Properties

Label 4002.2.a.s.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.56155 q^{5} +1.00000 q^{6} +3.56155 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.56155 q^{5} +1.00000 q^{6} +3.56155 q^{7} -1.00000 q^{8} +1.00000 q^{9} +3.56155 q^{10} -2.00000 q^{11} -1.00000 q^{12} -5.12311 q^{13} -3.56155 q^{14} +3.56155 q^{15} +1.00000 q^{16} -2.43845 q^{17} -1.00000 q^{18} -1.56155 q^{19} -3.56155 q^{20} -3.56155 q^{21} +2.00000 q^{22} -1.00000 q^{23} +1.00000 q^{24} +7.68466 q^{25} +5.12311 q^{26} -1.00000 q^{27} +3.56155 q^{28} +1.00000 q^{29} -3.56155 q^{30} -1.00000 q^{32} +2.00000 q^{33} +2.43845 q^{34} -12.6847 q^{35} +1.00000 q^{36} -1.56155 q^{37} +1.56155 q^{38} +5.12311 q^{39} +3.56155 q^{40} -3.56155 q^{41} +3.56155 q^{42} -0.684658 q^{43} -2.00000 q^{44} -3.56155 q^{45} +1.00000 q^{46} +2.43845 q^{47} -1.00000 q^{48} +5.68466 q^{49} -7.68466 q^{50} +2.43845 q^{51} -5.12311 q^{52} -2.00000 q^{53} +1.00000 q^{54} +7.12311 q^{55} -3.56155 q^{56} +1.56155 q^{57} -1.00000 q^{58} -1.56155 q^{59} +3.56155 q^{60} -3.12311 q^{61} +3.56155 q^{63} +1.00000 q^{64} +18.2462 q^{65} -2.00000 q^{66} -2.43845 q^{68} +1.00000 q^{69} +12.6847 q^{70} -8.00000 q^{71} -1.00000 q^{72} +6.00000 q^{73} +1.56155 q^{74} -7.68466 q^{75} -1.56155 q^{76} -7.12311 q^{77} -5.12311 q^{78} +0.246211 q^{79} -3.56155 q^{80} +1.00000 q^{81} +3.56155 q^{82} -2.87689 q^{83} -3.56155 q^{84} +8.68466 q^{85} +0.684658 q^{86} -1.00000 q^{87} +2.00000 q^{88} -3.12311 q^{89} +3.56155 q^{90} -18.2462 q^{91} -1.00000 q^{92} -2.43845 q^{94} +5.56155 q^{95} +1.00000 q^{96} +13.1231 q^{97} -5.68466 q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} + 3 q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} + 3 q^{7} - 2 q^{8} + 2 q^{9} + 3 q^{10} - 4 q^{11} - 2 q^{12} - 2 q^{13} - 3 q^{14} + 3 q^{15} + 2 q^{16} - 9 q^{17} - 2 q^{18} + q^{19} - 3 q^{20} - 3 q^{21} + 4 q^{22} - 2 q^{23} + 2 q^{24} + 3 q^{25} + 2 q^{26} - 2 q^{27} + 3 q^{28} + 2 q^{29} - 3 q^{30} - 2 q^{32} + 4 q^{33} + 9 q^{34} - 13 q^{35} + 2 q^{36} + q^{37} - q^{38} + 2 q^{39} + 3 q^{40} - 3 q^{41} + 3 q^{42} + 11 q^{43} - 4 q^{44} - 3 q^{45} + 2 q^{46} + 9 q^{47} - 2 q^{48} - q^{49} - 3 q^{50} + 9 q^{51} - 2 q^{52} - 4 q^{53} + 2 q^{54} + 6 q^{55} - 3 q^{56} - q^{57} - 2 q^{58} + q^{59} + 3 q^{60} + 2 q^{61} + 3 q^{63} + 2 q^{64} + 20 q^{65} - 4 q^{66} - 9 q^{68} + 2 q^{69} + 13 q^{70} - 16 q^{71} - 2 q^{72} + 12 q^{73} - q^{74} - 3 q^{75} + q^{76} - 6 q^{77} - 2 q^{78} - 16 q^{79} - 3 q^{80} + 2 q^{81} + 3 q^{82} - 14 q^{83} - 3 q^{84} + 5 q^{85} - 11 q^{86} - 2 q^{87} + 4 q^{88} + 2 q^{89} + 3 q^{90} - 20 q^{91} - 2 q^{92} - 9 q^{94} + 7 q^{95} + 2 q^{96} + 18 q^{97} + q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.56155 −1.59277 −0.796387 0.604787i \(-0.793258\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 1.00000 0.408248
