Properties

Label 4002.2.a.t.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.82843 q^{5} +1.00000 q^{6} +1.41421 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.82843 q^{5} +1.00000 q^{6} +1.41421 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.82843 q^{10} +4.00000 q^{11} -1.00000 q^{12} -0.828427 q^{13} -1.41421 q^{14} -2.82843 q^{15} +1.00000 q^{16} -2.82843 q^{17} -1.00000 q^{18} -5.41421 q^{19} +2.82843 q^{20} -1.41421 q^{21} -4.00000 q^{22} -1.00000 q^{23} +1.00000 q^{24} +3.00000 q^{25} +0.828427 q^{26} -1.00000 q^{27} +1.41421 q^{28} +1.00000 q^{29} +2.82843 q^{30} +6.00000 q^{31} -1.00000 q^{32} -4.00000 q^{33} +2.82843 q^{34} +4.00000 q^{35} +1.00000 q^{36} +4.82843 q^{37} +5.41421 q^{38} +0.828427 q^{39} -2.82843 q^{40} +2.82843 q^{41} +1.41421 q^{42} -0.242641 q^{43} +4.00000 q^{44} +2.82843 q^{45} +1.00000 q^{46} +11.3137 q^{47} -1.00000 q^{48} -5.00000 q^{49} -3.00000 q^{50} +2.82843 q^{51} -0.828427 q^{52} +4.00000 q^{53} +1.00000 q^{54} +11.3137 q^{55} -1.41421 q^{56} +5.41421 q^{57} -1.00000 q^{58} -1.17157 q^{59} -2.82843 q^{60} +3.65685 q^{61} -6.00000 q^{62} +1.41421 q^{63} +1.00000 q^{64} -2.34315 q^{65} +4.00000 q^{66} -2.48528 q^{67} -2.82843 q^{68} +1.00000 q^{69} -4.00000 q^{70} -10.4853 q^{71} -1.00000 q^{72} +14.4853 q^{73} -4.82843 q^{74} -3.00000 q^{75} -5.41421 q^{76} +5.65685 q^{77} -0.828427 q^{78} +15.6569 q^{79} +2.82843 q^{80} +1.00000 q^{81} -2.82843 q^{82} +17.5563 q^{83} -1.41421 q^{84} -8.00000 q^{85} +0.242641 q^{86} -1.00000 q^{87} -4.00000 q^{88} -10.8284 q^{89} -2.82843 q^{90} -1.17157 q^{91} -1.00000 q^{92} -6.00000 q^{93} -11.3137 q^{94} -15.3137 q^{95} +1.00000 q^{96} +10.5858 q^{97} +5.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{8} + 2 q^{9} + 8 q^{11} - 2 q^{12} + 4 q^{13} + 2 q^{16} - 2 q^{18} - 8 q^{19} - 8 q^{22} - 2 q^{23} + 2 q^{24} + 6 q^{25} - 4 q^{26} - 2 q^{27} + 2 q^{29} + 12 q^{31} - 2 q^{32} - 8 q^{33} + 8 q^{35} + 2 q^{36} + 4 q^{37} + 8 q^{38} - 4 q^{39} + 8 q^{43} + 8 q^{44} + 2 q^{46} - 2 q^{48} - 10 q^{49} - 6 q^{50} + 4 q^{52} + 8 q^{53} + 2 q^{54} + 8 q^{57} - 2 q^{58} - 8 q^{59} - 4 q^{61} - 12 q^{62} + 2 q^{64} - 16 q^{65} + 8 q^{66} + 12 q^{67} + 2 q^{69} - 8 q^{70} - 4 q^{71} - 2 q^{72} + 12 q^{73} - 4 q^{74} - 6 q^{75} - 8 q^{76} + 4 q^{78} + 20 q^{79} + 2 q^{81} + 4 q^{83} - 16 q^{85} - 8 q^{86} - 2 q^{87} - 8 q^{88} - 16 q^{89} - 8 q^{91} - 2 q^{92} - 12 q^{93} - 8 q^{95} + 2 q^{96} + 24 q^{97} + 10 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.41421 0.534522 0.267261 0.963624i \(-0.413881\pi\)
0.267261 + 0.963624i \(0.413881\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.82843 −0.894427
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) −1.00000 −0.288675
\(13\) −0.828427 −0.229764 −0.114882 0.993379i \(-0.536649\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(14\) −1.41421 −0.377964
\(15\) −2.82843 −0.730297
\(16\) 1.00000 0.250000
\(17\) −2.82843 −0.685994 −0.342997 0.939336i \(-0.611442\pi\)
−0.342997 + 0.939336i \(0.611442\pi\)
\(18\) −1.00000 −0.235702
\(19\) −5.41421 −1.24211 −0.621053 0.783769i \(-0.713295\pi\)
−0.621053 + 0.783769i \(0.713295\pi\)
\(20\) 2.82843 0.632456
\(21\) −1.41421 −0.308607
\(22\) −4.00000 −0.852803
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) 3.00000 0.600000
\(26\) 0.828427 0.162468
\(27\) −1.00000 −0.192450
\(28\) 1.41421 0.267261
\(29\) 1.00000 0.185695
\(30\) 2.82843 0.516398
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.00000 −0.696311
\(34\) 2.82843 0.485071
\(35\) 4.00000 0.676123
\(36\) 1.00000 0.166667
\(37\) 4.82843 0.793789 0.396894 0.917864i \(-0.370088\pi\)
0.396894 + 0.917864i \(0.370088\pi\)
\(38\) 5.41421 0.878301
\(39\) 0.828427 0.132655
\(40\) −2.82843 −0.447214
\(41\) 2.82843 0.441726 0.220863 0.975305i \(-0.429113\pi\)
0.220863 + 0.975305i \(0.429113\pi\)
\(42\) 1.41421 0.218218
\(43\) −0.242641 −0.0370024 −0.0185012 0.999829i \(-0.505889\pi\)
−0.0185012 + 0.999829i \(0.505889\pi\)
\(44\) 4.00000 0.603023
\(45\) 2.82843 0.421637
\(46\) 1.00000 0.147442
\(47\) 11.3137 1.65027 0.825137 0.564933i \(-0.191098\pi\)
0.825137 + 0.564933i \(0.191098\pi\)
\(48\) −1.00000 −0.144338
\(49\) −5.00000 −0.714286
\(50\) −3.00000 −0.424264
\(51\) 2.82843 0.396059
\(52\) −0.828427 −0.114882
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 1.00000 0.136083
\(55\) 11.3137 1.52554
\(56\) −1.41421 −0.188982
\(57\) 5.41421 0.717130
\(58\) −1.00000 −0.131306
\(59\) −1.17157 −0.152526 −0.0762629 0.997088i \(-0.524299\pi\)
−0.0762629 + 0.997088i \(0.524299\pi\)
\(60\) −2.82843 −0.365148
\(61\) 3.65685 0.468212 0.234106 0.972211i \(-0.424784\pi\)
0.234106 + 0.972211i \(0.424784\pi\)
\(62\) −6.00000 −0.762001
\(63\) 1.41421 0.178174
\(64\) 1.00000 0.125000
\(65\) −2.34315 −0.290631
\(66\) 4.00000 0.492366
\(67\) −2.48528 −0.303625 −0.151813 0.988409i \(-0.548511\pi\)
−0.151813 + 0.988409i \(0.548511\pi\)
\(68\) −2.82843 −0.342997
\(69\) 1.00000 0.120386
\(70\) −4.00000 −0.478091
\(71\) −10.4853 −1.24437 −0.622187 0.782869i \(-0.713756\pi\)
