Properties

Label 4002.2.a.u.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.56155 q^{5} -1.00000 q^{6} +2.56155 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.56155 q^{5} -1.00000 q^{6} +2.56155 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.56155 q^{10} +5.12311 q^{11} +1.00000 q^{12} +3.12311 q^{13} -2.56155 q^{14} +2.56155 q^{15} +1.00000 q^{16} -2.56155 q^{17} -1.00000 q^{18} -6.56155 q^{19} +2.56155 q^{20} +2.56155 q^{21} -5.12311 q^{22} -1.00000 q^{23} -1.00000 q^{24} +1.56155 q^{25} -3.12311 q^{26} +1.00000 q^{27} +2.56155 q^{28} -1.00000 q^{29} -2.56155 q^{30} -1.00000 q^{32} +5.12311 q^{33} +2.56155 q^{34} +6.56155 q^{35} +1.00000 q^{36} +8.56155 q^{37} +6.56155 q^{38} +3.12311 q^{39} -2.56155 q^{40} +8.56155 q^{41} -2.56155 q^{42} +6.56155 q^{43} +5.12311 q^{44} +2.56155 q^{45} +1.00000 q^{46} -3.68466 q^{47} +1.00000 q^{48} -0.438447 q^{49} -1.56155 q^{50} -2.56155 q^{51} +3.12311 q^{52} -1.12311 q^{53} -1.00000 q^{54} +13.1231 q^{55} -2.56155 q^{56} -6.56155 q^{57} +1.00000 q^{58} +3.68466 q^{59} +2.56155 q^{60} -2.00000 q^{61} +2.56155 q^{63} +1.00000 q^{64} +8.00000 q^{65} -5.12311 q^{66} +7.12311 q^{67} -2.56155 q^{68} -1.00000 q^{69} -6.56155 q^{70} +8.00000 q^{71} -1.00000 q^{72} -12.2462 q^{73} -8.56155 q^{74} +1.56155 q^{75} -6.56155 q^{76} +13.1231 q^{77} -3.12311 q^{78} -4.24621 q^{79} +2.56155 q^{80} +1.00000 q^{81} -8.56155 q^{82} -3.12311 q^{83} +2.56155 q^{84} -6.56155 q^{85} -6.56155 q^{86} -1.00000 q^{87} -5.12311 q^{88} -7.36932 q^{89} -2.56155 q^{90} +8.00000 q^{91} -1.00000 q^{92} +3.68466 q^{94} -16.8078 q^{95} -1.00000 q^{96} -8.00000 q^{97} +0.438447 q^{98} +5.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{7} - 2 q^{8} + 2 q^{9} - q^{10} + 2 q^{11} + 2 q^{12} - 2 q^{13} - q^{14} + q^{15} + 2 q^{16} - q^{17} - 2 q^{18} - 9 q^{19} + q^{20} + q^{21} - 2 q^{22} - 2 q^{23} - 2 q^{24} - q^{25} + 2 q^{26} + 2 q^{27} + q^{28} - 2 q^{29} - q^{30} - 2 q^{32} + 2 q^{33} + q^{34} + 9 q^{35} + 2 q^{36} + 13 q^{37} + 9 q^{38} - 2 q^{39} - q^{40} + 13 q^{41} - q^{42} + 9 q^{43} + 2 q^{44} + q^{45} + 2 q^{46} + 5 q^{47} + 2 q^{48} - 5 q^{49} + q^{50} - q^{51} - 2 q^{52} + 6 q^{53} - 2 q^{54} + 18 q^{55} - q^{56} - 9 q^{57} + 2 q^{58} - 5 q^{59} + q^{60} - 4 q^{61} + q^{63} + 2 q^{64} + 16 q^{65} - 2 q^{66} + 6 q^{67} - q^{68} - 2 q^{69} - 9 q^{70} + 16 q^{71} - 2 q^{72} - 8 q^{73} - 13 q^{74} - q^{75} - 9 q^{76} + 18 q^{77} + 2 q^{78} + 8 q^{79} + q^{80} + 2 q^{81} - 13 q^{82} + 2 q^{83} + q^{84} - 9 q^{85} - 9 q^{86} - 2 q^{87} - 2 q^{88} + 10 q^{89} - q^{90} + 16 q^{91} - 2 q^{92} - 5 q^{94} - 13 q^{95} - 2 q^{96} - 16 q^{97} + 5 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 2.56155 1.14556 0.572781 0.819709i \(-0.305865\pi\)
0.572781 + 0.819709i \(0.305865\pi\)
\(6\) −1.00000 −0.408248
\(7\) 2.56155 0.968176 0.484088 0.875019i \(-0.339151\pi\)
0.484088 + 0.875019i \(0.339151\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.56155 −0.810034
\(11\) 5.12311 1.54467 0.772337 0.635213i \(-0.219088\pi\)
0.772337 + 0.635213i \(0.219088\pi\)
\(12\) 1.00000 0.288675
\(13\) 3.12311 0.866194 0.433097 0.901347i \(-0.357421\pi\)
0.433097 + 0.901347i \(0.357421\pi\)
\(14\) −2.56155 −0.684604
\(15\) 2.56155 0.661390
\(16\) 1.00000 0.250000
\(17\) −2.56155 −0.621268 −0.310634 0.950530i \(-0.600541\pi\)
−0.310634 + 0.950530i \(0.600541\pi\)
\(18\) −1.00000 −0.235702
\(19\) −6.56155 −1.50532 −0.752662 0.658407i \(-0.771230\pi\)
−0.752662 + 0.658407i \(0.771230\pi\)
\(20\) 2.56155 0.572781
\(21\) 2.56155 0.558977
\(22\) −5.12311 −1.09225
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 1.56155 0.312311
\(26\) −3.12311 −0.612491
\(27\) 1.00000 0.192450
\(28\) 2.56155 0.484088
\(29\) −1.00000 −0.185695
\(30\) −2.56155 −0.467673
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 5.12311 0.891818
\(34\) 2.56155 0.439303
\(35\) 6.56155 1.10910
\(36\) 1.00000 0.166667
\(37\) 8.56155 1.40751 0.703755 0.710442i \(-0.251505\pi\)
0.703755 + 0.710442i \(0.251505\pi\)
\(38\) 6.56155 1.06442
\(39\) 3.12311 0.500097
\(40\) −2.56155 −0.405017
\(41\) 8.56155 1.33709 0.668545 0.743672i \(-0.266917\pi\)
0.668545 + 0.743672i \(0.266917\pi\)
\(42\) −2.56155 −0.395256
\(43\) 6.56155 1.00063 0.500314 0.865844i \(-0.333218\pi\)
0.500314 + 0.865844i \(0.333218\pi\)
\(44\) 5.12311 0.772337
\(45\) 2.56155 0.381854
\(46\) 1.00000 0.147442
\(47\) −3.68466 −0.537463 −0.268731 0.963215i \(-0.586604\pi\)
−0.268731 + 0.963215i \(0.586604\pi\)
\(48\) 1.00000 0.144338
\(49\) −0.438447 −0.0626353
\(50\) −1.56155 −0.220837
\(51\) −2.56155 −0.358689
\(52\) 3.12311 0.433097
\(53\) −1.12311 −0.154270 −0.0771352 0.997021i \(-0.524577\pi\)
−0.0771352 + 0.997021i \(0.524577\pi\)
\(54\) −1.00000 −0.136083
\(55\) 13.1231 1.76952
\(56\) −2.56155 −0.342302
\(57\) −6.56155 −0.869099
\(58\) 1.00000 0.131306
\(59\) 3.68466 0.479702 0.239851 0.970810i \(-0.422901\pi\)
0.239851 + 0.970810i \(0.422901\pi\)