\(7\) 3.56155 1.34614 0.673070 0.739579i \(-0.264975\pi\)
0.673070 + 0.739579i \(0.264975\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 3.56155 1.12626
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) −1.00000 −0.288675
\(13\) −5.12311 −1.42089 −0.710447 0.703751i \(-0.751507\pi\)
−0.710447 + 0.703751i \(0.751507\pi\)
\(14\) −3.56155 −0.951865
\(15\) 3.56155 0.919589
\(16\) 1.00000 0.250000
\(17\) −2.43845 −0.591410 −0.295705 0.955279i \(-0.595555\pi\)
−0.295705 + 0.955279i \(0.595555\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.56155 −0.358245 −0.179122 0.983827i \(-0.557326\pi\)
−0.179122 + 0.983827i \(0.557326\pi\)
\(20\) −3.56155 −0.796387
\(21\) −3.56155 −0.777195
\(22\) 2.00000 0.426401
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) 7.68466 1.53693
\(26\) 5.12311 1.00472
\(27\) −1.00000 −0.192450
\(28\) 3.56155 0.673070
\(29\) 1.00000 0.185695
\(30\) −3.56155 −0.650248
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.00000 0.348155
\(34\) 2.43845 0.418190
\(35\) −12.6847 −2.14410
\(36\) 1.00000 0.166667
\(37\) −1.56155 −0.256718 −0.128359 0.991728i \(-0.540971\pi\)
−0.128359 + 0.991728i \(0.540971\pi\)
\(38\) 1.56155 0.253317
\(39\) 5.12311 0.820353
\(40\) 3.56155 0.563131
\(41\) −3.56155 −0.556221 −0.278111 0.960549i \(-0.589708\pi\)
−0.278111 + 0.960549i \(0.589708\pi\)
\(42\) 3.56155 0.549560
\(43\) −0.684658 −0.104409 −0.0522047 0.998636i \(-0.516625\pi\)
−0.0522047 + 0.998636i \(0.516625\pi\)
\(44\) −2.00000 −0.301511
\(45\) −3.56155 −0.530925
\(46\) 1.00000 0.147442
\(47\) 2.43845 0.355684 0.177842 0.984059i \(-0.443088\pi\)
0.177842 + 0.984059i \(0.443088\pi\)
\(48\) −1.00000 −0.144338
\(49\) 5.68466 0.812094
\(50\) −7.68466 −1.08677
\(51\) 2.43845 0.341451
\(52\) −5.12311 −0.710447
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 1.00000 0.136083
\(55\) 7.12311 0.960479
\(56\) −3.56155 −0.475933
\(57\) 1.56155 0.206833
\(58\) −1.00000 −0.131306
\(59\) −1.56155 −0.203297 −0.101648 0.994820i \(-0.532412\pi\)
−0.101648 + 0.994820i \(0.532412\pi\)
\(60\) 3.56155 0.459794
\(61\) −3.12311 −0.399873 −0.199936 0.979809i \(-0.564074\pi\)
−0.199936 + 0.979809i \(0.564074\pi\)
\(62\) 0 0
\(63\) 3.56155 0.448713
\(64\) 1.00000 0.125000
\(65\) 18.2462 2.26316
\(66\) −2.00000 −0.246183
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) −2.43845 −0.295705
\(69\) 1.00000 0.120386
\(70\) 12.6847 1.51611
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 1.56155 0.181527
\(75\) −7.68466 −0.887348
\(76\) −1.56155 −0.179122
\(77\) −7.12311 −0.811753
\(78\) −5.12311 −0.580077
\(79\) 0.246211 0.0277009 0.0138505 0.999904i \(-0.495591\pi\)
0.0138505 + 0.999904i \(0.495591\pi\)
\(80\) −3.56155 −0.398194
\(81\) 1.00000 0.111111
\(82\) 3.56155 0.393308