−0.622187 + 0.782869i \(0.713756\pi\)
\(72\) −1.00000 −0.117851
\(73\) 14.4853 1.69537 0.847687 0.530497i \(-0.177995\pi\)
0.847687 + 0.530497i \(0.177995\pi\)
\(74\) −4.82843 −0.561293
\(75\) −3.00000 −0.346410
\(76\) −5.41421 −0.621053
\(77\) 5.65685 0.644658
\(78\) −0.828427 −0.0938009
\(79\) 15.6569 1.76153 0.880767 0.473550i \(-0.157028\pi\)
0.880767 + 0.473550i \(0.157028\pi\)
\(80\) 2.82843 0.316228
\(81\) 1.00000 0.111111
\(82\) −2.82843 −0.312348
\(83\) 17.5563 1.92706 0.963530 0.267601i \(-0.0862309\pi\)
0.963530 + 0.267601i \(0.0862309\pi\)
\(84\) −1.41421 −0.154303
\(85\) −8.00000 −0.867722
\(86\) 0.242641 0.0261646
\(87\) −1.00000 −0.107211
\(88\) −4.00000 −0.426401
\(89\) −10.8284 −1.14781 −0.573905 0.818922i \(-0.694572\pi\)
−0.573905 + 0.818922i \(0.694572\pi\)
\(90\) −2.82843 −0.298142
\(91\) −1.17157 −0.122814
\(92\) −1.00000 −0.104257
\(93\) −6.00000 −0.622171
\(94\) −11.3137 −1.16692
\(95\) −15.3137 −1.57115
\(96\) 1.00000 0.102062
\(97\) 10.5858 1.07482 0.537412 0.843320i \(-0.319402\pi\)
0.537412 + 0.843320i \(0.319402\pi\)
\(98\) 5.00000 0.505076
\(99\) 4.00000 0.402015
\(100\) 3.00000 0.300000
\(101\) 0.828427 0.0824316 0.0412158 0.999150i \(-0.486877\pi\)
0.0412158 + 0.999150i \(0.486877\pi\)
\(102\) −2.82843 −0.280056
\(103\) 1.41421 0.139347 0.0696733 0.997570i \(-0.477804\pi\)
0.0696733 + 0.997570i \(0.477804\pi\)
\(104\) 0.828427 0.0812340
\(105\) −4.00000 −0.390360
\(106\) −4.00000 −0.388514
\(107\) −7.41421 −0.716759 −0.358380 0.933576i \(-0.616671\pi\)
−0.358380 + 0.933576i \(0.616671\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −16.2426 −1.55576 −0.777881 0.628411i \(-0.783706\pi\)
−0.777881 + 0.628411i \(0.783706\pi\)
\(110\) −11.3137 −1.07872
\(111\) −4.82843 −0.458294
\(112\) 1.41421 0.133631
\(113\) 1.65685 0.155864 0.0779319 0.996959i \(-0.475168\pi\)
0.0779319 + 0.996959i \(0.475168\pi\)
\(114\) −5.41421 −0.507088
\(115\) −2.82843 −0.263752
\(116\) 1.00000 0.0928477
\(117\) −0.828427 −0.0765881
\(118\) 1.17157 0.107852
\(119\) −4.00000 −0.366679
\(120\) 2.82843 0.258199
\(121\) 5.00000 0.454545
\(122\) −3.65685 −0.331076
\(123\) −2.82843 −0.255031
\(124\) 6.00000 0.538816
\(125\) −5.65685 −0.505964
\(126\) −1.41421 −0.125988
\(127\) −7.31371 −0.648987 −0.324493 0.945888i \(-0.605194\pi\)
−0.324493 + 0.945888i \(0.605194\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.242641 0.0213633
\(130\) 2.34315 0.205507
\(131\) 4.82843 0.421862 0.210931 0.977501i \(-0.432351\pi\)
0.210931 + 0.977501i \(0.432351\pi\)
\(132\) −4.00000 −0.348155
\(133\) −7.65685 −0.663933
\(134\) 2.48528 0.214696
\(135\) −2.82843 −0.243432
\(136\) 2.82843 0.242536
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 15.6569 1.32800 0.663999 0.747734i \(-0.268858\pi\)
0.663999 + 0.747734i \(0.268858\pi\)
\(140\) 4.00000 0.338062
\(141\) −11.3137 −0.952786
\(142\) 10.4853 0.879905
\(143\) −3.31371 −0.277106
\(144\) 1.00000 0.0833333
\(145\) 2.82843 0.234888
\(146\) −14.4853 −1.19881
\(147\) 5.00000 0.412393
\(148\) 4.82843 0.396894
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 3.00000 0.244949
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 5.41421 0.439151
\(153\) −2.82843 −0.228665
\(154\) −5.65685 −0.455842
\(155\) 16.9706 1.36311
\(156\) 0.828427 0.0663273
\(157\) −2.48528 −0.198347 −0.0991735 0.995070i \(-0.531620\pi\)
−0.0991735 + 0.995070i \(0.531620\pi\)
\(158\) −15.6569 −1.24559
\(159\) −4.00000 −0.317221
\(160\) −2.82843 −0.223607
\(161\) −1.41421 −0.111456
\(162\) −1.00000 −0.0785674
\(163\) 16.4853 1.29123 0.645613 0.763664i \(-0.276602\pi\)
0.645613 + 0.763664i \(0.276602\pi\)
\(164\) 2.82843 0.220863
\(165\) −11.3137 −0.880771
\(166\) −17.5563 −1.36264
\(167\) −3.31371 −0.256422 −0.128211 0.991747i \(-0.540924\pi\)
−0.128211 + 0.991747i \(0.540924\pi\)
\(168\) 1.41421 0.109109
\(169\) −12.3137 −0.947208
\(170\) 8.00000 0.613572
\(171\) −5.41421 −0.414035
\(172\) −0.242641 −0.0185012
\(173\) −0.485281 −0.0368953 −0.0184476 0.999830i \(-0.505872\pi\)
−0.0184476 + 0.999830i \(0.505872\pi\)
\(174\) 1.00000 0.0758098
\(175\) 4.24264 0.320713
\(176\) 4.00000 0.301511
\(177\) 1.17157 0.0880608
\(178\) 10.8284 0.811625
\(179\) −16.4853 −1.23217 −0.616084 0.787681i \(-0.711282\pi\)
−0.616084 + 0.787681i \(0.711282\pi\)
\(180\) 2.82843 0.210819
\(181\) 0.928932 0.0690470 0.0345235 0.999404i \(-0.489009\pi\)
0.0345235 + 0.999404i \(0.489009\pi\)
\(182\) 1.17157 0.0868428
\(183\) −3.65685 −0.270322
\(184\) 1.00000 0.0737210
\(185\) 13.6569 1.00407
\(186\) 6.00000 0.439941
\(187\) −11.3137 −0.827340
\(188\) 11.3137 0.825137
\(189\) −1.41421 −0.102869
\(190\) 15.3137 1.11097
\(191\) −4.58579 −0.331816 −0.165908 0.986141i \(-0.553055\pi\)
−0.165908 + 0.986141i \(0.553055\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −3.65685 −0.263226 −0.131613 0.991301i \(-0.542016\pi\)
−0.131613 + 0.991301i \(0.542016\pi\)
\(194\) −10.5858 −0.760015
\(195\) 2.34315 0.167796
\(196\) −5.00000 −0.357143
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) −4.00000 −0.284268