\(60\) 2.56155 0.330695
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 2.56155 0.322725
\(64\) 1.00000 0.125000
\(65\) 8.00000 0.992278
\(66\) −5.12311 −0.630611
\(67\) 7.12311 0.870226 0.435113 0.900376i \(-0.356708\pi\)
0.435113 + 0.900376i \(0.356708\pi\)
\(68\) −2.56155 −0.310634
\(69\) −1.00000 −0.120386
\(70\) −6.56155 −0.784256
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) −1.00000 −0.117851
\(73\) −12.2462 −1.43331 −0.716655 0.697428i \(-0.754328\pi\)
−0.716655 + 0.697428i \(0.754328\pi\)
\(74\) −8.56155 −0.995260
\(75\) 1.56155 0.180313
\(76\) −6.56155 −0.752662
\(77\) 13.1231 1.49552
\(78\) −3.12311 −0.353622
\(79\) −4.24621 −0.477736 −0.238868 0.971052i \(-0.576776\pi\)
−0.238868 + 0.971052i \(0.576776\pi\)
\(80\) 2.56155 0.286390
\(81\) 1.00000 0.111111
\(82\) −8.56155 −0.945465
\(83\) −3.12311 −0.342805 −0.171403 0.985201i \(-0.554830\pi\)
−0.171403 + 0.985201i \(0.554830\pi\)
\(84\) 2.56155 0.279488
\(85\) −6.56155 −0.711700
\(86\) −6.56155 −0.707550
\(87\) −1.00000 −0.107211
\(88\) −5.12311 −0.546125
\(89\) −7.36932 −0.781146 −0.390573 0.920572i \(-0.627723\pi\)
−0.390573 + 0.920572i \(0.627723\pi\)
\(90\) −2.56155 −0.270011
\(91\) 8.00000 0.838628
\(92\) −1.00000 −0.104257
\(93\) 0 0
\(94\) 3.68466 0.380043
\(95\) −16.8078 −1.72444
\(96\) −1.00000 −0.102062
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0.438447 0.0442899
\(99\) 5.12311 0.514891
\(100\) 1.56155 0.156155
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 2.56155 0.253632
\(103\) −10.5616 −1.04066 −0.520330 0.853965i \(-0.674191\pi\)
−0.520330 + 0.853965i \(0.674191\pi\)
\(104\) −3.12311 −0.306246
\(105\) 6.56155 0.640342
\(106\) 1.12311 0.109086
\(107\) 14.8078 1.43152 0.715760 0.698346i \(-0.246080\pi\)
0.715760 + 0.698346i \(0.246080\pi\)
\(108\) 1.00000 0.0962250
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −13.1231 −1.25124
\(111\) 8.56155 0.812627
\(112\) 2.56155 0.242044
\(113\) −5.43845 −0.511606 −0.255803 0.966729i \(-0.582340\pi\)
−0.255803 + 0.966729i \(0.582340\pi\)
\(114\) 6.56155 0.614546
\(115\) −2.56155 −0.238866
\(116\) −1.00000 −0.0928477
\(117\) 3.12311 0.288731
\(118\) −3.68466 −0.339200
\(119\) −6.56155 −0.601497
\(120\) −2.56155 −0.233837
\(121\) 15.2462 1.38602
\(122\) 2.00000 0.181071
\(123\) 8.56155 0.771969
\(124\) 0 0
\(125\) −8.80776 −0.787790
\(126\) −2.56155 −0.228201
\(127\) −9.12311 −0.809545 −0.404772 0.914417i \(-0.632649\pi\)
−0.404772 + 0.914417i \(0.632649\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 6.56155 0.577713
\(130\) −8.00000 −0.701646
\(131\) 1.75379 0.153229 0.0766146 0.997061i \(-0.475589\pi\)
0.0766146 + 0.997061i \(0.475589\pi\)
\(132\) 5.12311 0.445909
\(133\) −16.8078 −1.45742
\(134\) −7.12311 −0.615343
\(135\) 2.56155 0.220463
\(136\) 2.56155 0.219651
\(137\) −1.12311 −0.0959534 −0.0479767 0.998848i \(-0.515277\pi\)
−0.0479767 + 0.998848i \(0.515277\pi\)
\(138\) 1.00000 0.0851257
\(139\) −5.12311 −0.434536 −0.217268 0.976112i \(-0.569715\pi\)
−0.217268 + 0.976112i \(0.569715\pi\)
\(140\) 6.56155 0.554552
\(141\) −3.68466 −0.310304
\(142\) −8.00000 −0.671345
\(143\) 16.0000 1.33799
\(144\) 1.00000 0.0833333
\(145\) −2.56155 −0.212725
\(146\) 12.2462 1.01350
\(147\) −0.438447 −0.0361625
\(148\) 8.56155 0.703755
\(149\) 19.6847 1.61263 0.806315 0.591486i \(-0.201459\pi\)
0.806315 + 0.591486i \(0.201459\pi\)
\(150\) −1.56155 −0.127500
\(151\) −3.68466 −0.299853 −0.149927 0.988697i \(-0.547904\pi\)
−0.149927 + 0.988697i \(0.547904\pi\)
\(152\) 6.56155 0.532212
\(153\) −2.56155 −0.207089
\(154\) −13.1231 −1.05749
\(155\) 0 0
\(156\) 3.12311 0.250049
\(157\) 10.8078 0.862553 0.431277 0.902220i \(-0.358063\pi\)
0.431277 + 0.902220i \(0.358063\pi\)
\(158\) 4.24621 0.337810
\(159\) −1.12311 −0.0890681
\(160\) −2.56155 −0.202509
\(161\) −2.56155 −0.201879
\(162\) −1.00000 −0.0785674
\(163\) −7.68466 −0.601909 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(164\) 8.56155 0.668545
\(165\) 13.1231 1.02163
\(166\) 3.12311 0.242400
\(167\) 15.3693 1.18931 0.594657 0.803980i \(-0.297288\pi\)
0.594657 + 0.803980i \(0.297288\pi\)
\(168\) −2.56155 −0.197628
\(169\) −3.24621 −0.249709
\(170\) 6.56155 0.503248
\(171\) −6.56155 −0.501774
\(172\) 6.56155 0.500314
\(173\) −1.68466 −0.128082 −0.0640411 0.997947i \(-0.520399\pi\)
−0.0640411 + 0.997947i \(0.520399\pi\)
\(174\) 1.00000 0.0758098
\(175\) 4.00000 0.302372
\(176\) 5.12311 0.386169
\(177\) 3.68466 0.276956
\(178\) 7.36932 0.552354
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 2.56155 0.190927
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) −8.00000 −0.592999
\(183\) −2.00000 −0.147844
\(184\) 1.00000 0.0737210
\(185\) 21.9309 1.61239
\(186\) 0 0
\(187\) −13.1231 −0.959657
\(188\) −3.68466 −0.268731
\(189\) 2.56155 0.186326
\(190\) 16.8078 1.21936
\(191\) 6.31534 0.456962 0.228481 0.973548i \(-0.426624\pi\)
0.228481 + 0.973548i \(0.426624\pi\)
\(192\) 1.00000 0.0721688