\(83\) −2.87689 −0.315780 −0.157890 0.987457i \(-0.550469\pi\)
−0.157890 + 0.987457i \(0.550469\pi\)
\(84\) −3.56155 −0.388597
\(85\) 8.68466 0.941983
\(86\) 0.684658 0.0738286
\(87\) −1.00000 −0.107211
\(88\) 2.00000 0.213201
\(89\) −3.12311 −0.331049 −0.165524 0.986206i \(-0.552932\pi\)
−0.165524 + 0.986206i \(0.552932\pi\)
\(90\) 3.56155 0.375421
\(91\) −18.2462 −1.91272
\(92\) −1.00000 −0.104257
\(93\) 0 0
\(94\) −2.43845 −0.251507
\(95\) 5.56155 0.570603
\(96\) 1.00000 0.102062
\(97\) 13.1231 1.33245 0.666225 0.745751i \(-0.267909\pi\)
0.666225 + 0.745751i \(0.267909\pi\)
\(98\) −5.68466 −0.574237
\(99\) −2.00000 −0.201008
\(100\) 7.68466 0.768466
\(101\) −4.24621 −0.422514 −0.211257 0.977431i \(-0.567756\pi\)
−0.211257 + 0.977431i \(0.567756\pi\)
\(102\) −2.43845 −0.241442
\(103\) −5.80776 −0.572256 −0.286128 0.958191i \(-0.592368\pi\)
−0.286128 + 0.958191i \(0.592368\pi\)
\(104\) 5.12311 0.502362
\(105\) 12.6847 1.23790
\(106\) 2.00000 0.194257
\(107\) −12.9309 −1.25007 −0.625037 0.780595i \(-0.714916\pi\)
−0.625037 + 0.780595i \(0.714916\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) −7.12311 −0.679161
\(111\) 1.56155 0.148216
\(112\) 3.56155 0.336535
\(113\) 14.9309 1.40458 0.702289 0.711892i \(-0.252161\pi\)
0.702289 + 0.711892i \(0.252161\pi\)
\(114\) −1.56155 −0.146253
\(115\) 3.56155 0.332117
\(116\) 1.00000 0.0928477
\(117\) −5.12311 −0.473631
\(118\) 1.56155 0.143753
\(119\) −8.68466 −0.796121
\(120\) −3.56155 −0.325124
\(121\) −7.00000 −0.636364
\(122\) 3.12311 0.282753
\(123\) 3.56155 0.321134
\(124\) 0 0
\(125\) −9.56155 −0.855211
\(126\) −3.56155 −0.317288
\(127\) 8.87689 0.787697 0.393849 0.919175i \(-0.371143\pi\)
0.393849 + 0.919175i \(0.371143\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.684658 0.0602808
\(130\) −18.2462 −1.60030
\(131\) −6.24621 −0.545734 −0.272867 0.962052i \(-0.587972\pi\)
−0.272867 + 0.962052i \(0.587972\pi\)
\(132\) 2.00000 0.174078
\(133\) −5.56155 −0.482248
\(134\) 0 0
\(135\) 3.56155 0.306530
\(136\) 2.43845 0.209095
\(137\) −13.3693 −1.14222 −0.571109 0.820874i \(-0.693487\pi\)
−0.571109 + 0.820874i \(0.693487\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −15.1231 −1.28273 −0.641363 0.767238i \(-0.721631\pi\)
−0.641363 + 0.767238i \(0.721631\pi\)
\(140\) −12.6847 −1.07205
\(141\) −2.43845 −0.205354
\(142\) 8.00000 0.671345
\(143\) 10.2462 0.856831
\(144\) 1.00000 0.0833333
\(145\) −3.56155 −0.295771
\(146\) −6.00000 −0.496564
\(147\) −5.68466 −0.468863
\(148\) −1.56155 −0.128359
\(149\) −14.6847 −1.20301 −0.601507 0.798867i \(-0.705433\pi\)
−0.601507 + 0.798867i \(0.705433\pi\)
\(150\) 7.68466 0.627450
\(151\) −3.31534 −0.269799 −0.134899 0.990859i \(-0.543071\pi\)
−0.134899 + 0.990859i \(0.543071\pi\)
\(152\) 1.56155 0.126659
\(153\) −2.43845 −0.197137
\(154\) 7.12311 0.573996