\(199\) 0.242641 0.0172003 0.00860017 0.999963i \(-0.497262\pi\)
0.00860017 + 0.999963i \(0.497262\pi\)
\(200\) −3.00000 −0.212132
\(201\) 2.48528 0.175298
\(202\) −0.828427 −0.0582879
\(203\) 1.41421 0.0992583
\(204\) 2.82843 0.198030
\(205\) 8.00000 0.558744
\(206\) −1.41421 −0.0985329
\(207\) −1.00000 −0.0695048
\(208\) −0.828427 −0.0574411
\(209\) −21.6569 −1.49804
\(210\) 4.00000 0.276026
\(211\) 2.82843 0.194717 0.0973585 0.995249i \(-0.468961\pi\)
0.0973585 + 0.995249i \(0.468961\pi\)
\(212\) 4.00000 0.274721
\(213\) 10.4853 0.718440
\(214\) 7.41421 0.506825
\(215\) −0.686292 −0.0468047
\(216\) 1.00000 0.0680414
\(217\) 8.48528 0.576018
\(218\) 16.2426 1.10009
\(219\) −14.4853 −0.978825
\(220\) 11.3137 0.762770
\(221\) 2.34315 0.157617
\(222\) 4.82843 0.324063
\(223\) 21.6569 1.45025 0.725125 0.688617i \(-0.241782\pi\)
0.725125 + 0.688617i \(0.241782\pi\)
\(224\) −1.41421 −0.0944911
\(225\) 3.00000 0.200000
\(226\) −1.65685 −0.110212
\(227\) −2.24264 −0.148849 −0.0744246 0.997227i \(-0.523712\pi\)
−0.0744246 + 0.997227i \(0.523712\pi\)
\(228\) 5.41421 0.358565
\(229\) −0.343146 −0.0226757 −0.0113379 0.999936i \(-0.503609\pi\)
−0.0113379 + 0.999936i \(0.503609\pi\)
\(230\) 2.82843 0.186501
\(231\) −5.65685 −0.372194
\(232\) −1.00000 −0.0656532
\(233\) 0.828427 0.0542721 0.0271360 0.999632i \(-0.491361\pi\)
0.0271360 + 0.999632i \(0.491361\pi\)
\(234\) 0.828427 0.0541560
\(235\) 32.0000 2.08745
\(236\) −1.17157 −0.0762629
\(237\) −15.6569 −1.01702
\(238\) 4.00000 0.259281
\(239\) −18.4853 −1.19571 −0.597857 0.801603i \(-0.703981\pi\)
−0.597857 + 0.801603i \(0.703981\pi\)
\(240\) −2.82843 −0.182574
\(241\) 18.4853 1.19074 0.595371 0.803451i \(-0.297005\pi\)
0.595371 + 0.803451i \(0.297005\pi\)
\(242\) −5.00000 −0.321412
\(243\) −1.00000 −0.0641500
\(244\) 3.65685 0.234106
\(245\) −14.1421 −0.903508
\(246\) 2.82843 0.180334
\(247\) 4.48528 0.285392
\(248\) −6.00000 −0.381000
\(249\) −17.5563 −1.11259
\(250\) 5.65685 0.357771
\(251\) 23.3137 1.47155 0.735774 0.677227i \(-0.236819\pi\)
0.735774 + 0.677227i \(0.236819\pi\)
\(252\) 1.41421 0.0890871
\(253\) −4.00000 −0.251478
\(254\) 7.31371 0.458903
\(255\) 8.00000 0.500979
\(256\) 1.00000 0.0625000
\(257\) −24.8284 −1.54875 −0.774377 0.632724i \(-0.781937\pi\)
−0.774377 + 0.632724i \(0.781937\pi\)
\(258\) −0.242641 −0.0151061
\(259\) 6.82843 0.424298
\(260\) −2.34315 −0.145316
\(261\) 1.00000 0.0618984
\(262\) −4.82843 −0.298301
\(263\) 13.5563 0.835920 0.417960 0.908465i \(-0.362745\pi\)
0.417960 + 0.908465i \(0.362745\pi\)
\(264\) 4.00000 0.246183
\(265\) 11.3137 0.694996
\(266\) 7.65685 0.469472
\(267\) 10.8284 0.662689
\(268\) −2.48528 −0.151813
\(269\) −11.1716 −0.681143 −0.340571 0.940219i \(-0.610621\pi\)
−0.340571 + 0.940219i \(0.610621\pi\)
\(270\) 2.82843 0.172133
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) −2.82843 −0.171499
\(273\) 1.17157 0.0709068
\(274\) −8.00000 −0.483298
\(275\) 12.0000 0.723627
\(276\) 1.00000 0.0601929
\(277\) 3.17157 0.190561 0.0952807 0.995450i \(-0.469625\pi\)
0.0952807 + 0.995450i \(0.469625\pi\)
\(278\) −15.6569 −0.939036
\(279\) 6.00000 0.359211
\(280\) −4.00000 −0.239046
\(281\) 0.100505 0.00599563 0.00299781 0.999996i \(-0.499046\pi\)
0.00299781 + 0.999996i \(0.499046\pi\)
\(282\) 11.3137 0.673722
\(283\) 18.4853 1.09884 0.549418 0.835548i \(-0.314849\pi\)
0.549418 + 0.835548i \(0.314849\pi\)
\(284\) −10.4853 −0.622187
\(285\) 15.3137 0.907106
\(286\) 3.31371 0.195944
\(287\) 4.00000 0.236113
\(288\) −1.00000 −0.0589256
\(289\) −9.00000 −0.529412
\(290\) −2.82843 −0.166091
\(291\) −10.5858 −0.620550
\(292\) 14.4853 0.847687
\(293\) −14.7279 −0.860414 −0.430207 0.902730i \(-0.641560\pi\)
−0.430207 + 0.902730i \(0.641560\pi\)
\(294\) −5.00000 −0.291606
\(295\) −3.31371 −0.192932
\(296\) −4.82843 −0.280647
\(297\) −4.00000 −0.232104
\(298\) 4.00000 0.231714
\(299\) 0.828427 0.0479092
\(300\) −3.00000 −0.173205
\(301\) −0.343146 −0.0197786
\(302\) −16.0000 −0.920697
\(303\) −0.828427 −0.0475919
\(304\) −5.41421 −0.310526
\(305\) 10.3431 0.592247
\(306\) 2.82843 0.161690
\(307\) 17.1716 0.980033 0.490017 0.871713i \(-0.336991\pi\)
0.490017 + 0.871713i \(0.336991\pi\)
\(308\) 5.65685 0.322329
\(309\) −1.41421 −0.0804518
\(310\) −16.9706 −0.963863
\(311\) −33.4558 −1.89711 −0.948553 0.316617i \(-0.897453\pi\)
−0.948553 + 0.316617i \(0.897453\pi\)
\(312\) −0.828427 −0.0469005
\(313\) 20.6274 1.16593 0.582965 0.812497i \(-0.301892\pi\)
0.582965 + 0.812497i \(0.301892\pi\)
\(314\) 2.48528 0.140253
\(315\) 4.00000 0.225374
\(316\) 15.6569 0.880767
\(317\) −8.14214 −0.457308 −0.228654 0.973508i \(-0.573432\pi\)
−0.228654 + 0.973508i \(0.573432\pi\)
\(318\) 4.00000 0.224309
\(319\) 4.00000 0.223957
\(320\) 2.82843 0.158114
\(321\) 7.41421 0.413821
\(322\) 1.41421 0.0788110
\(323\) 15.3137 0.852078
\(324\) 1.00000 0.0555556
\(325\) −2.48528 −0.137859
\(326\) −16.4853 −0.913035
\(327\) 16.2426 0.898220
\(328\) −2.82843 −0.156174
\(329\) 16.0000 0.882109
\(330\) 11.3137 0.622799
\(331\) −27.7990 −1.52797 −0.763985 0.645234i \(-0.776760\pi\)