\(193\) 8.87689 0.638973 0.319486 0.947591i \(-0.396490\pi\)
0.319486 + 0.947591i \(0.396490\pi\)
\(194\) 8.00000 0.574367
\(195\) 8.00000 0.572892
\(196\) −0.438447 −0.0313177
\(197\) −10.3153 −0.734938 −0.367469 0.930036i \(-0.619776\pi\)
−0.367469 + 0.930036i \(0.619776\pi\)
\(198\) −5.12311 −0.364083
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −1.56155 −0.110418
\(201\) 7.12311 0.502425
\(202\) −2.00000 −0.140720
\(203\) −2.56155 −0.179786
\(204\) −2.56155 −0.179345
\(205\) 21.9309 1.53172
\(206\) 10.5616 0.735858
\(207\) −1.00000 −0.0695048
\(208\) 3.12311 0.216548
\(209\) −33.6155 −2.32523
\(210\) −6.56155 −0.452790
\(211\) 9.93087 0.683669 0.341835 0.939760i \(-0.388952\pi\)
0.341835 + 0.939760i \(0.388952\pi\)
\(212\) −1.12311 −0.0771352
\(213\) 8.00000 0.548151
\(214\) −14.8078 −1.01224
\(215\) 16.8078 1.14628
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 0 0
\(219\) −12.2462 −0.827522
\(220\) 13.1231 0.884760
\(221\) −8.00000 −0.538138
\(222\) −8.56155 −0.574614
\(223\) −28.4924 −1.90799 −0.953997 0.299817i \(-0.903075\pi\)
−0.953997 + 0.299817i \(0.903075\pi\)
\(224\) −2.56155 −0.171151
\(225\) 1.56155 0.104104
\(226\) 5.43845 0.361760
\(227\) −7.93087 −0.526390 −0.263195 0.964743i \(-0.584776\pi\)
−0.263195 + 0.964743i \(0.584776\pi\)
\(228\) −6.56155 −0.434549
\(229\) −14.8078 −0.978525 −0.489262 0.872137i \(-0.662734\pi\)
−0.489262 + 0.872137i \(0.662734\pi\)
\(230\) 2.56155 0.168904
\(231\) 13.1231 0.863437
\(232\) 1.00000 0.0656532
\(233\) −25.3693 −1.66200 −0.831000 0.556273i \(-0.812231\pi\)
−0.831000 + 0.556273i \(0.812231\pi\)
\(234\) −3.12311 −0.204164
\(235\) −9.43845 −0.615696
\(236\) 3.68466 0.239851
\(237\) −4.24621 −0.275821
\(238\) 6.56155 0.425322
\(239\) 2.87689 0.186091 0.0930454 0.995662i \(-0.470340\pi\)
0.0930454 + 0.995662i \(0.470340\pi\)
\(240\) 2.56155 0.165348
\(241\) 13.6847 0.881506 0.440753 0.897628i \(-0.354711\pi\)
0.440753 + 0.897628i \(0.354711\pi\)
\(242\) −15.2462 −0.980064
\(243\) 1.00000 0.0641500
\(244\) −2.00000 −0.128037
\(245\) −1.12311 −0.0717526
\(246\) −8.56155 −0.545865
\(247\) −20.4924 −1.30390
\(248\) 0 0
\(249\) −3.12311 −0.197919
\(250\) 8.80776 0.557052
\(251\) −14.2462 −0.899213 −0.449606 0.893227i \(-0.648436\pi\)
−0.449606 + 0.893227i \(0.648436\pi\)
\(252\) 2.56155 0.161363
\(253\) −5.12311 −0.322087
\(254\) 9.12311 0.572435
\(255\) −6.56155 −0.410900
\(256\) 1.00000 0.0625000
\(257\) 21.3693 1.33298 0.666491 0.745513i \(-0.267796\pi\)
0.666491 + 0.745513i \(0.267796\pi\)
\(258\) −6.56155 −0.408504
\(259\) 21.9309 1.36272
\(260\) 8.00000 0.496139
\(261\) −1.00000 −0.0618984
\(262\) −1.75379 −0.108349
\(263\) −18.8078 −1.15974 −0.579868 0.814710i \(-0.696896\pi\)
−0.579868 + 0.814710i \(0.696896\pi\)
\(264\) −5.12311 −0.315305
\(265\) −2.87689 −0.176726
\(266\) 16.8078 1.03055
\(267\) −7.36932 −0.450995
\(268\) 7.12311 0.435113
\(269\) −7.75379 −0.472757 −0.236378 0.971661i \(-0.575960\pi\)
−0.236378 + 0.971661i \(0.575960\pi\)
\(270\) −2.56155 −0.155891
\(271\) −16.4924 −1.00184 −0.500922 0.865493i \(-0.667006\pi\)
−0.500922 + 0.865493i \(0.667006\pi\)
\(272\) −2.56155 −0.155317
\(273\) 8.00000 0.484182
\(274\) 1.12311 0.0678493
\(275\) 8.00000 0.482418
\(276\) −1.00000 −0.0601929
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 5.12311 0.307263
\(279\) 0 0
\(280\) −6.56155 −0.392128
\(281\) 30.4924 1.81903 0.909513 0.415676i \(-0.136455\pi\)
0.909513 + 0.415676i \(0.136455\pi\)
\(282\) 3.68466 0.219418
\(283\) 14.4924 0.861485 0.430743 0.902475i \(-0.358252\pi\)
0.430743 + 0.902475i \(0.358252\pi\)
\(284\) 8.00000 0.474713
\(285\) −16.8078 −0.995606
\(286\) −16.0000 −0.946100
\(287\) 21.9309 1.29454
\(288\) −1.00000 −0.0589256
\(289\) −10.4384 −0.614026
\(290\) 2.56155 0.150420
\(291\) −8.00000 −0.468968
\(292\) −12.2462 −0.716655
\(293\) −2.49242 −0.145609 −0.0728044 0.997346i \(-0.523195\pi\)
−0.0728044 + 0.997346i \(0.523195\pi\)
\(294\) 0.438447 0.0255708
\(295\) 9.43845 0.549528
\(296\) −8.56155 −0.497630
\(297\) 5.12311 0.297273
\(298\) −19.6847 −1.14030
\(299\) −3.12311 −0.180614
\(300\) 1.56155 0.0901563
\(301\) 16.8078 0.968783
\(302\) 3.68466 0.212028
\(303\) 2.00000 0.114897
\(304\) −6.56155 −0.376331
\(305\) −5.12311 −0.293348
\(306\) 2.56155 0.146434
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 13.1231 0.747758
\(309\) −10.5616 −0.600826
\(310\) 0 0
\(311\) 15.0540 0.853633 0.426816 0.904338i \(-0.359635\pi\)
0.426816 + 0.904338i \(0.359635\pi\)
\(312\) −3.12311 −0.176811
\(313\) 6.31534 0.356964 0.178482 0.983943i \(-0.442881\pi\)
0.178482 + 0.983943i \(0.442881\pi\)
\(314\) −10.8078 −0.609917
\(315\) 6.56155 0.369702
\(316\) −4.24621 −0.238868
\(317\) 8.87689 0.498576 0.249288 0.968429i \(-0.419803\pi\)
0.249288 + 0.968429i \(0.419803\pi\)
\(318\) 1.12311 0.0629806
\(319\) −5.12311 −0.286839
\(320\) 2.56155 0.143195
\(321\) 14.8078 0.826489
\(322\) 2.56155 0.142750
\(323\) 16.8078 0.935209
\(324\) 1.00000 0.0555556
