018\pi\)
\(758\) 6.26180 0.227439
\(759\) −3.32803 −0.120800
\(760\) 4.00000 0.145095
\(761\) −20.9274 −0.758618 −0.379309 0.925270i \(-0.623838\pi\)
−0.379309 + 0.925270i \(0.623838\pi\)
\(762\) 0.924208 0.0334805
\(763\) 15.8675 0.574443
\(764\) 13.1860 0.477053
\(765\) 13.3121 0.481301
\(766\) −30.1516 −1.08942
\(767\) −15.0440 −0.543207
\(768\) −1.00000 −0.0360844
\(769\) 16.5809 0.597922 0.298961 0.954265i \(-0.403360\pi\)
0.298961 + 0.954265i \(0.403360\pi\)
\(770\) −57.6153 −2.07631
\(771\) 13.2115 0.475799
\(772\) −8.65606 −0.311539
\(773\) 21.6567 0.778936 0.389468 0.921040i \(-0.372659\pi\)
0.389468 + 0.921040i \(0.372659\pi\)
\(774\) −11.8580 −0.426226
\(775\) −8.06884 −0.289841
\(776\) −13.4542 −0.482976
\(777\) 26.4038 0.947232
\(778\) 18.3625 0.658326
\(779\) 1.11082 0.0397991
\(780\) 4.41973 0.158252
\(781\) −31.8834 −1.14088
\(782\) −4.00000 −0.143040
\(783\) 1.00000 0.0357371
\(784\) 20.0599 0.716425
\(785\) −18.2893 −0.652772
\(786\) −21.4637 −0.765585
\(787\) 18.1675 0.647601 0.323801 0.946125i \(-0.395039\pi\)
0.323801 + 0.946125i \(0.395039\pi\)
\(788\) −2.50448 −0.0892183
\(789\) −17.3535 −0.617801
\(790\) 27.9682 0.995063
\(791\) −86.1198 −3.06207
\(792\) −3.32803 −0.118256
\(793\) −1.76367 −0.0626297
\(794\) 10.0000 0.354887
\(795\) −22.1516 −0.785636
\(796\) 12.5299 0.444112
\(797\) −45.0185 −1.59464 −0.797319 0.603558i \(-0.793749\pi\)
−0.797319 + 0.603558i \(0.793749\pi\)
\(798\) −6.25224 −0.221327
\(799\) −42.6243 −1.50794
\(800\) −6.07579 −0.214812
\(801\) −10.6561 −0.376513
\(802\) 5.18601 0.183124
\(803\) −7.49552 −0.264511
\(804\) −1.32803 −0.0468361
\(805\) 17.3121 0.610172
\(806\) −1.76367 −0.0621225
\(807\) 28.4886 1.00285
\(808\) −19.4796 −0.685290
\(809\) −28.3879 −0.998066 −0.499033 0.866583i \(-0.666311\pi\)
−0.499033 + 0.866583i \(0.666311\pi\)
\(810\) −3.32803 −0.116935
\(811\) −19.2612 −0.676352 −0.338176 0.941083i \(-0.609810\pi\)
−0.338176 + 0.941083i \(0.609810\pi\)
\(812\) −5.20191 −0.182551
\(813\) 8.41973 0.295293
\(814\) 16.8924 0.592078
\(815\) −31.5485 −1.10509
\(816\) −4.00000 −0.140028
\(817\) −14.2522 −0.498623
\(818\) −11.8166 −0.413158
\(819\) −6.90830 −0.241396
\(820\) −3.07579 −0.107411
\(821\) 3.49552 0.121995 0.0609973 0.998138i \(-0.480572\pi\)
0.0609973 + 0.998138i \(0.480572\pi\)
\(822\) −14.9083 −0.519987
\(823\) −18.2045 −0.634570 −0.317285 0.948330i \(-0.602771\pi\)
−0.317285 + 0.948330i \(0.602771\pi\)
\(824\) −6.12612 −0.213413
\(825\) −20.2204 −0.703985
\(826\) −58.9274 −2.05035
\(827\) 25.7000 0.893678 0.446839 0.894614i \(-0.352550\pi\)
0.446839 + 0.894614i \(0.352550\pi\)
\(828\) 1.00000 0.0347524
\(829\) −34.7758 −1.20781 −0.603907 0.797055i \(-0.706390\pi\)
−0.603907 + 0.797055i \(0.706390\pi\)
\(830\) 31.9682 1.10963
\(831\) 1.83251 0.0635690
\(832\) −1.32803 −0.0460412
\(833\) 80.2395 2.78014
\(834\) −0.403824 −0.0139833
\(835\) −54.5395 −1.88742
\(836\) −4.00000 −0.138343
\(837\) 1.32803 0.0459035
\(838\) 26.1102 0.901962