−0.763985 + 0.645234i \(0.776760\pi\)
\(332\) 17.5563 0.963530
\(333\) 4.82843 0.264596
\(334\) 3.31371 0.181318
\(335\) −7.02944 −0.384059
\(336\) −1.41421 −0.0771517
\(337\) 4.24264 0.231111 0.115556 0.993301i \(-0.463135\pi\)
0.115556 + 0.993301i \(0.463135\pi\)
\(338\) 12.3137 0.669777
\(339\) −1.65685 −0.0899880
\(340\) −8.00000 −0.433861
\(341\) 24.0000 1.29967
\(342\) 5.41421 0.292767
\(343\) −16.9706 −0.916324
\(344\) 0.242641 0.0130823
\(345\) 2.82843 0.152277
\(346\) 0.485281 0.0260889
\(347\) 11.3137 0.607352 0.303676 0.952775i \(-0.401786\pi\)
0.303676 + 0.952775i \(0.401786\pi\)
\(348\) −1.00000 −0.0536056
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −4.24264 −0.226779
\(351\) 0.828427 0.0442182
\(352\) −4.00000 −0.213201
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) −1.17157 −0.0622684
\(355\) −29.6569 −1.57402
\(356\) −10.8284 −0.573905
\(357\) 4.00000 0.211702
\(358\) 16.4853 0.871274
\(359\) −13.5563 −0.715477 −0.357738 0.933822i \(-0.616452\pi\)
−0.357738 + 0.933822i \(0.616452\pi\)
\(360\) −2.82843 −0.149071
\(361\) 10.3137 0.542827
\(362\) −0.928932 −0.0488236
\(363\) −5.00000 −0.262432
\(364\) −1.17157 −0.0614071
\(365\) 40.9706 2.14450
\(366\) 3.65685 0.191147
\(367\) 10.0000 0.521996 0.260998 0.965339i \(-0.415948\pi\)
0.260998 + 0.965339i \(0.415948\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 2.82843 0.147242
\(370\) −13.6569 −0.709986
\(371\) 5.65685 0.293689
\(372\) −6.00000 −0.311086
\(373\) 24.2426 1.25524 0.627618 0.778521i \(-0.284030\pi\)
0.627618 + 0.778521i \(0.284030\pi\)
\(374\) 11.3137 0.585018
\(375\) 5.65685 0.292119
\(376\) −11.3137 −0.583460
\(377\) −0.828427 −0.0426662
\(378\) 1.41421 0.0727393
\(379\) 22.3848 1.14983 0.574914 0.818214i \(-0.305035\pi\)
0.574914 + 0.818214i \(0.305035\pi\)
\(380\) −15.3137 −0.785577
\(381\) 7.31371 0.374693
\(382\) 4.58579 0.234629
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 1.00000 0.0510310
\(385\) 16.0000 0.815436
\(386\) 3.65685 0.186129
\(387\) −0.242641 −0.0123341
\(388\) 10.5858 0.537412
\(389\) −5.55635 −0.281718 −0.140859 0.990030i \(-0.544986\pi\)
−0.140859 + 0.990030i \(0.544986\pi\)
\(390\) −2.34315 −0.118650
\(391\) 2.82843 0.143040
\(392\) 5.00000 0.252538
\(393\) −4.82843 −0.243562
\(394\) −10.0000 −0.503793
\(395\) 44.2843 2.22818
\(396\) 4.00000 0.201008
\(397\) −8.34315 −0.418730 −0.209365 0.977838i \(-0.567140\pi\)
−0.209365 + 0.977838i \(0.567140\pi\)
\(398\) −0.242641 −0.0121625
\(399\) 7.65685 0.383322
\(400\) 3.00000 0.150000
\(401\) 5.27208 0.263275 0.131638 0.991298i \(-0.457977\pi\)
0.131638 + 0.991298i \(0.457977\pi\)
\(402\) −2.48528 −0.123955
\(403\) −4.97056 −0.247601
\(404\) 0.828427 0.0412158
\(405\) 2.82843 0.140546
\(406\) −1.41421 −0.0701862
\(407\) 19.3137 0.957345
\(408\) −2.82843 −0.140028
\(409\) 23.6569 1.16976 0.584878 0.811121i \(-0.301142\pi\)
0.584878 + 0.811121i \(0.301142\pi\)
\(410\) −8.00000 −0.395092
\(411\) −8.00000 −0.394611
\(412\) 1.41421 0.0696733
\(413\) −1.65685 −0.0815285
\(414\) 1.00000 0.0491473
\(415\) 49.6569 2.43756
\(416\) 0.828427 0.0406170
\(417\) −15.6569 −0.766719
\(418\) 21.6569 1.05927
\(419\) −30.0416 −1.46763 −0.733815 0.679350i \(-0.762262\pi\)
−0.733815 + 0.679350i \(0.762262\pi\)
\(420\) −4.00000 −0.195180
\(421\) −11.6569 −0.568120 −0.284060 0.958806i \(-0.591682\pi\)
−0.284060 + 0.958806i \(0.591682\pi\)
\(422\) −2.82843 −0.137686
\(423\) 11.3137 0.550091
\(424\) −4.00000 −0.194257
\(425\) −8.48528 −0.411597
\(426\) −10.4853 −0.508014
\(427\) 5.17157 0.250270
\(428\) −7.41421 −0.358380
\(429\) 3.31371 0.159987
\(430\) 0.686292 0.0330959
\(431\) −0.485281 −0.0233752 −0.0116876 0.999932i \(-0.503720\pi\)
−0.0116876 + 0.999932i \(0.503720\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −15.5563 −0.747590 −0.373795 0.927511i \(-0.621944\pi\)
−0.373795 + 0.927511i \(0.621944\pi\)
\(434\) −8.48528 −0.407307
\(435\) −2.82843 −0.135613
\(436\) −16.2426 −0.777881
\(437\) 5.41421 0.258997
\(438\) 14.4853 0.692134
\(439\) −6.34315 −0.302742 −0.151371 0.988477i \(-0.548369\pi\)
−0.151371 + 0.988477i \(0.548369\pi\)
\(440\) −11.3137 −0.539360
\(441\) −5.00000 −0.238095
\(442\) −2.34315 −0.111452
\(443\) 24.1421 1.14703 0.573514 0.819196i \(-0.305580\pi\)
0.573514 + 0.819196i \(0.305580\pi\)
\(444\) −4.82843 −0.229147
\(445\) −30.6274 −1.45188
\(446\) −21.6569 −1.02548
\(447\) 4.00000 0.189194
\(448\) 1.41421 0.0668153
\(449\) 35.7990 1.68946 0.844729 0.535194i \(-0.179761\pi\)
0.844729 + 0.535194i \(0.179761\pi\)
\(450\) −3.00000 −0.141421
\(451\) 11.3137 0.532742
\(452\) 1.65685 0.0779319
\(453\) −16.0000 −0.751746
\(454\) 2.24264 0.105252
\(455\) −3.31371 −0.155349
\(456\) −5.41421 −0.253544
\(457\) −28.6274 −1.33913 −0.669567 0.742752i \(-0.733520\pi\)
−0.669567 + 0.742752i \(0.733520\pi\)
\(458\) 0.343146 0.0160341
\(459\) 2.82843 0.132020
\(460\) −2.82843 −0.131876
\(461\) 6.48528 0.302050 0.151025 0.988530i \(-0.451743\pi\)
0.151025 + 0.988530i \(0.451743\pi\)
\(462\) 5.65685 0.263181
\(463\) 28.0000 1.30127 0.650635 0.759390i \(-0.274503\pi\)