\(325\) 4.87689 0.270521
\(326\) 7.68466 0.425614
\(327\) 0 0
\(328\) −8.56155 −0.472733
\(329\) −9.43845 −0.520358
\(330\) −13.1231 −0.722403
\(331\) −21.4384 −1.17836 −0.589182 0.808000i \(-0.700550\pi\)
−0.589182 + 0.808000i \(0.700550\pi\)
\(332\) −3.12311 −0.171403
\(333\) 8.56155 0.469170
\(334\) −15.3693 −0.840972
\(335\) 18.2462 0.996897
\(336\) 2.56155 0.139744
\(337\) −6.87689 −0.374608 −0.187304 0.982302i \(-0.559975\pi\)
−0.187304 + 0.982302i \(0.559975\pi\)
\(338\) 3.24621 0.176571
\(339\) −5.43845 −0.295376
\(340\) −6.56155 −0.355850
\(341\) 0 0
\(342\) 6.56155 0.354808
\(343\) −19.0540 −1.02882
\(344\) −6.56155 −0.353775
\(345\) −2.56155 −0.137909
\(346\) 1.68466 0.0905678
\(347\) 34.5616 1.85536 0.927681 0.373375i \(-0.121799\pi\)
0.927681 + 0.373375i \(0.121799\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) −4.00000 −0.213809
\(351\) 3.12311 0.166699
\(352\) −5.12311 −0.273062
\(353\) 28.7386 1.52960 0.764802 0.644266i \(-0.222837\pi\)
0.764802 + 0.644266i \(0.222837\pi\)
\(354\) −3.68466 −0.195837
\(355\) 20.4924 1.08762
\(356\) −7.36932 −0.390573
\(357\) −6.56155 −0.347274
\(358\) 0 0
\(359\) 35.9309 1.89636 0.948179 0.317736i \(-0.102922\pi\)
0.948179 + 0.317736i \(0.102922\pi\)
\(360\) −2.56155 −0.135006
\(361\) 24.0540 1.26600
\(362\) 12.0000 0.630706
\(363\) 15.2462 0.800219
\(364\) 8.00000 0.419314
\(365\) −31.3693 −1.64195
\(366\) 2.00000 0.104542
\(367\) −14.4924 −0.756498 −0.378249 0.925704i \(-0.623474\pi\)
−0.378249 + 0.925704i \(0.623474\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 8.56155 0.445697
\(370\) −21.9309 −1.14013
\(371\) −2.87689 −0.149361
\(372\) 0 0
\(373\) 18.2462 0.944753 0.472377 0.881397i \(-0.343396\pi\)
0.472377 + 0.881397i \(0.343396\pi\)
\(374\) 13.1231 0.678580
\(375\) −8.80776 −0.454831
\(376\) 3.68466 0.190022
\(377\) −3.12311 −0.160848
\(378\) −2.56155 −0.131752
\(379\) 18.2462 0.937245 0.468622 0.883399i \(-0.344750\pi\)
0.468622 + 0.883399i \(0.344750\pi\)
\(380\) −16.8078 −0.862220
\(381\) −9.12311 −0.467391
\(382\) −6.31534 −0.323121
\(383\) −35.3693 −1.80729 −0.903644 0.428285i \(-0.859118\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 33.6155 1.71321
\(386\) −8.87689 −0.451822
\(387\) 6.56155 0.333542
\(388\) −8.00000 −0.406138
\(389\) 5.36932 0.272235 0.136118 0.990693i \(-0.456538\pi\)
0.136118 + 0.990693i \(0.456538\pi\)
\(390\) −8.00000 −0.405096
\(391\) 2.56155 0.129543
\(392\) 0.438447 0.0221449
\(393\) 1.75379 0.0884669
\(394\) 10.3153 0.519679
\(395\) −10.8769 −0.547276
\(396\) 5.12311 0.257446
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 16.0000 0.802008
\(399\) −16.8078 −0.841441
\(400\) 1.56155 0.0780776
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) −7.12311 −0.355268
\(403\) 0 0
\(404\) 2.00000 0.0995037
\(405\) 2.56155 0.127285
\(406\) 2.56155 0.127128
\(407\) 43.8617 2.17415
\(408\) 2.56155 0.126816
\(409\) −7.12311 −0.352215 −0.176107 0.984371i \(-0.556351\pi\)
−0.176107 + 0.984371i \(0.556351\pi\)
\(410\) −21.9309 −1.08309
\(411\) −1.12311 −0.0553987
\(412\) −10.5616 −0.520330
\(413\) 9.43845 0.464436
\(414\) 1.00000 0.0491473
\(415\) −8.00000 −0.392705
\(416\) −3.12311 −0.153123
\(417\) −5.12311 −0.250880
\(418\) 33.6155 1.64419
\(419\) 15.9309 0.778274 0.389137 0.921180i \(-0.372773\pi\)
0.389137 + 0.921180i \(0.372773\pi\)
\(420\) 6.56155 0.320171
\(421\) −28.7386 −1.40064 −0.700318 0.713831i \(-0.746958\pi\)
−0.700318 + 0.713831i \(0.746958\pi\)
\(422\) −9.93087 −0.483427
\(423\) −3.68466 −0.179154
\(424\) 1.12311 0.0545428
\(425\) −4.00000 −0.194029
\(426\) −8.00000 −0.387601
\(427\) −5.12311 −0.247924
\(428\) 14.8078 0.715760
\(429\) 16.0000 0.772487
\(430\) −16.8078 −0.810542
\(431\) 1.75379 0.0844770 0.0422385 0.999108i \(-0.486551\pi\)
0.0422385 + 0.999108i \(0.486551\pi\)
\(432\) 1.00000 0.0481125
\(433\) −3.36932 −0.161919 −0.0809595 0.996717i \(-0.525798\pi\)
−0.0809595 + 0.996717i \(0.525798\pi\)
\(434\) 0 0
\(435\) −2.56155 −0.122817
\(436\) 0 0
\(437\) 6.56155 0.313882
\(438\) 12.2462 0.585147
\(439\) 3.68466 0.175859 0.0879296 0.996127i \(-0.471975\pi\)
0.0879296 + 0.996127i \(0.471975\pi\)
\(440\) −13.1231 −0.625620
\(441\) −0.438447 −0.0208784
\(442\) 8.00000 0.380521
\(443\) 0.492423 0.0233957 0.0116978 0.999932i \(-0.496276\pi\)
0.0116978 + 0.999932i \(0.496276\pi\)
\(444\) 8.56155 0.406313
\(445\) −18.8769 −0.894851
\(446\) 28.4924 1.34916
\(447\) 19.6847 0.931052
\(448\) 2.56155 0.121022
\(449\) −32.4233 −1.53015 −0.765075 0.643941i \(-0.777298\pi\)
−0.765075 + 0.643941i \(0.777298\pi\)
\(450\) −1.56155 −0.0736123
\(451\) 43.8617 2.06537
\(452\) −5.43845 −0.255803
\(453\) −3.68466 −0.173120
\(454\) 7.93087 0.372214
\(455\) 20.4924 0.960700
\(456\) 6.56155 0.307273
\(457\) −28.4233 −1.32959 −0.664793 0.747028i \(-0.731480\pi\)
−0.664793 + 0.747028i \(0.731480\pi\)
\(458\) 14.8078 0.691921
\(459\) −2.56155 −0.119563
\(460\) −2.56155 −0.119433