\(155\) 0 0
\(156\) 5.12311 0.410177
\(157\) 4.68466 0.373876 0.186938 0.982372i \(-0.440144\pi\)
0.186938 + 0.982372i \(0.440144\pi\)
\(158\) −0.246211 −0.0195875
\(159\) 2.00000 0.158610
\(160\) 3.56155 0.281565
\(161\) −3.56155 −0.280690
\(162\) −1.00000 −0.0785674
\(163\) 3.31534 0.259678 0.129839 0.991535i \(-0.458554\pi\)
0.129839 + 0.991535i \(0.458554\pi\)
\(164\) −3.56155 −0.278111
\(165\) −7.12311 −0.554533
\(166\) 2.87689 0.223290
\(167\) −11.1231 −0.860732 −0.430366 0.902655i \(-0.641615\pi\)
−0.430366 + 0.902655i \(0.641615\pi\)
\(168\) 3.56155 0.274780
\(169\) 13.2462 1.01894
\(170\) −8.68466 −0.666083
\(171\) −1.56155 −0.119415
\(172\) −0.684658 −0.0522047
\(173\) 16.0540 1.22056 0.610281 0.792185i \(-0.291057\pi\)
0.610281 + 0.792185i \(0.291057\pi\)
\(174\) 1.00000 0.0758098
\(175\) 27.3693 2.06893
\(176\) −2.00000 −0.150756
\(177\) 1.56155 0.117373
\(178\) 3.12311 0.234087
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) −3.56155 −0.265462
\(181\) 10.2462 0.761595 0.380797 0.924658i \(-0.375650\pi\)
0.380797 + 0.924658i \(0.375650\pi\)
\(182\) 18.2462 1.35250
\(183\) 3.12311 0.230867
\(184\) 1.00000 0.0737210
\(185\) 5.56155 0.408893
\(186\) 0 0
\(187\) 4.87689 0.356634
\(188\) 2.43845 0.177842
\(189\) −3.56155 −0.259065
\(190\) −5.56155 −0.403477
\(191\) 21.5616 1.56014 0.780070 0.625693i \(-0.215184\pi\)
0.780070 + 0.625693i \(0.215184\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 9.12311 0.656696 0.328348 0.944557i \(-0.393508\pi\)
0.328348 + 0.944557i \(0.393508\pi\)
\(194\) −13.1231 −0.942184
\(195\) −18.2462 −1.30664
\(196\) 5.68466 0.406047
\(197\) 2.68466 0.191274 0.0956370 0.995416i \(-0.469511\pi\)
0.0956370 + 0.995416i \(0.469511\pi\)
\(198\) 2.00000 0.142134
\(199\) −7.36932 −0.522397 −0.261199 0.965285i \(-0.584118\pi\)
−0.261199 + 0.965285i \(0.584118\pi\)
\(200\) −7.68466 −0.543387
\(201\) 0 0
\(202\) 4.24621 0.298762
\(203\) 3.56155 0.249972
\(204\) 2.43845 0.170725
\(205\) 12.6847 0.885935
\(206\) 5.80776 0.404646
\(207\) −1.00000 −0.0695048
\(208\) −5.12311 −0.355223
\(209\) 3.12311 0.216030
\(210\) −12.6847 −0.875325
\(211\) 14.4384 0.993984 0.496992 0.867755i \(-0.334438\pi\)
0.496992 + 0.867755i \(0.334438\pi\)
\(212\) −2.00000 −0.137361
\(213\) 8.00000 0.548151
\(214\) 12.9309 0.883936
\(215\) 2.43845 0.166301
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −12.0000 −0.812743
\(219\) −6.00000 −0.405442
\(220\) 7.12311 0.480240
\(221\) 12.4924 0.840331
\(222\) −1.56155 −0.104805
\(223\) 18.2462 1.22186 0.610928 0.791686i \(-0.290796\pi\)
0.610928 + 0.791686i \(0.290796\pi\)
\(224\) −3.56155 −0.237966
\(225\) 7.68466 0.512311
\(226\) −14.9309 −0.993187
\(227\) 9.31534 0.618281 0.309140 0.951016i \(-0.399959\pi\)
0.309140 + 0.951016i \(0.399959\pi\)
\(228\) 1.56155 0.103416