0.650635 + 0.759390i \(0.274503\pi\)
\(464\) 1.00000 0.0464238
\(465\) −16.9706 −0.786991
\(466\) −0.828427 −0.0383761
\(467\) 40.4853 1.87344 0.936718 0.350086i \(-0.113848\pi\)
0.936718 + 0.350086i \(0.113848\pi\)
\(468\) −0.828427 −0.0382941
\(469\) −3.51472 −0.162295
\(470\) −32.0000 −1.47605
\(471\) 2.48528 0.114516
\(472\) 1.17157 0.0539260
\(473\) −0.970563 −0.0446265
\(474\) 15.6569 0.719143
\(475\) −16.2426 −0.745263
\(476\) −4.00000 −0.183340
\(477\) 4.00000 0.183147
\(478\) 18.4853 0.845497
\(479\) 21.0711 0.962762 0.481381 0.876512i \(-0.340135\pi\)
0.481381 + 0.876512i \(0.340135\pi\)
\(480\) 2.82843 0.129099
\(481\) −4.00000 −0.182384
\(482\) −18.4853 −0.841981
\(483\) 1.41421 0.0643489
\(484\) 5.00000 0.227273
\(485\) 29.9411 1.35956
\(486\) 1.00000 0.0453609
\(487\) 37.6569 1.70639 0.853197 0.521588i \(-0.174660\pi\)
0.853197 + 0.521588i \(0.174660\pi\)
\(488\) −3.65685 −0.165538
\(489\) −16.4853 −0.745490
\(490\) 14.1421 0.638877
\(491\) 18.4853 0.834229 0.417115 0.908854i \(-0.363041\pi\)
0.417115 + 0.908854i \(0.363041\pi\)
\(492\) −2.82843 −0.127515
\(493\) −2.82843 −0.127386
\(494\) −4.48528 −0.201802
\(495\) 11.3137 0.508513
\(496\) 6.00000 0.269408
\(497\) −14.8284 −0.665146
\(498\) 17.5563 0.786719
\(499\) −15.6569 −0.700897 −0.350449 0.936582i \(-0.613971\pi\)
−0.350449 + 0.936582i \(0.613971\pi\)
\(500\) −5.65685 −0.252982
\(501\) 3.31371 0.148046
\(502\) −23.3137 −1.04054
\(503\) −0.786797 −0.0350815 −0.0175408 0.999846i \(-0.505584\pi\)
−0.0175408 + 0.999846i \(0.505584\pi\)
\(504\) −1.41421 −0.0629941
\(505\) 2.34315 0.104269
\(506\) 4.00000 0.177822
\(507\) 12.3137 0.546871
\(508\) −7.31371 −0.324493
\(509\) −41.4558 −1.83750 −0.918749 0.394842i \(-0.870799\pi\)
−0.918749 + 0.394842i \(0.870799\pi\)
\(510\) −8.00000 −0.354246
\(511\) 20.4853 0.906215
\(512\) −1.00000 −0.0441942
\(513\) 5.41421 0.239043
\(514\) 24.8284 1.09513
\(515\) 4.00000 0.176261
\(516\) 0.242641 0.0106817
\(517\) 45.2548 1.99031
\(518\) −6.82843 −0.300024
\(519\) 0.485281 0.0213015
\(520\) 2.34315 0.102754
\(521\) 14.9289 0.654048 0.327024 0.945016i \(-0.393954\pi\)
0.327024 + 0.945016i \(0.393954\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −12.8284 −0.560948 −0.280474 0.959862i \(-0.590492\pi\)
−0.280474 + 0.959862i \(0.590492\pi\)
\(524\) 4.82843 0.210931
\(525\) −4.24264 −0.185164
\(526\) −13.5563 −0.591085
\(527\) −16.9706 −0.739249
\(528\) −4.00000 −0.174078
\(529\) 1.00000 0.0434783
\(530\) −11.3137 −0.491436
\(531\) −1.17157 −0.0508419
\(532\) −7.65685 −0.331967
\(533\) −2.34315 −0.101493
\(534\) −10.8284 −0.468592
\(535\) −20.9706 −0.906636
\(536\) 2.48528 0.107348
\(537\) 16.4853 0.711392
\(538\) 11.1716 0.481641
\(539\) −20.0000 −0.861461
\(540\) −2.82843 −0.121716
\(541\) 41.9411 1.80319 0.901595 0.432581i \(-0.142397\pi\)
0.901595 + 0.432581i \(0.142397\pi\)
\(542\) −4.00000 −0.171815
\(543\) −0.928932 −0.0398643
\(544\) 2.82843 0.121268
\(545\) −45.9411 −1.96790
\(546\) −1.17157 −0.0501387
\(547\) 30.9706 1.32421 0.662103 0.749413i \(-0.269664\pi\)
0.662103 + 0.749413i \(0.269664\pi\)
\(548\) 8.00000 0.341743
\(549\) 3.65685 0.156071
\(550\) −12.0000 −0.511682
\(551\) −5.41421 −0.230653
\(552\) −1.00000 −0.0425628
\(553\) 22.1421 0.941579
\(554\) −3.17157 −0.134747
\(555\) −13.6569 −0.579701
\(556\) 15.6569 0.663999
\(557\) −1.17157 −0.0496411 −0.0248206 0.999692i \(-0.507901\pi\)
−0.0248206 + 0.999692i \(0.507901\pi\)
\(558\) −6.00000 −0.254000
\(559\) 0.201010 0.00850182
\(560\) 4.00000 0.169031
\(561\) 11.3137 0.477665
\(562\) −0.100505 −0.00423955
\(563\) −6.62742 −0.279312 −0.139656 0.990200i \(-0.544600\pi\)
−0.139656 + 0.990200i \(0.544600\pi\)
\(564\) −11.3137 −0.476393
\(565\) 4.68629 0.197154
\(566\) −18.4853 −0.776994
\(567\) 1.41421 0.0593914
\(568\) 10.4853 0.439953
\(569\) 3.02944 0.127001 0.0635003 0.997982i \(-0.479774\pi\)
0.0635003 + 0.997982i \(0.479774\pi\)
\(570\) −15.3137 −0.641421
\(571\) 5.31371 0.222372 0.111186 0.993800i \(-0.464535\pi\)
0.111186 + 0.993800i \(0.464535\pi\)
\(572\) −3.31371 −0.138553
\(573\) 4.58579 0.191574
\(574\) −4.00000 −0.166957
\(575\) −3.00000 −0.125109
\(576\) 1.00000 0.0416667
\(577\) −21.3137 −0.887301 −0.443651 0.896200i \(-0.646317\pi\)
−0.443651 + 0.896200i \(0.646317\pi\)
\(578\) 9.00000 0.374351
\(579\) 3.65685 0.151974
\(580\) 2.82843 0.117444
\(581\) 24.8284 1.03006
\(582\) 10.5858 0.438795
\(583\) 16.0000 0.662652
\(584\) −14.4853 −0.599405
\(585\) −2.34315 −0.0968772
\(586\) 14.7279 0.608405
\(587\) −39.5980 −1.63438 −0.817192 0.576366i \(-0.804470\pi\)
−0.817192 + 0.576366i \(0.804470\pi\)
\(588\) 5.00000 0.206197
\(589\) −32.4853 −1.33853
\(590\) 3.31371 0.136423
\(591\) −10.0000 −0.411345
\(592\) 4.82843 0.198447
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 4.00000 0.164122
\(595\) −11.3137 −0.463817
\(596\) −4.00000 −0.163846
\(597\) −0.242641 −0.00993062
\(598\) −0.828427 −0.0338769
\(599\) 7.79899 0.318658 0.159329 0.987226i \(-0.449067\pi\)
0.159329 + 0.987226i \(0.449067\pi\)
\(600\) 3.00000 0.122474