\(461\) −9.36932 −0.436373 −0.218186 0.975907i \(-0.570014\pi\)
−0.218186 + 0.975907i \(0.570014\pi\)
\(462\) −13.1231 −0.610542
\(463\) −4.49242 −0.208781 −0.104390 0.994536i \(-0.533289\pi\)
−0.104390 + 0.994536i \(0.533289\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) 25.3693 1.17521
\(467\) −36.4924 −1.68867 −0.844334 0.535817i \(-0.820004\pi\)
−0.844334 + 0.535817i \(0.820004\pi\)
\(468\) 3.12311 0.144366
\(469\) 18.2462 0.842532
\(470\) 9.43845 0.435363
\(471\) 10.8078 0.497995
\(472\) −3.68466 −0.169600
\(473\) 33.6155 1.54564
\(474\) 4.24621 0.195035
\(475\) −10.2462 −0.470128
\(476\) −6.56155 −0.300748
\(477\) −1.12311 −0.0514235
\(478\) −2.87689 −0.131586
\(479\) −15.6155 −0.713492 −0.356746 0.934201i \(-0.616114\pi\)
−0.356746 + 0.934201i \(0.616114\pi\)
\(480\) −2.56155 −0.116918
\(481\) 26.7386 1.21918
\(482\) −13.6847 −0.623319
\(483\) −2.56155 −0.116555
\(484\) 15.2462 0.693010
\(485\) −20.4924 −0.930513
\(486\) −1.00000 −0.0453609
\(487\) 35.6847 1.61703 0.808513 0.588478i \(-0.200273\pi\)
0.808513 + 0.588478i \(0.200273\pi\)
\(488\) 2.00000 0.0905357
\(489\) −7.68466 −0.347512
\(490\) 1.12311 0.0507367
\(491\) 29.6155 1.33653 0.668265 0.743923i \(-0.267037\pi\)
0.668265 + 0.743923i \(0.267037\pi\)
\(492\) 8.56155 0.385985
\(493\) 2.56155 0.115367
\(494\) 20.4924 0.921998
\(495\) 13.1231 0.589840
\(496\) 0 0
\(497\) 20.4924 0.919211
\(498\) 3.12311 0.139950
\(499\) 13.6155 0.609515 0.304757 0.952430i \(-0.401425\pi\)
0.304757 + 0.952430i \(0.401425\pi\)
\(500\) −8.80776 −0.393895
\(501\) 15.3693 0.686650
\(502\) 14.2462 0.635840
\(503\) 40.5616 1.80855 0.904275 0.426950i \(-0.140412\pi\)
0.904275 + 0.426950i \(0.140412\pi\)
\(504\) −2.56155 −0.114101
\(505\) 5.12311 0.227975
\(506\) 5.12311 0.227750
\(507\) −3.24621 −0.144169
\(508\) −9.12311 −0.404772
\(509\) 34.8078 1.54283 0.771414 0.636334i \(-0.219550\pi\)
0.771414 + 0.636334i \(0.219550\pi\)
\(510\) 6.56155 0.290550
\(511\) −31.3693 −1.38770
\(512\) −1.00000 −0.0441942
\(513\) −6.56155 −0.289700
\(514\) −21.3693 −0.942560
\(515\) −27.0540 −1.19214
\(516\) 6.56155 0.288856
\(517\) −18.8769 −0.830205
\(518\) −21.9309 −0.963587
\(519\) −1.68466 −0.0739483
\(520\) −8.00000 −0.350823
\(521\) −20.2462 −0.887003 −0.443501 0.896274i \(-0.646264\pi\)
−0.443501 + 0.896274i \(0.646264\pi\)
\(522\) 1.00000 0.0437688
\(523\) −1.50758 −0.0659218 −0.0329609 0.999457i \(-0.510494\pi\)
−0.0329609 + 0.999457i \(0.510494\pi\)
\(524\) 1.75379 0.0766146
\(525\) 4.00000 0.174574
\(526\) 18.8078 0.820057
\(527\) 0 0
\(528\) 5.12311 0.222955
\(529\) 1.00000 0.0434783
\(530\) 2.87689 0.124964
\(531\) 3.68466 0.159901
\(532\) −16.8078 −0.728709
\(533\) 26.7386 1.15818
\(534\) 7.36932 0.318902
\(535\) 37.9309 1.63989
\(536\) −7.12311 −0.307671
\(537\) 0 0
\(538\) 7.75379 0.334290
\(539\) −2.24621 −0.0967512
\(540\) 2.56155 0.110232
\(541\) −31.9309 −1.37282 −0.686408 0.727217i \(-0.740813\pi\)
−0.686408 + 0.727217i \(0.740813\pi\)
\(542\) 16.4924 0.708410
\(543\) −12.0000 −0.514969
\(544\) 2.56155 0.109826
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 14.8769 0.636090 0.318045 0.948076i \(-0.396974\pi\)
0.318045 + 0.948076i \(0.396974\pi\)
\(548\) −1.12311 −0.0479767
\(549\) −2.00000 −0.0853579
\(550\) −8.00000 −0.341121
\(551\) 6.56155 0.279532
\(552\) 1.00000 0.0425628
\(553\) −10.8769 −0.462533
\(554\) −26.0000 −1.10463
\(555\) 21.9309 0.930914
\(556\) −5.12311 −0.217268
\(557\) 12.3153 0.521818 0.260909 0.965363i \(-0.415978\pi\)
0.260909 + 0.965363i \(0.415978\pi\)
\(558\) 0 0
\(559\) 20.4924 0.866737
\(560\) 6.56155 0.277276
\(561\) −13.1231 −0.554058
\(562\) −30.4924 −1.28625
\(563\) 35.3693 1.49064 0.745319 0.666707i \(-0.232297\pi\)
0.745319 + 0.666707i \(0.232297\pi\)
\(564\) −3.68466 −0.155152
\(565\) −13.9309 −0.586076
\(566\) −14.4924 −0.609162
\(567\) 2.56155 0.107575
\(568\) −8.00000 −0.335673
\(569\) −37.9309 −1.59014 −0.795072 0.606515i \(-0.792567\pi\)
−0.795072 + 0.606515i \(0.792567\pi\)
\(570\) 16.8078 0.704000
\(571\) 9.50758 0.397880 0.198940 0.980012i \(-0.436250\pi\)
0.198940 + 0.980012i \(0.436250\pi\)
\(572\) 16.0000 0.668994
\(573\) 6.31534 0.263827
\(574\) −21.9309 −0.915377
\(575\) −1.56155 −0.0651213
\(576\) 1.00000 0.0416667
\(577\) −35.6155 −1.48269 −0.741347 0.671122i \(-0.765813\pi\)
−0.741347 + 0.671122i \(0.765813\pi\)
\(578\) 10.4384 0.434182
\(579\) 8.87689 0.368911
\(580\) −2.56155 −0.106363
\(581\) −8.00000 −0.331896
\(582\) 8.00000 0.331611
\(583\) −5.75379 −0.238298
\(584\) 12.2462 0.506752
\(585\) 8.00000 0.330759
\(586\) 2.49242 0.102961
\(587\) 10.5616 0.435922 0.217961 0.975957i \(-0.430059\pi\)
0.217961 + 0.975957i \(0.430059\pi\)
\(588\) −0.438447 −0.0180813
\(589\) 0 0
\(590\) −9.43845 −0.388575
\(591\) −10.3153 −0.424316
\(592\) 8.56155 0.351878
\(593\) −11.1231 −0.456771 −0.228386 0.973571i \(-0.573345\pi\)
−0.228386 + 0.973571i \(0.573345\pi\)
\(594\) −5.12311 −0.210204
\(595\) −16.8078 −0.689051
\(596\) 19.6847 0.806315