\(839\) 38.2459 1.32039 0.660197 0.751092i \(-0.270473\pi\)
0.660197 + 0.751092i \(0.270473\pi\)
\(840\) 17.3121 0.597325
\(841\) 1.00000 0.0344828
\(842\) −4.48857 −0.154686
\(843\) −2.11021 −0.0726796
\(844\) 0.671969 0.0231301
\(845\) −37.3949 −1.28642
\(846\) 10.6561 0.366363
\(847\) 0.394265 0.0135471
\(848\) 6.65606 0.228570
\(849\) −20.8236 −0.714662
\(850\) −24.3032 −0.833592
\(851\) −5.07579 −0.173996
\(852\) 9.58027 0.328215
\(853\) −53.4637 −1.83056 −0.915281 0.402815i \(-0.868032\pi\)
−0.915281 + 0.402815i \(0.868032\pi\)
\(854\) −6.90830 −0.236397
\(855\) −4.00000 −0.136797
\(856\) 7.45415 0.254778
\(857\) 4.10065 0.140076 0.0700378 0.997544i \(-0.477688\pi\)
0.0700378 + 0.997544i \(0.477688\pi\)
\(858\) −4.41973 −0.150887
\(859\) −49.1108 −1.67564 −0.837820 0.545947i \(-0.816170\pi\)
−0.837820 + 0.545947i \(0.816170\pi\)
\(860\) 39.4637 1.34570
\(861\) 4.80765 0.163844
\(862\) 9.56436 0.325764
\(863\) −45.1956 −1.53847 −0.769237 0.638963i \(-0.779364\pi\)
−0.769237 + 0.638963i \(0.779364\pi\)
\(864\) 1.00000 0.0340207
\(865\) −48.7758 −1.65843
\(866\) −23.3535 −0.793584
\(867\) 1.00000 0.0339618
\(868\) −6.90830 −0.234483
\(869\) −27.9682 −0.948756
\(870\) −3.32803 −0.112831
\(871\) −1.76367 −0.0597596
\(872\) −3.05033 −0.103297
\(873\) 13.4542 0.455354
\(874\) 1.20191 0.0406553
\(875\) 18.6243 0.629615
\(876\) 2.25224 0.0760961
\(877\) 27.8993 0.942094 0.471047 0.882108i \(-0.343876\pi\)
0.471047 + 0.882108i \(0.343876\pi\)
\(878\) −4.83946 −0.163324
\(879\) 16.2618 0.548497
\(880\) 11.0758 0.373365
\(881\) 58.0880 1.95703 0.978517 0.206168i \(-0.0660994\pi\)
0.978517 + 0.206168i \(0.0660994\pi\)
\(882\) −20.0599 −0.675452
\(883\) 1.51343 0.0509311 0.0254656 0.999676i \(-0.491893\pi\)
0.0254656 + 0.999676i \(0.491893\pi\)
\(884\) −5.31213 −0.178666
\(885\) −37.7000 −1.26727
\(886\) −37.4319 −1.25755
\(887\) 43.7159 1.46784 0.733919 0.679237i \(-0.237689\pi\)
0.733919 + 0.679237i \(0.237689\pi\)
\(888\) −5.07579 −0.170332
\(889\) 4.80765 0.161243
\(890\) 35.4637 1.18875
\(891\) 3.32803 0.111493
\(892\) 29.3121 0.981443
\(893\) 12.8076 0.428592
\(894\) −18.2363 −0.609914
\(895\) 74.5606 2.49229
\(896\) −5.20191 −0.173784
\(897\) 1.32803 0.0443417
\(898\) 1.42869 0.0476759
\(899\) 1.32803 0.0442923
\(900\) 6.07579 0.202526
\(901\) 26.6243 0.886982
\(902\) 3.07579 0.102413
\(903\) −61.6841 −2.05272
\(904\) 16.5554 0.550625
\(905\) 4.83946 0.160869
\(906\) 4.00000 0.132891
\(907\) 32.8669 1.09133 0.545664 0.838004i \(-0.316277\pi\)
0.545664 + 0.838004i \(0.316277\pi\)
\(908\) 9.60574 0.318778
\(909\) 19.4796 0.646098
\(910\) 22.9910 0.762146
\(911\) 41.7096 1.38190 0.690950 0.722902i \(-0.257192\pi\)
0.690950 + 0.722902i \(0.257192\pi\)
\(912\) 1.20191 0.0397993
\(913\) −31.9682 −1.05799
\(914\) 7.84842 0.259603
\(915\) −4.41973 −0.146112
\(916\) −21.2962 −0.703647
\(917\) −111.652 −3.68708
\(918\) 4.00000 0.132020
\(919\) −17.8739 −0.589605 −0.294802 0.955558i \(-0.595254\pi\)
−0.294802 + 0.955558i \(0.595254\pi\)