\(229\) 9.56155 0.631845 0.315923 0.948785i \(-0.397686\pi\)
0.315923 + 0.948785i \(0.397686\pi\)
\(230\) −3.56155 −0.234842
\(231\) 7.12311 0.468666
\(232\) −1.00000 −0.0656532
\(233\) 5.12311 0.335626 0.167813 0.985819i \(-0.446330\pi\)
0.167813 + 0.985819i \(0.446330\pi\)
\(234\) 5.12311 0.334908
\(235\) −8.68466 −0.566525
\(236\) −1.56155 −0.101648
\(237\) −0.246211 −0.0159931
\(238\) 8.68466 0.562943
\(239\) 17.3693 1.12353 0.561764 0.827298i \(-0.310123\pi\)
0.561764 + 0.827298i \(0.310123\pi\)
\(240\) 3.56155 0.229897
\(241\) 12.0540 0.776465 0.388232 0.921562i \(-0.373086\pi\)
0.388232 + 0.921562i \(0.373086\pi\)
\(242\) 7.00000 0.449977
\(243\) −1.00000 −0.0641500
\(244\) −3.12311 −0.199936
\(245\) −20.2462 −1.29348
\(246\) −3.56155 −0.227076
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 2.87689 0.182316
\(250\) 9.56155 0.604726
\(251\) 1.12311 0.0708898 0.0354449 0.999372i \(-0.488715\pi\)
0.0354449 + 0.999372i \(0.488715\pi\)
\(252\) 3.56155 0.224357
\(253\) 2.00000 0.125739
\(254\) −8.87689 −0.556986
\(255\) −8.68466 −0.543854
\(256\) 1.00000 0.0625000
\(257\) 6.87689 0.428969 0.214484 0.976727i \(-0.431193\pi\)
0.214484 + 0.976727i \(0.431193\pi\)
\(258\) −0.684658 −0.0426250
\(259\) −5.56155 −0.345578
\(260\) 18.2462 1.13158
\(261\) 1.00000 0.0618984
\(262\) 6.24621 0.385892
\(263\) 25.1771 1.55249 0.776243 0.630434i \(-0.217123\pi\)
0.776243 + 0.630434i \(0.217123\pi\)
\(264\) −2.00000 −0.123091
\(265\) 7.12311 0.437569
\(266\) 5.56155 0.341001
\(267\) 3.12311 0.191131
\(268\) 0 0
\(269\) −4.24621 −0.258896 −0.129448 0.991586i \(-0.541321\pi\)
−0.129448 + 0.991586i \(0.541321\pi\)
\(270\) −3.56155 −0.216749
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) −2.43845 −0.147853
\(273\) 18.2462 1.10431
\(274\) 13.3693 0.807670
\(275\) −15.3693 −0.926805
\(276\) 1.00000 0.0601929
\(277\) −10.4924 −0.630429 −0.315214 0.949021i \(-0.602076\pi\)
−0.315214 + 0.949021i \(0.602076\pi\)
\(278\) 15.1231 0.907024
\(279\) 0 0
\(280\) 12.6847 0.758053
\(281\) 29.8617 1.78140 0.890701 0.454590i \(-0.150214\pi\)
0.890701 + 0.454590i \(0.150214\pi\)
\(282\) 2.43845 0.145207
\(283\) −5.36932 −0.319173 −0.159586 0.987184i \(-0.551016\pi\)
−0.159586 + 0.987184i \(0.551016\pi\)
\(284\) −8.00000 −0.474713
\(285\) −5.56155 −0.329438
\(286\) −10.2462 −0.605871
\(287\) −12.6847 −0.748752
\(288\) −1.00000 −0.0589256
\(289\) −11.0540 −0.650234
\(290\) 3.56155 0.209142
\(291\) −13.1231 −0.769290
\(292\) 6.00000 0.351123
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 5.68466 0.331536
\(295\) 5.56155 0.323806
\(296\) 1.56155 0.0907634
\(297\) 2.00000 0.116052
\(298\) 14.6847 0.850659
\(299\) 5.12311 0.296277
\(300\) −7.68466 −0.443674
\(301\) −2.43845 −0.140550
\(302\) 3.31534 0.190776
\(303\) 4.24621 0.243938
\(304\) −1.56155 −0.0895612