\(597\) −16.0000 −0.654836
\(598\) 3.12311 0.127713
\(599\) −28.9848 −1.18429 −0.592144 0.805832i \(-0.701718\pi\)
−0.592144 + 0.805832i \(0.701718\pi\)
\(600\) −1.56155 −0.0637501
\(601\) −17.3693 −0.708509 −0.354255 0.935149i \(-0.615265\pi\)
−0.354255 + 0.935149i \(0.615265\pi\)
\(602\) −16.8078 −0.685033
\(603\) 7.12311 0.290075
\(604\) −3.68466 −0.149927
\(605\) 39.0540 1.58777
\(606\) −2.00000 −0.0812444
\(607\) −12.0000 −0.487065 −0.243532 0.969893i \(-0.578306\pi\)
−0.243532 + 0.969893i \(0.578306\pi\)
\(608\) 6.56155 0.266106
\(609\) −2.56155 −0.103799
\(610\) 5.12311 0.207428
\(611\) −11.5076 −0.465547
\(612\) −2.56155 −0.103545
\(613\) −1.61553 −0.0652506 −0.0326253 0.999468i \(-0.510387\pi\)
−0.0326253 + 0.999468i \(0.510387\pi\)
\(614\) −4.00000 −0.161427
\(615\) 21.9309 0.884338
\(616\) −13.1231 −0.528745
\(617\) 33.3002 1.34062 0.670308 0.742083i \(-0.266162\pi\)
0.670308 + 0.742083i \(0.266162\pi\)
\(618\) 10.5616 0.424848
\(619\) 0.315342 0.0126746 0.00633732 0.999980i \(-0.497983\pi\)
0.00633732 + 0.999980i \(0.497983\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) −15.0540 −0.603609
\(623\) −18.8769 −0.756287
\(624\) 3.12311 0.125024
\(625\) −30.3693 −1.21477
\(626\) −6.31534 −0.252412
\(627\) −33.6155 −1.34247
\(628\) 10.8078 0.431277
\(629\) −21.9309 −0.874441
\(630\) −6.56155 −0.261419
\(631\) −2.56155 −0.101974 −0.0509869 0.998699i \(-0.516237\pi\)
−0.0509869 + 0.998699i \(0.516237\pi\)
\(632\) 4.24621 0.168905
\(633\) 9.93087 0.394717
\(634\) −8.87689 −0.352547
\(635\) −23.3693 −0.927383
\(636\) −1.12311 −0.0445340
\(637\) −1.36932 −0.0542543
\(638\) 5.12311 0.202826
\(639\) 8.00000 0.316475
\(640\) −2.56155 −0.101254
\(641\) −44.6695 −1.76434 −0.882170 0.470932i \(-0.843918\pi\)
−0.882170 + 0.470932i \(0.843918\pi\)
\(642\) −14.8078 −0.584416
\(643\) 16.8769 0.665560 0.332780 0.943005i \(-0.392013\pi\)
0.332780 + 0.943005i \(0.392013\pi\)
\(644\) −2.56155 −0.100939
\(645\) 16.8078 0.661805
\(646\) −16.8078 −0.661293
\(647\) 23.3693 0.918743 0.459371 0.888244i \(-0.348075\pi\)
0.459371 + 0.888244i \(0.348075\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 18.8769 0.740983
\(650\) −4.87689 −0.191288
\(651\) 0 0
\(652\) −7.68466 −0.300954
\(653\) 40.2462 1.57496 0.787478 0.616343i \(-0.211386\pi\)
0.787478 + 0.616343i \(0.211386\pi\)
\(654\) 0 0
\(655\) 4.49242 0.175533
\(656\) 8.56155 0.334272
\(657\) −12.2462 −0.477770
\(658\) 9.43845 0.367949
\(659\) −16.0000 −0.623272 −0.311636 0.950202i \(-0.600877\pi\)
−0.311636 + 0.950202i \(0.600877\pi\)
\(660\) 13.1231 0.510816
\(661\) −20.4924 −0.797063 −0.398531 0.917155i \(-0.630480\pi\)
−0.398531 + 0.917155i \(0.630480\pi\)
\(662\) 21.4384 0.833229
\(663\) −8.00000 −0.310694
\(664\) 3.12311 0.121200
\(665\) −43.0540 −1.66956
\(666\) −8.56155 −0.331753
\(667\) 1.00000 0.0387202
\(668\) 15.3693 0.594657
\(669\) −28.4924 −1.10158
\(670\) −18.2462 −0.704913
\(671\) −10.2462 −0.395551
\(672\) −2.56155 −0.0988140
\(673\) −9.19224 −0.354335 −0.177167 0.984181i \(-0.556693\pi\)
−0.177167 + 0.984181i \(0.556693\pi\)
\(674\) 6.87689 0.264888
\(675\) 1.56155 0.0601042
\(676\) −3.24621 −0.124854
\(677\) −16.2462 −0.624393 −0.312196 0.950018i \(-0.601065\pi\)
−0.312196 + 0.950018i \(0.601065\pi\)
\(678\) 5.43845 0.208862
\(679\) −20.4924 −0.786427
\(680\) 6.56155 0.251624
\(681\) −7.93087 −0.303912
\(682\) 0 0
\(683\) 36.1771 1.38428 0.692139 0.721764i \(-0.256669\pi\)
0.692139 + 0.721764i \(0.256669\pi\)
\(684\) −6.56155 −0.250887
\(685\) −2.87689 −0.109920
\(686\) 19.0540 0.727484
\(687\) −14.8078 −0.564951
\(688\) 6.56155 0.250157
\(689\) −3.50758 −0.133628
\(690\) 2.56155 0.0975166
\(691\) 28.4924 1.08390 0.541951 0.840410i \(-0.317686\pi\)
0.541951 + 0.840410i \(0.317686\pi\)
\(692\) −1.68466 −0.0640411
\(693\) 13.1231 0.498506
\(694\) −34.5616 −1.31194
\(695\) −13.1231 −0.497788
\(696\) 1.00000 0.0379049
\(697\) −21.9309 −0.830691
\(698\) 14.0000 0.529908
\(699\) −25.3693 −0.959556
\(700\) 4.00000 0.151186
\(701\) 35.5464 1.34257 0.671284 0.741200i \(-0.265743\pi\)
0.671284 + 0.741200i \(0.265743\pi\)
\(702\) −3.12311 −0.117874
\(703\) −56.1771 −2.11876
\(704\) 5.12311 0.193084
\(705\) −9.43845 −0.355472
\(706\) −28.7386 −1.08159
\(707\) 5.12311 0.192674
\(708\) 3.68466 0.138478
\(709\) 1.61553 0.0606724 0.0303362 0.999540i \(-0.490342\pi\)
0.0303362 + 0.999540i \(0.490342\pi\)
\(710\) −20.4924 −0.769067
\(711\) −4.24621 −0.159245
\(712\) 7.36932 0.276177
\(713\) 0 0
\(714\) 6.56155 0.245560
\(715\) 40.9848 1.53275
\(716\) 0 0
\(717\) 2.87689 0.107440
\(718\) −35.9309 −1.34093
\(719\) 1.26137 0.0470410 0.0235205 0.999723i \(-0.492512\pi\)
0.0235205 + 0.999723i \(0.492512\pi\)
\(720\) 2.56155 0.0954634
\(721\) −27.0540 −1.00754
\(722\) −24.0540 −0.895196
\(723\) 13.6847 0.508938
\(724\) −12.0000 −0.445976
\(725\) −1.56155 −0.0579946
\(726\) −15.2462 −0.565840
\(727\) −20.7386 −0.769153 −0.384577 0.923093i \(-0.625653\pi\)