\(601\) −12.3431 −0.503487 −0.251744 0.967794i \(-0.581004\pi\)
−0.251744 + 0.967794i \(0.581004\pi\)
\(602\) 0.343146 0.0139856
\(603\) −2.48528 −0.101208
\(604\) 16.0000 0.651031
\(605\) 14.1421 0.574960
\(606\) 0.828427 0.0336526
\(607\) −6.97056 −0.282926 −0.141463 0.989944i \(-0.545181\pi\)
−0.141463 + 0.989944i \(0.545181\pi\)
\(608\) 5.41421 0.219575
\(609\) −1.41421 −0.0573068
\(610\) −10.3431 −0.418782
\(611\) −9.37258 −0.379174
\(612\) −2.82843 −0.114332
\(613\) −25.2132 −1.01835 −0.509176 0.860663i \(-0.670050\pi\)
−0.509176 + 0.860663i \(0.670050\pi\)
\(614\) −17.1716 −0.692988
\(615\) −8.00000 −0.322591
\(616\) −5.65685 −0.227921
\(617\) −24.2843 −0.977648 −0.488824 0.872382i \(-0.662574\pi\)
−0.488824 + 0.872382i \(0.662574\pi\)
\(618\) 1.41421 0.0568880
\(619\) −47.5563 −1.91145 −0.955726 0.294260i \(-0.904927\pi\)
−0.955726 + 0.294260i \(0.904927\pi\)
\(620\) 16.9706 0.681554
\(621\) 1.00000 0.0401286
\(622\) 33.4558 1.34146
\(623\) −15.3137 −0.613531
\(624\) 0.828427 0.0331636
\(625\) −31.0000 −1.24000
\(626\) −20.6274 −0.824437
\(627\) 21.6569 0.864891
\(628\) −2.48528 −0.0991735
\(629\) −13.6569 −0.544534
\(630\) −4.00000 −0.159364
\(631\) 23.0711 0.918445 0.459222 0.888321i \(-0.348128\pi\)
0.459222 + 0.888321i \(0.348128\pi\)
\(632\) −15.6569 −0.622796
\(633\) −2.82843 −0.112420
\(634\) 8.14214 0.323366
\(635\) −20.6863 −0.820910
\(636\) −4.00000 −0.158610
\(637\) 4.14214 0.164117
\(638\) −4.00000 −0.158362
\(639\) −10.4853 −0.414791
\(640\) −2.82843 −0.111803
\(641\) −13.6569 −0.539413 −0.269707 0.962943i \(-0.586927\pi\)
−0.269707 + 0.962943i \(0.586927\pi\)
\(642\) −7.41421 −0.292616
\(643\) 0.828427 0.0326700 0.0163350 0.999867i \(-0.494800\pi\)
0.0163350 + 0.999867i \(0.494800\pi\)
\(644\) −1.41421 −0.0557278
\(645\) 0.686292 0.0270227
\(646\) −15.3137 −0.602510
\(647\) −9.79899 −0.385238 −0.192619 0.981274i \(-0.561698\pi\)
−0.192619 + 0.981274i \(0.561698\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −4.68629 −0.183953
\(650\) 2.48528 0.0974808
\(651\) −8.48528 −0.332564
\(652\) 16.4853 0.645613
\(653\) −11.6569 −0.456168 −0.228084 0.973641i \(-0.573246\pi\)
−0.228084 + 0.973641i \(0.573246\pi\)
\(654\) −16.2426 −0.635138
\(655\) 13.6569 0.533617
\(656\) 2.82843 0.110432
\(657\) 14.4853 0.565125
\(658\) −16.0000 −0.623745
\(659\) 25.4558 0.991619 0.495809 0.868431i \(-0.334871\pi\)
0.495809 + 0.868431i \(0.334871\pi\)
\(660\) −11.3137 −0.440386
\(661\) −35.5563 −1.38298 −0.691491 0.722385i \(-0.743046\pi\)
−0.691491 + 0.722385i \(0.743046\pi\)
\(662\) 27.7990 1.08044
\(663\) −2.34315 −0.0910002
\(664\) −17.5563 −0.681318
\(665\) −21.6569 −0.839817
\(666\) −4.82843 −0.187098
\(667\) −1.00000 −0.0387202
\(668\) −3.31371 −0.128211
\(669\) −21.6569 −0.837302
\(670\) 7.02944 0.271571
\(671\) 14.6274 0.564685
\(672\) 1.41421 0.0545545
\(673\) −9.31371 −0.359017 −0.179509 0.983756i \(-0.557451\pi\)
−0.179509 + 0.983756i \(0.557451\pi\)
\(674\) −4.24264 −0.163420
\(675\) −3.00000 −0.115470
\(676\) −12.3137 −0.473604
\(677\) −13.2721 −0.510087 −0.255044 0.966930i \(-0.582090\pi\)
−0.255044 + 0.966930i \(0.582090\pi\)
\(678\) 1.65685 0.0636311
\(679\) 14.9706 0.574517
\(680\) 8.00000 0.306786
\(681\) 2.24264 0.0859382
\(682\) −24.0000 −0.919007
\(683\) −15.0294 −0.575085 −0.287543 0.957768i \(-0.592838\pi\)
−0.287543 + 0.957768i \(0.592838\pi\)
\(684\) −5.41421 −0.207018
\(685\) 22.6274 0.864549
\(686\) 16.9706 0.647939
\(687\) 0.343146 0.0130918
\(688\) −0.242641 −0.00925059
\(689\) −3.31371 −0.126242
\(690\) −2.82843 −0.107676
\(691\) −3.31371 −0.126059 −0.0630297 0.998012i \(-0.520076\pi\)
−0.0630297 + 0.998012i \(0.520076\pi\)
\(692\) −0.485281 −0.0184476
\(693\) 5.65685 0.214886
\(694\) −11.3137 −0.429463
\(695\) 44.2843 1.67980
\(696\) 1.00000 0.0379049
\(697\) −8.00000 −0.303022
\(698\) −2.00000 −0.0757011
\(699\) −0.828427 −0.0313340
\(700\) 4.24264 0.160357
\(701\) −0.201010 −0.00759205 −0.00379602 0.999993i \(-0.501208\pi\)
−0.00379602 + 0.999993i \(0.501208\pi\)
\(702\) −0.828427 −0.0312670
\(703\) −26.1421 −0.985969
\(704\) 4.00000 0.150756
\(705\) −32.0000 −1.20519
\(706\) 10.0000 0.376355
\(707\) 1.17157 0.0440615
\(708\) 1.17157 0.0440304
\(709\) 38.8701 1.45980 0.729898 0.683556i \(-0.239568\pi\)
0.729898 + 0.683556i \(0.239568\pi\)
\(710\) 29.6569 1.11300
\(711\) 15.6569 0.587178
\(712\) 10.8284 0.405812
\(713\) −6.00000 −0.224702
\(714\) −4.00000 −0.149696
\(715\) −9.37258 −0.350515
\(716\) −16.4853 −0.616084
\(717\) 18.4853 0.690345
\(718\) 13.5563 0.505918
\(719\) −4.28427 −0.159776 −0.0798882 0.996804i \(-0.525456\pi\)
−0.0798882 + 0.996804i \(0.525456\pi\)
\(720\) 2.82843 0.105409
\(721\) 2.00000 0.0744839
\(722\) −10.3137 −0.383836
\(723\) −18.4853 −0.687475
\(724\) 0.928932 0.0345235
\(725\) 3.00000 0.111417
\(726\) 5.00000 0.185567
\(727\) −11.6569 −0.432329 −0.216164 0.976357i \(-0.569355\pi\)
−0.216164 + 0.976357i \(0.569355\pi\)
\(728\) 1.17157 0.0434214
\(729\) 1.00000 0.0370370
\(730\) −40.9706 −1.51639
\(731\) 0.686292 0.0253834
\(732\) −3.65685 −0.135161