\(305\) 11.1231 0.636907
\(306\) 2.43845 0.139397
\(307\) −8.49242 −0.484688 −0.242344 0.970190i \(-0.577916\pi\)
−0.242344 + 0.970190i \(0.577916\pi\)
\(308\) −7.12311 −0.405877
\(309\) 5.80776 0.330392
\(310\) 0 0
\(311\) −10.0540 −0.570109 −0.285054 0.958511i \(-0.592012\pi\)
−0.285054 + 0.958511i \(0.592012\pi\)
\(312\) −5.12311 −0.290039
\(313\) 10.1922 0.576099 0.288050 0.957615i \(-0.406993\pi\)
0.288050 + 0.957615i \(0.406993\pi\)
\(314\) −4.68466 −0.264371
\(315\) −12.6847 −0.714700
\(316\) 0.246211 0.0138505
\(317\) 25.1231 1.41105 0.705527 0.708683i \(-0.250710\pi\)
0.705527 + 0.708683i \(0.250710\pi\)
\(318\) −2.00000 −0.112154
\(319\) −2.00000 −0.111979
\(320\) −3.56155 −0.199097
\(321\) 12.9309 0.721731
\(322\) 3.56155 0.198478
\(323\) 3.80776 0.211870
\(324\) 1.00000 0.0555556
\(325\) −39.3693 −2.18382
\(326\) −3.31534 −0.183620
\(327\) −12.0000 −0.663602
\(328\) 3.56155 0.196654
\(329\) 8.68466 0.478801
\(330\) 7.12311 0.392114
\(331\) 25.5616 1.40499 0.702495 0.711689i \(-0.252069\pi\)
0.702495 + 0.711689i \(0.252069\pi\)
\(332\) −2.87689 −0.157890
\(333\) −1.56155 −0.0855726
\(334\) 11.1231 0.608629
\(335\) 0 0
\(336\) −3.56155 −0.194299
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) −13.2462 −0.720499
\(339\) −14.9309 −0.810934
\(340\) 8.68466 0.470992
\(341\) 0 0
\(342\) 1.56155 0.0844391
\(343\) −4.68466 −0.252948
\(344\) 0.684658 0.0369143
\(345\) −3.56155 −0.191748
\(346\) −16.0540 −0.863067
\(347\) 11.8078 0.633874 0.316937 0.948447i \(-0.397346\pi\)
0.316937 + 0.948447i \(0.397346\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) −27.3693 −1.46295
\(351\) 5.12311 0.273451
\(352\) 2.00000 0.106600
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) −1.56155 −0.0829956
\(355\) 28.4924 1.51222
\(356\) −3.12311 −0.165524
\(357\) 8.68466 0.459641
\(358\) −16.0000 −0.845626
\(359\) −3.80776 −0.200966 −0.100483 0.994939i \(-0.532039\pi\)
−0.100483 + 0.994939i \(0.532039\pi\)
\(360\) 3.56155 0.187710
\(361\) −16.5616 −0.871661
\(362\) −10.2462 −0.538529
\(363\) 7.00000 0.367405
\(364\) −18.2462 −0.956361
\(365\) −21.3693 −1.11852
\(366\) −3.12311 −0.163247
\(367\) −32.7386 −1.70894 −0.854471 0.519498i \(-0.826119\pi\)
−0.854471 + 0.519498i \(0.826119\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −3.56155 −0.185407
\(370\) −5.56155 −0.289131
\(371\) −7.12311 −0.369813
\(372\) 0 0
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) −4.87689 −0.252178
\(375\) 9.56155 0.493756
\(376\) −2.43845 −0.125753
\(377\) −5.12311 −0.263853
\(378\) 3.56155 0.183187
\(379\) −0.492423 −0.0252940 −0.0126470 0.999920i \(-0.504026\pi\)
−0.0126470 + 0.999920i \(0.504026\pi\)
\(380\) 5.56155 0.285302
\(381\) −8.87689 −0.454777
\(382\) −21.5616 −1.10319
\(383\) −13.3693 −0.683140 −0.341570 0.939856i \(-0.610959\pi\)