−0.384577 + 0.923093i \(0.625653\pi\)
\(728\) −8.00000 −0.296500
\(729\) 1.00000 0.0370370
\(730\) 31.3693 1.16103
\(731\) −16.8078 −0.621658
\(732\) −2.00000 −0.0739221
\(733\) −36.2462 −1.33878 −0.669392 0.742909i \(-0.733445\pi\)
−0.669392 + 0.742909i \(0.733445\pi\)
\(734\) 14.4924 0.534925
\(735\) −1.12311 −0.0414264
\(736\) 1.00000 0.0368605
\(737\) 36.4924 1.34422
\(738\) −8.56155 −0.315155
\(739\) −9.75379 −0.358799 −0.179399 0.983776i \(-0.557415\pi\)
−0.179399 + 0.983776i \(0.557415\pi\)
\(740\) 21.9309 0.806195
\(741\) −20.4924 −0.752808
\(742\) 2.87689 0.105614
\(743\) −15.9309 −0.584447 −0.292223 0.956350i \(-0.594395\pi\)
−0.292223 + 0.956350i \(0.594395\pi\)
\(744\) 0 0
\(745\) 50.4233 1.84737
\(746\) −18.2462 −0.668041
\(747\) −3.12311 −0.114268
\(748\) −13.1231 −0.479828
\(749\) 37.9309 1.38596
\(750\) 8.80776 0.321614
\(751\) 36.2462 1.32264 0.661322 0.750103i \(-0.269996\pi\)
0.661322 + 0.750103i \(0.269996\pi\)
\(752\) −3.68466 −0.134366
\(753\) −14.2462 −0.519161
\(754\) 3.12311 0.113737
\(755\) −9.43845 −0.343500
\(756\) 2.56155 0.0931628
\(757\) 5.68466 0.206612 0.103306 0.994650i \(-0.467058\pi\)
0.103306 + 0.994650i \(0.467058\pi\)
\(758\) −18.2462 −0.662732
\(759\) −5.12311 −0.185957
\(760\) 16.8078 0.609682
\(761\) −49.3693 −1.78964 −0.894818 0.446431i \(-0.852695\pi\)
−0.894818 + 0.446431i \(0.852695\pi\)
\(762\) 9.12311 0.330495
\(763\) 0 0
\(764\) 6.31534 0.228481
\(765\) −6.56155 −0.237233
\(766\) 35.3693 1.27795
\(767\) 11.5076 0.415515
\(768\) 1.00000 0.0360844
\(769\) 45.6155 1.64494 0.822469 0.568810i \(-0.192596\pi\)
0.822469 + 0.568810i \(0.192596\pi\)
\(770\) −33.6155 −1.21142
\(771\) 21.3693 0.769597
\(772\) 8.87689 0.319486
\(773\) −32.2462 −1.15982 −0.579908 0.814682i \(-0.696911\pi\)
−0.579908 + 0.814682i \(0.696911\pi\)
\(774\) −6.56155 −0.235850
\(775\) 0 0
\(776\) 8.00000 0.287183
\(777\) 21.9309 0.786766
\(778\) −5.36932 −0.192499
\(779\) −56.1771 −2.01275
\(780\) 8.00000 0.286446
\(781\) 40.9848 1.46655
\(782\) −2.56155 −0.0916009
\(783\) −1.00000 −0.0357371
\(784\) −0.438447 −0.0156588
\(785\) 27.6847 0.988108
\(786\) −1.75379 −0.0625556
\(787\) −23.1231 −0.824250 −0.412125 0.911127i \(-0.635213\pi\)
−0.412125 + 0.911127i \(0.635213\pi\)
\(788\) −10.3153 −0.367469
\(789\) −18.8078 −0.669574
\(790\) 10.8769 0.386983
\(791\) −13.9309 −0.495325
\(792\) −5.12311 −0.182042
\(793\) −6.24621 −0.221809
\(794\) 2.00000 0.0709773
\(795\) −2.87689 −0.102033
\(796\) −16.0000 −0.567105
\(797\) −44.1080 −1.56238 −0.781192 0.624291i \(-0.785388\pi\)
−0.781192 + 0.624291i \(0.785388\pi\)
\(798\) 16.8078 0.594988
\(799\) 9.43845 0.333908
\(800\) −1.56155 −0.0552092
\(801\) −7.36932 −0.260382
\(802\) 10.0000 0.353112
\(803\) −62.7386 −2.21400
\(804\) 7.12311 0.251213
\(805\) −6.56155 −0.231264
\(806\) 0 0
\(807\) −7.75379 −0.272946
\(808\) −2.00000 −0.0703598
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) −2.56155 −0.0900038
\(811\) −36.0000 −1.26413 −0.632065 0.774915i \(-0.717793\pi\)
−0.632065 + 0.774915i \(0.717793\pi\)
\(812\) −2.56155 −0.0898929
\(813\) −16.4924 −0.578415
\(814\) −43.8617 −1.53735
\(815\) −19.6847 −0.689524
\(816\) −2.56155 −0.0896723
\(817\) −43.0540 −1.50627
\(818\) 7.12311 0.249054
\(819\) 8.00000 0.279543
\(820\) 21.9309 0.765859
\(821\) −5.50758 −0.192216 −0.0961079 0.995371i \(-0.530639\pi\)
−0.0961079 + 0.995371i \(0.530639\pi\)
\(822\) 1.12311 0.0391728
\(823\) −22.8769 −0.797438 −0.398719 0.917073i \(-0.630545\pi\)
−0.398719 + 0.917073i \(0.630545\pi\)
\(824\) 10.5616 0.367929
\(825\) 8.00000 0.278524
\(826\) −9.43845 −0.328406
\(827\) 26.2462 0.912670 0.456335 0.889808i \(-0.349162\pi\)
0.456335 + 0.889808i \(0.349162\pi\)
\(828\) −1.00000 −0.0347524
\(829\) 2.80776 0.0975177 0.0487588 0.998811i \(-0.484473\pi\)
0.0487588 + 0.998811i \(0.484473\pi\)
\(830\) 8.00000 0.277684
\(831\) 26.0000 0.901930
\(832\) 3.12311 0.108274
\(833\) 1.12311 0.0389133
\(834\) 5.12311 0.177399
\(835\) 39.3693 1.36243
\(836\) −33.6155 −1.16262
\(837\) 0 0
\(838\) −15.9309 −0.550323
\(839\) 35.4384 1.22347 0.611736 0.791062i \(-0.290472\pi\)
0.611736 + 0.791062i \(0.290472\pi\)
\(840\) −6.56155 −0.226395
\(841\) 1.00000 0.0344828
\(842\) 28.7386 0.990399
\(843\) 30.4924 1.05021
\(844\) 9.93087 0.341835
\(845\) −8.31534 −0.286056
\(846\) 3.68466 0.126681
\(847\) 39.0540 1.34191
\(848\) −1.12311 −0.0385676
\(849\) 14.4924 0.497379
\(850\) 4.00000 0.137199
\(851\) −8.56155 −0.293486
\(852\) 8.00000 0.274075
\(853\) −12.0691 −0.413239 −0.206620 0.978421i \(-0.566246\pi\)
−0.206620 + 0.978421i \(0.566246\pi\)
\(854\) 5.12311 0.175309
\(855\) −16.8078 −0.574813
\(856\) −14.8078 −0.506119
\(857\) −0.738634 −0.0252312 −0.0126156 0.999920i \(-0.504016\pi\)
−0.0126156 + 0.999920i \(0.504016\pi\)
\(858\) −16.0000 −0.546231
\(859\) 45.7926 1.56242 0.781212 0.624266i \(-0.214602\pi\)
0.781212 + 0.624266i \(0.214602\pi\)
\(860\) 16.8078 0.573140
\(861\) 21.9309 0.747402
\(862\) −1.75379 −0.0597343