\(920\) −3.32803 −0.109722
\(921\) 20.1357 0.663493
\(922\) 35.9523 1.18403
\(923\) 12.7229 0.418779
\(924\) −17.3121 −0.569527
\(925\) −30.8395 −1.01400
\(926\) −28.3032 −0.930100
\(927\) 6.12612 0.201208
\(928\) 1.00000 0.0328266
\(929\) −22.0000 −0.721797 −0.360898 0.932605i \(-0.617530\pi\)
−0.360898 + 0.932605i \(0.617530\pi\)
\(930\) −4.41973 −0.144929
\(931\) −24.1102 −0.790180
\(932\) 13.7478 0.450323
\(933\) 4.25224 0.139212
\(934\) 37.7000 1.23358
\(935\) 44.3032 1.44887
\(936\) 1.32803 0.0434081
\(937\) 29.4319 0.961498 0.480749 0.876858i \(-0.340365\pi\)
0.480749 + 0.876858i \(0.340365\pi\)
\(938\) −6.90830 −0.225564
\(939\) −14.0000 −0.456873
\(940\) −35.4637 −1.15670
\(941\) 46.9612 1.53089 0.765446 0.643500i \(-0.222518\pi\)
0.765446 + 0.643500i \(0.222518\pi\)
\(942\) −5.49552 −0.179054
\(943\) −0.924208 −0.0300963
\(944\) 11.3280 0.368696
\(945\) −17.3121 −0.563163
\(946\) −39.4637 −1.28308
\(947\) −19.2803 −0.626526 −0.313263 0.949666i \(-0.601422\pi\)
−0.313263 + 0.949666i \(0.601422\pi\)
\(948\) 8.40382 0.272944
\(949\) 2.99104 0.0970934
\(950\) 7.30257 0.236927
\(951\) −24.4886 −0.794096
\(952\) −20.8076 −0.674380
\(953\) −41.1013 −1.33140 −0.665700 0.746219i \(-0.731867\pi\)
−0.665700 + 0.746219i \(0.731867\pi\)
\(954\) −6.65606 −0.215498
\(955\) 43.8834 1.42003
\(956\) 12.2363 0.395751
\(957\) 3.32803 0.107580
\(958\) 13.7732 0.444993
\(959\) −77.5517 −2.50427
\(960\) −3.32803 −0.107412
\(961\) −29.2363 −0.943108
\(962\) −6.74081 −0.217332
\(963\) −7.45415 −0.240207
\(964\) −7.05989 −0.227384
\(965\) −28.8076 −0.927351
\(966\) 5.20191 0.167369
\(967\) 29.1108 0.936141 0.468070 0.883691i \(-0.344949\pi\)
0.468070 + 0.883691i \(0.344949\pi\)
\(968\) −0.0757923 −0.00243606
\(969\) 4.80765 0.154444
\(970\) −44.7758 −1.43767
\(971\) 32.1039 1.03026 0.515131 0.857111i \(-0.327743\pi\)
0.515131 + 0.857111i \(0.327743\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −2.10065 −0.0673439
\(974\) 16.3032 0.522387
\(975\) 8.06884 0.258410
\(976\) 1.32803 0.0425092
\(977\) −26.1950 −0.838051 −0.419026 0.907974i \(-0.637628\pi\)
−0.419026 + 0.907974i \(0.637628\pi\)
\(978\) −9.47962 −0.303125
\(979\) −35.4637 −1.13343
\(980\) 66.7599 2.13257
\(981\) 3.05033 0.0973895
\(982\) −3.31213 −0.105694
\(983\) 36.3784 1.16029 0.580145 0.814513i \(-0.302996\pi\)
0.580145 + 0.814513i \(0.302996\pi\)
\(984\) −0.924208 −0.0294627
\(985\) −8.33498 −0.265575
\(986\) 4.00000 0.127386
\(987\) 55.4319 1.76442
\(988\) 1.59618 0.0507811
\(989\) 11.8580 0.377062
\(990\) −11.0758 −0.352012
\(991\) −16.2204 −0.515259 −0.257629 0.966244i \(-0.582941\pi\)
−0.257629 + 0.966244i \(0.582941\pi\)
\(992\) 1.32803 0.0421650
\(993\) −23.7159 −0.752603
\(994\) 49.8357 1.58069
\(995\) 41.7000 1.32198
\(996\) 9.60574 0.304369
\(997\) 12.6243 0.399814 0.199907 0.979815i \(-0.435936\pi\)
0.199907 + 0.979815i \(0.435936\pi\)
\(998\) 31.0281 0.982177
\(999\) 5.07579 0.160591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.y.1.3 3 1.1 even 1 trivial