−0.341570 + 0.939856i \(0.610959\pi\)
\(384\) 1.00000 0.0510310
\(385\) 25.3693 1.29294
\(386\) −9.12311 −0.464354
\(387\) −0.684658 −0.0348031
\(388\) 13.1231 0.666225
\(389\) 33.6155 1.70437 0.852187 0.523237i \(-0.175276\pi\)
0.852187 + 0.523237i \(0.175276\pi\)
\(390\) 18.2462 0.923933
\(391\) 2.43845 0.123318
\(392\) −5.68466 −0.287119
\(393\) 6.24621 0.315080
\(394\) −2.68466 −0.135251
\(395\) −0.876894 −0.0441213
\(396\) −2.00000 −0.100504
\(397\) −6.49242 −0.325845 −0.162923 0.986639i \(-0.552092\pi\)
−0.162923 + 0.986639i \(0.552092\pi\)
\(398\) 7.36932 0.369390
\(399\) 5.56155 0.278426
\(400\) 7.68466 0.384233
\(401\) −9.36932 −0.467881 −0.233941 0.972251i \(-0.575162\pi\)
−0.233941 + 0.972251i \(0.575162\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −4.24621 −0.211257
\(405\) −3.56155 −0.176975
\(406\) −3.56155 −0.176757
\(407\) 3.12311 0.154807
\(408\) −2.43845 −0.120721
\(409\) 10.8769 0.537828 0.268914 0.963164i \(-0.413335\pi\)
0.268914 + 0.963164i \(0.413335\pi\)
\(410\) −12.6847 −0.626451
\(411\) 13.3693 0.659460
\(412\) −5.80776 −0.286128
\(413\) −5.56155 −0.273666
\(414\) 1.00000 0.0491473
\(415\) 10.2462 0.502967
\(416\) 5.12311 0.251181
\(417\) 15.1231 0.740582
\(418\) −3.12311 −0.152756
\(419\) 24.9309 1.21795 0.608976 0.793188i \(-0.291580\pi\)
0.608976 + 0.793188i \(0.291580\pi\)
\(420\) 12.6847 0.618948
\(421\) −23.6155 −1.15095 −0.575475 0.817819i \(-0.695183\pi\)
−0.575475 + 0.817819i \(0.695183\pi\)
\(422\) −14.4384 −0.702853
\(423\) 2.43845 0.118561
\(424\) 2.00000 0.0971286
\(425\) −18.7386 −0.908957
\(426\) −8.00000 −0.387601
\(427\) −11.1231 −0.538285
\(428\) −12.9309 −0.625037
\(429\) −10.2462 −0.494692
\(430\) −2.43845 −0.117592
\(431\) −4.00000 −0.192673 −0.0963366 0.995349i \(-0.530713\pi\)
−0.0963366 + 0.995349i \(0.530713\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −22.4924 −1.08092 −0.540458 0.841371i \(-0.681749\pi\)
−0.540458 + 0.841371i \(0.681749\pi\)
\(434\) 0 0
\(435\) 3.56155 0.170763
\(436\) 12.0000 0.574696
\(437\) 1.56155 0.0746992
\(438\) 6.00000 0.286691
\(439\) −2.43845 −0.116381 −0.0581904 0.998306i \(-0.518533\pi\)
−0.0581904 + 0.998306i \(0.518533\pi\)
\(440\) −7.12311 −0.339581
\(441\) 5.68466 0.270698
\(442\) −12.4924 −0.594204
\(443\) −5.75379 −0.273371 −0.136685 0.990615i \(-0.543645\pi\)
−0.136685 + 0.990615i \(0.543645\pi\)
\(444\) 1.56155 0.0741080
\(445\) 11.1231 0.527286
\(446\) −18.2462 −0.863983
\(447\) 14.6847 0.694561
\(448\) 3.56155 0.168268
\(449\) −11.5616 −0.545623 −0.272812 0.962067i \(-0.587954\pi\)
−0.272812 + 0.962067i \(0.587954\pi\)
\(450\) −7.68466 −0.362258
\(451\) 7.12311 0.335414
\(452\) 14.9309 0.702289
\(453\) 3.31534 0.155768
\(454\) −9.31534 −0.437191
\(455\) 64.9848 3.04654
\(456\) −1.56155 −0.0731264
\(457\) 20.4384 0.956070 0.478035 0.878341i \(-0.341349\pi\)