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −4.31534 −0.146726
\(866\) 3.36932 0.114494
\(867\) −10.4384 −0.354508
\(868\) 0 0
\(869\) −21.7538 −0.737947
\(870\) 2.56155 0.0868448
\(871\) 22.2462 0.753784
\(872\) 0 0
\(873\) −8.00000 −0.270759
\(874\) −6.56155 −0.221948
\(875\) −22.5616 −0.762720
\(876\) −12.2462 −0.413761
\(877\) −21.3693 −0.721591 −0.360795 0.932645i \(-0.617495\pi\)
−0.360795 + 0.932645i \(0.617495\pi\)
\(878\) −3.68466 −0.124351
\(879\) −2.49242 −0.0840673
\(880\) 13.1231 0.442380
\(881\) −29.1231 −0.981182 −0.490591 0.871390i \(-0.663219\pi\)
−0.490591 + 0.871390i \(0.663219\pi\)
\(882\) 0.438447 0.0147633
\(883\) 38.7386 1.30366 0.651829 0.758366i \(-0.274002\pi\)
0.651829 + 0.758366i \(0.274002\pi\)
\(884\) −8.00000 −0.269069
\(885\) 9.43845 0.317270
\(886\) −0.492423 −0.0165433
\(887\) 2.73863 0.0919543 0.0459772 0.998942i \(-0.485360\pi\)
0.0459772 + 0.998942i \(0.485360\pi\)
\(888\) −8.56155 −0.287307
\(889\) −23.3693 −0.783782
\(890\) 18.8769 0.632755
\(891\) 5.12311 0.171630
\(892\) −28.4924 −0.953997
\(893\) 24.1771 0.809055
\(894\) −19.6847 −0.658353
\(895\) 0 0
\(896\) −2.56155 −0.0855755
\(897\) −3.12311 −0.104277
\(898\) 32.4233 1.08198
\(899\) 0 0
\(900\) 1.56155 0.0520518
\(901\) 2.87689 0.0958432
\(902\) −43.8617 −1.46044
\(903\) 16.8078 0.559327
\(904\) 5.43845 0.180880
\(905\) −30.7386 −1.02179
\(906\) 3.68466 0.122415
\(907\) 2.24621 0.0745842 0.0372921 0.999304i \(-0.488127\pi\)
0.0372921 + 0.999304i \(0.488127\pi\)
\(908\) −7.93087 −0.263195
\(909\) 2.00000 0.0663358
\(910\) −20.4924 −0.679317
\(911\) −35.1231 −1.16368 −0.581840 0.813303i \(-0.697667\pi\)
−0.581840 + 0.813303i \(0.697667\pi\)
\(912\) −6.56155 −0.217275
\(913\) −16.0000 −0.529523
\(914\) 28.4233 0.940159
\(915\) −5.12311 −0.169365
\(916\) −14.8078 −0.489262
\(917\) 4.49242 0.148353
\(918\) 2.56155 0.0845438
\(919\) 35.5464 1.17257 0.586284 0.810106i \(-0.300590\pi\)
0.586284 + 0.810106i \(0.300590\pi\)
\(920\) 2.56155 0.0844519
\(921\) 4.00000 0.131804
\(922\) 9.36932 0.308562
\(923\) 24.9848 0.822386
\(924\) 13.1231 0.431718
\(925\) 13.3693 0.439580
\(926\) 4.49242 0.147630
\(927\) −10.5616 −0.346887
\(928\) 1.00000 0.0328266
\(929\) 6.49242 0.213009 0.106505 0.994312i \(-0.466034\pi\)
0.106505 + 0.994312i \(0.466034\pi\)
\(930\) 0 0
\(931\) 2.87689 0.0942864
\(932\) −25.3693 −0.831000
\(933\) 15.0540 0.492845
\(934\) 36.4924 1.19407
\(935\) −33.6155 −1.09935
\(936\) −3.12311 −0.102082
\(937\) −3.93087 −0.128416 −0.0642080 0.997937i \(-0.520452\pi\)
−0.0642080 + 0.997937i \(0.520452\pi\)
\(938\) −18.2462 −0.595760
\(939\) 6.31534 0.206093
\(940\) −9.43845 −0.307848
\(941\) −43.3693 −1.41380 −0.706900 0.707314i \(-0.749907\pi\)
−0.706900 + 0.707314i \(0.749907\pi\)
\(942\) −10.8078 −0.352136
\(943\) −8.56155 −0.278803
\(944\) 3.68466 0.119925
\(945\) 6.56155 0.213447
\(946\) −33.6155 −1.09294
\(947\) 55.2311 1.79477 0.897384 0.441250i \(-0.145465\pi\)
0.897384 + 0.441250i \(0.145465\pi\)
\(948\) −4.24621 −0.137911
\(949\) −38.2462 −1.24152
\(950\) 10.2462 0.332431
\(951\) 8.87689 0.287853
\(952\) 6.56155 0.212661
\(953\) 8.87689 0.287551 0.143775 0.989610i \(-0.454076\pi\)
0.143775 + 0.989610i \(0.454076\pi\)
\(954\) 1.12311 0.0363619
\(955\) 16.1771 0.523478
\(956\) 2.87689 0.0930454
\(957\) −5.12311 −0.165606
\(958\) 15.6155 0.504515
\(959\) −2.87689 −0.0928998
\(960\) 2.56155 0.0826738
\(961\) −31.0000 −1.00000
\(962\) −26.7386 −0.862088
\(963\) 14.8078 0.477174
\(964\) 13.6847 0.440753
\(965\) 22.7386 0.731983
\(966\) 2.56155 0.0824166
\(967\) 1.75379 0.0563980 0.0281990 0.999602i \(-0.491023\pi\)
0.0281990 + 0.999602i \(0.491023\pi\)
\(968\) −15.2462 −0.490032
\(969\) 16.8078 0.539943
\(970\) 20.4924 0.657972
\(971\) 9.12311 0.292774 0.146387 0.989227i \(-0.453235\pi\)
0.146387 + 0.989227i \(0.453235\pi\)
\(972\) 1.00000 0.0320750
\(973\) −13.1231 −0.420707
\(974\) −35.6847 −1.14341
\(975\) 4.87689 0.156186
\(976\) −2.00000 −0.0640184
\(977\) 1.36932 0.0438083 0.0219042 0.999760i \(-0.493027\pi\)
0.0219042 + 0.999760i \(0.493027\pi\)
\(978\) 7.68466 0.245728
\(979\) −37.7538 −1.20662
\(980\) −1.12311 −0.0358763
\(981\) 0 0
\(982\) −29.6155 −0.945069
\(983\) −4.87689 −0.155549 −0.0777744 0.996971i \(-0.524781\pi\)
−0.0777744 + 0.996971i \(0.524781\pi\)
\(984\) −8.56155 −0.272932
\(985\) −26.4233 −0.841916
\(986\) −2.56155 −0.0815765
\(987\) −9.43845 −0.300429
\(988\) −20.4924 −0.651951
\(989\) −6.56155 −0.208645
\(990\) −13.1231 −0.417080
\(991\) −16.8078 −0.533916 −0.266958 0.963708i \(-0.586019\pi\)
−0.266958 + 0.963708i \(0.586019\pi\)
\(992\) 0 0
\(993\) −21.4384 −0.680329
\(994\) −20.4924 −0.649980
\(995\) −40.9848 −1.29931
\(996\) −3.12311 −0.0989594
\(997\) 54.6695 1.73140 0.865700 0.500563i \(-0.166874\pi\)
0.865700 + 0.500563i \(0.166874\pi\)
\(998\) −13.6155 −0.430992
\(999\) 8.56155 0.270876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.u.1.2 2 1.1 even 1 trivial