\(733\) 15.1716 0.560375 0.280187 0.959945i \(-0.409603\pi\)
0.280187 + 0.959945i \(0.409603\pi\)
\(734\) −10.0000 −0.369107
\(735\) 14.1421 0.521641
\(736\) 1.00000 0.0368605
\(737\) −9.94113 −0.366186
\(738\) −2.82843 −0.104116
\(739\) 44.9706 1.65427 0.827134 0.562004i \(-0.189969\pi\)
0.827134 + 0.562004i \(0.189969\pi\)
\(740\) 13.6569 0.502036
\(741\) −4.48528 −0.164771
\(742\) −5.65685 −0.207670
\(743\) 27.4142 1.00573 0.502865 0.864365i \(-0.332279\pi\)
0.502865 + 0.864365i \(0.332279\pi\)
\(744\) 6.00000 0.219971
\(745\) −11.3137 −0.414502
\(746\) −24.2426 −0.887586
\(747\) 17.5563 0.642353
\(748\) −11.3137 −0.413670
\(749\) −10.4853 −0.383124
\(750\) −5.65685 −0.206559
\(751\) −27.9411 −1.01959 −0.509793 0.860297i \(-0.670278\pi\)
−0.509793 + 0.860297i \(0.670278\pi\)
\(752\) 11.3137 0.412568
\(753\) −23.3137 −0.849599
\(754\) 0.828427 0.0301695
\(755\) 45.2548 1.64699
\(756\) −1.41421 −0.0514344
\(757\) −45.3137 −1.64695 −0.823477 0.567349i \(-0.807969\pi\)
−0.823477 + 0.567349i \(0.807969\pi\)
\(758\) −22.3848 −0.813052
\(759\) 4.00000 0.145191
\(760\) 15.3137 0.555487
\(761\) −2.00000 −0.0724999 −0.0362500 0.999343i \(-0.511541\pi\)
−0.0362500 + 0.999343i \(0.511541\pi\)
\(762\) −7.31371 −0.264948
\(763\) −22.9706 −0.831590
\(764\) −4.58579 −0.165908
\(765\) −8.00000 −0.289241
\(766\) −8.00000 −0.289052
\(767\) 0.970563 0.0350450
\(768\) −1.00000 −0.0360844
\(769\) −34.8701 −1.25745 −0.628723 0.777629i \(-0.716422\pi\)
−0.628723 + 0.777629i \(0.716422\pi\)
\(770\) −16.0000 −0.576600
\(771\) 24.8284 0.894174
\(772\) −3.65685 −0.131613
\(773\) −46.0416 −1.65600 −0.828001 0.560726i \(-0.810522\pi\)
−0.828001 + 0.560726i \(0.810522\pi\)
\(774\) 0.242641 0.00872154
\(775\) 18.0000 0.646579
\(776\) −10.5858 −0.380008
\(777\) −6.82843 −0.244968
\(778\) 5.55635 0.199205
\(779\) −15.3137 −0.548671
\(780\) 2.34315 0.0838981
\(781\) −41.9411 −1.50077
\(782\) −2.82843 −0.101144
\(783\) −1.00000 −0.0357371
\(784\) −5.00000 −0.178571
\(785\) −7.02944 −0.250891
\(786\) 4.82843 0.172224
\(787\) −24.1421 −0.860574 −0.430287 0.902692i \(-0.641588\pi\)
−0.430287 + 0.902692i \(0.641588\pi\)
\(788\) 10.0000 0.356235
\(789\) −13.5563 −0.482619
\(790\) −44.2843 −1.57556
\(791\) 2.34315 0.0833127
\(792\) −4.00000 −0.142134
\(793\) −3.02944 −0.107578
\(794\) 8.34315 0.296087
\(795\) −11.3137 −0.401256
\(796\) 0.242641 0.00860017
\(797\) −38.5269 −1.36469 −0.682347 0.731029i \(-0.739040\pi\)
−0.682347 + 0.731029i \(0.739040\pi\)
\(798\) −7.65685 −0.271050
\(799\) −32.0000 −1.13208
\(800\) −3.00000 −0.106066
\(801\) −10.8284 −0.382604
\(802\) −5.27208 −0.186164
\(803\) 57.9411 2.04470
\(804\) 2.48528 0.0876491
\(805\) −4.00000 −0.140981
\(806\) 4.97056 0.175081
\(807\) 11.1716 0.393258
\(808\) −0.828427 −0.0291440
\(809\) −12.2010 −0.428965 −0.214482 0.976728i \(-0.568806\pi\)
−0.214482 + 0.976728i \(0.568806\pi\)
\(810\) −2.82843 −0.0993808
\(811\) −6.00000 −0.210688 −0.105344 0.994436i \(-0.533594\pi\)
−0.105344 + 0.994436i \(0.533594\pi\)
\(812\) 1.41421 0.0496292
\(813\) −4.00000 −0.140286
\(814\) −19.3137 −0.676945
\(815\) 46.6274 1.63329
\(816\) 2.82843 0.0990148
\(817\) 1.31371 0.0459608
\(818\) −23.6569 −0.827143
\(819\) −1.17157 −0.0409381
\(820\) 8.00000 0.279372
\(821\) 30.4264 1.06189 0.530944 0.847407i \(-0.321837\pi\)
0.530944 + 0.847407i \(0.321837\pi\)
\(822\) 8.00000 0.279032
\(823\) −21.9411 −0.764820 −0.382410 0.923993i \(-0.624906\pi\)
−0.382410 + 0.923993i \(0.624906\pi\)
\(824\) −1.41421 −0.0492665
\(825\) −12.0000 −0.417786
\(826\) 1.65685 0.0576493
\(827\) −37.4558 −1.30247 −0.651234 0.758877i \(-0.725748\pi\)
−0.651234 + 0.758877i \(0.725748\pi\)
\(828\) −1.00000 −0.0347524
\(829\) 5.31371 0.184553 0.0922764 0.995733i \(-0.470586\pi\)
0.0922764 + 0.995733i \(0.470586\pi\)
\(830\) −49.6569 −1.72361
\(831\) −3.17157 −0.110021
\(832\) −0.828427 −0.0287205
\(833\) 14.1421 0.489996
\(834\) 15.6569 0.542153
\(835\) −9.37258 −0.324352
\(836\) −21.6569 −0.749018
\(837\) −6.00000 −0.207390
\(838\) 30.0416 1.03777
\(839\) −21.3553 −0.737268 −0.368634 0.929575i \(-0.620174\pi\)
−0.368634 + 0.929575i \(0.620174\pi\)
\(840\) 4.00000 0.138013
\(841\) 1.00000 0.0344828
\(842\) 11.6569 0.401722
\(843\) −0.100505 −0.00346158
\(844\) 2.82843 0.0973585
\(845\) −34.8284 −1.19813
\(846\) −11.3137 −0.388973
\(847\) 7.07107 0.242965
\(848\) 4.00000 0.137361
\(849\) −18.4853 −0.634413
\(850\) 8.48528 0.291043
\(851\) −4.82843 −0.165516
\(852\) 10.4853 0.359220
\(853\) −47.9411 −1.64147 −0.820736 0.571307i \(-0.806437\pi\)
−0.820736 + 0.571307i \(0.806437\pi\)
\(854\) −5.17157 −0.176968
\(855\) −15.3137 −0.523718
\(856\) 7.41421 0.253413
\(857\) 0.142136 0.00485526 0.00242763 0.999997i \(-0.499227\pi\)
0.00242763 + 0.999997i \(0.499227\pi\)
\(858\) −3.31371 −0.113128
\(859\) 45.2548 1.54408 0.772038 0.635577i \(-0.219238\pi\)
0.772038 + 0.635577i \(0.219238\pi\)
\(860\) −0.686292 −0.0234023
\(861\) −4.00000 −0.136320
\(862\) 0.485281 0.0165287
\(863\) −13.6569 −0.464885 −0.232442 0.972610i \(-0.574672\pi\)
−0.232442 + 0.972610i \(0.574672\pi\)
\(864\) 1.00000 0.0340207
\(865\) −1.37258 −0.0466692
\(866\) 15.5563 0.528626
\(867\) 9.00000 0.305656
\(868\) 8.48528 0.288009
\(869\) 62.6274 2.12449
\(870\) 2.82843 0.0958927
\(871\) 2.05887 0.0697623
\(872\) 16.2426 0.550045
\(873\) 10.5858 0.358275
\(874\) −5.41421 −0.183139
\(875\) −8.00000 −0.270449
\(876\) −14.4853 −0.489412
\(877\) 20.1421 0.680152 0.340076 0.940398i \(-0.389547\pi\)
0.340076 + 0.940398i \(0.389547\pi\)
\(878\) 6.34315 0.214071
\(879\) 14.7279 0.496760
\(880\) 11.3137 0.381385
\(881\) −44.7696 −1.50832 −0.754162 0.656688i \(-0.771957\pi\)
−0.754162 + 0.656688i \(0.771957\pi\)
\(882\) 5.00000 0.168359
\(883\) 35.3137 1.18840 0.594200 0.804317i \(-0.297469\pi\)
0.594200 + 0.804317i \(0.297469\pi\)
\(884\) 2.34315 0.0788085
\(885\) 3.31371 0.111389
\(886\) −24.1421 −0.811071
\(887\) −52.7696 −1.77183 −0.885914 0.463849i \(-0.846468\pi\)
−0.885914 + 0.463849i \(0.846468\pi\)
\(888\) 4.82843 0.162031
\(889\) −10.3431 −0.346898
\(890\) 30.6274 1.02663
\(891\) 4.00000 0.134005
\(892\) 21.6569 0.725125
\(893\) −61.2548 −2.04981
\(894\) −4.00000 −0.133780
\(895\) −46.6274 −1.55858
\(896\) −1.41421 −0.0472456
\(897\) −0.828427 −0.0276604
\(898\) −35.7990 −1.19463
\(899\) 6.00000 0.200111
\(900\) 3.00000 0.100000
\(901\) −11.3137 −0.376914
\(902\) −11.3137 −0.376705
\(903\) 0.343146 0.0114192
\(904\) −1.65685 −0.0551062
\(905\) 2.62742 0.0873383
\(906\) 16.0000 0.531564
\(907\) −24.2426 −0.804964 −0.402482 0.915428i \(-0.631852\pi\)
−0.402482 + 0.915428i \(0.631852\pi\)
\(908\) −2.24264 −0.0744246
\(909\) 0.828427 0.0274772
\(910\) 3.31371 0.109848
\(911\) 43.8995 1.45446 0.727228 0.686396i \(-0.240808\pi\)
0.727228 + 0.686396i \(0.240808\pi\)
\(912\) 5.41421 0.179283
\(913\) 70.2254 2.32412
\(914\) 28.6274 0.946911
\(915\) −10.3431 −0.341934
\(916\) −0.343146 −0.0113379
\(917\) 6.82843 0.225495
\(918\) −2.82843 −0.0933520
\(919\) 27.7574 0.915631 0.457815 0.889047i \(-0.348632\pi\)
0.457815 + 0.889047i \(0.348632\pi\)
\(920\) 2.82843 0.0932505
\(921\) −17.1716 −0.565823
\(922\) −6.48528 −0.213581
\(923\) 8.68629 0.285913
\(924\) −5.65685 −0.186097
\(925\) 14.4853 0.476273
\(926\) −28.0000 −0.920137
\(927\) 1.41421 0.0464489
\(928\) −1.00000 −0.0328266
\(929\) 36.6274 1.20171 0.600853 0.799359i \(-0.294828\pi\)
0.600853 + 0.799359i \(0.294828\pi\)
\(930\) 16.9706 0.556487
\(931\) 27.0711 0.887218
\(932\) 0.828427 0.0271360
\(933\) 33.4558 1.09530
\(934\) −40.4853 −1.32472
\(935\) −32.0000 −1.04651
\(936\) 0.828427 0.0270780
\(937\) −14.6863 −0.479780 −0.239890 0.970800i \(-0.577111\pi\)
−0.239890 + 0.970800i \(0.577111\pi\)
\(938\) 3.51472 0.114760
\(939\) −20.6274 −0.673150
\(940\) 32.0000 1.04372
\(941\) −48.4853 −1.58058 −0.790288 0.612736i \(-0.790069\pi\)
−0.790288 + 0.612736i \(0.790069\pi\)
\(942\) −2.48528 −0.0809748
\(943\) −2.82843 −0.0921063
\(944\) −1.17157 −0.0381314
\(945\) −4.00000 −0.130120
\(946\) 0.970563 0.0315557
\(947\) −9.79899 −0.318424 −0.159212 0.987244i \(-0.550895\pi\)
−0.159212 + 0.987244i \(0.550895\pi\)
\(948\) −15.6569 −0.508511
\(949\) −12.0000 −0.389536
\(950\) 16.2426 0.526981
\(951\) 8.14214 0.264027
\(952\) 4.00000 0.129641
\(953\) 27.8995 0.903753 0.451877 0.892080i \(-0.350755\pi\)
0.451877 + 0.892080i \(0.350755\pi\)
\(954\) −4.00000 −0.129505
\(955\) −12.9706 −0.419718
\(956\) −18.4853 −0.597857
\(957\) −4.00000 −0.129302
\(958\) −21.0711 −0.680775
\(959\) 11.3137 0.365339
\(960\) −2.82843 −0.0912871
\(961\) 5.00000 0.161290
\(962\) 4.00000 0.128965
\(963\) −7.41421 −0.238920
\(964\) 18.4853 0.595371
\(965\) −10.3431 −0.332958
\(966\) −1.41421 −0.0455016
\(967\) 0.686292 0.0220696 0.0110348 0.999939i \(-0.496487\pi\)
0.0110348 + 0.999939i \(0.496487\pi\)
\(968\) −5.00000 −0.160706
\(969\) −15.3137 −0.491947
\(970\) −29.9411 −0.961352
\(971\) −39.5980 −1.27076 −0.635380 0.772200i \(-0.719156\pi\)
−0.635380 + 0.772200i \(0.719156\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 22.1421 0.709844
\(974\) −37.6569 −1.20660
\(975\) 2.48528 0.0795927
\(976\) 3.65685 0.117053
\(977\) 30.9289 0.989504 0.494752 0.869034i \(-0.335259\pi\)
0.494752 + 0.869034i \(0.335259\pi\)
\(978\) 16.4853 0.527141
\(979\) −43.3137 −1.38431
\(980\) −14.1421 −0.451754
\(981\) −16.2426 −0.518588
\(982\) −18.4853 −0.589889
\(983\) 10.7279 0.342168 0.171084 0.985256i \(-0.445273\pi\)
0.171084 + 0.985256i \(0.445273\pi\)
\(984\) 2.82843 0.0901670
\(985\) 28.2843 0.901212
\(986\) 2.82843 0.0900755
\(987\) −16.0000 −0.509286
\(988\) 4.48528 0.142696
\(989\) 0.242641 0.00771552
\(990\) −11.3137 −0.359573
\(991\) −39.5147 −1.25523 −0.627613 0.778525i \(-0.715968\pi\)
−0.627613 + 0.778525i \(0.715968\pi\)
\(992\) −6.00000 −0.190500
\(993\) 27.7990 0.882174
\(994\) 14.8284 0.470329
\(995\) 0.686292 0.0217569
\(996\) −17.5563 −0.556294
\(997\) −3.37258 −0.106811 −0.0534054 0.998573i \(-0.517008\pi\)
−0.0534054 + 0.998573i \(0.517008\pi\)
\(998\) 15.6569 0.495609
\(999\) −4.82843 −0.152765
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.t.1.2 2 1.1 even 1 trivial