0.478035 + 0.878341i \(0.341349\pi\)
\(458\) −9.56155 −0.446782
\(459\) 2.43845 0.113817
\(460\) 3.56155 0.166058
\(461\) 38.1080 1.77486 0.887432 0.460938i \(-0.152487\pi\)
0.887432 + 0.460938i \(0.152487\pi\)
\(462\) −7.12311 −0.331397
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 1.00000 0.0464238
\(465\) 0 0
\(466\) −5.12311 −0.237323
\(467\) −0.630683 −0.0291845 −0.0145923 0.999894i \(-0.504645\pi\)
−0.0145923 + 0.999894i \(0.504645\pi\)
\(468\) −5.12311 −0.236816
\(469\) 0 0
\(470\) 8.68466 0.400593
\(471\) −4.68466 −0.215858
\(472\) 1.56155 0.0718763
\(473\) 1.36932 0.0629613
\(474\) 0.246211 0.0113089
\(475\) −12.0000 −0.550598
\(476\) −8.68466 −0.398061
\(477\) −2.00000 −0.0915737
\(478\) −17.3693 −0.794454
\(479\) 36.4924 1.66738 0.833691 0.552232i \(-0.186224\pi\)
0.833691 + 0.552232i \(0.186224\pi\)
\(480\) −3.56155 −0.162562
\(481\) 8.00000 0.364769
\(482\) −12.0540 −0.549044
\(483\) 3.56155 0.162056
\(484\) −7.00000 −0.318182
\(485\) −46.7386 −2.12229
\(486\) 1.00000 0.0453609
\(487\) 5.56155 0.252018 0.126009 0.992029i \(-0.459783\pi\)
0.126009 + 0.992029i \(0.459783\pi\)
\(488\) 3.12311 0.141376
\(489\) −3.31534 −0.149925
\(490\) 20.2462 0.914631
\(491\) 25.3693 1.14490 0.572451 0.819939i \(-0.305993\pi\)
0.572451 + 0.819939i \(0.305993\pi\)
\(492\) 3.56155 0.160567
\(493\) −2.43845 −0.109822
\(494\) −8.00000 −0.359937
\(495\) 7.12311 0.320160
\(496\) 0 0
\(497\) −28.4924 −1.27806
\(498\) −2.87689 −0.128917
\(499\) −3.61553 −0.161853 −0.0809266 0.996720i \(-0.525788\pi\)
−0.0809266 + 0.996720i \(0.525788\pi\)
\(500\) −9.56155 −0.427606
\(501\) 11.1231 0.496944
\(502\) −1.12311 −0.0501267
\(503\) 22.0540 0.983338 0.491669 0.870782i \(-0.336387\pi\)
0.491669 + 0.870782i \(0.336387\pi\)
\(504\) −3.56155 −0.158644
\(505\) 15.1231 0.672969
\(506\) −2.00000 −0.0889108
\(507\) −13.2462 −0.588285
\(508\) 8.87689 0.393849
\(509\) −7.94602 −0.352201 −0.176101 0.984372i \(-0.556348\pi\)
−0.176101 + 0.984372i \(0.556348\pi\)
\(510\) 8.68466 0.384563
\(511\) 21.3693 0.945323
\(512\) −1.00000 −0.0441942
\(513\) 1.56155 0.0689442
\(514\) −6.87689 −0.303327
\(515\) 20.6847 0.911475
\(516\) 0.684658 0.0301404
\(517\) −4.87689 −0.214486
\(518\) 5.56155 0.244361
\(519\) −16.0540 −0.704691
\(520\) −18.2462 −0.800149
\(521\) −33.8617 −1.48351 −0.741755 0.670671i \(-0.766006\pi\)
−0.741755 + 0.670671i \(0.766006\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 12.8769 0.563067 0.281534 0.959551i \(-0.409157\pi\)
0.281534 + 0.959551i \(0.409157\pi\)
\(524\) −6.24621 −0.272867
\(525\) −27.3693 −1.19449
\(526\) −25.1771 −1.09777
\(527\) 0 0
\(528\) 2.00000 0.0870388
\(529\) 1.00000 0.0434783
\(530\) −7.12311 −0.309408
\(531\) −1.56155 −0.0677656
\(532\) −5.56155 −0.241124
\(533\) 18.2462 0.790331
\(534\) −3.12311 −0.135150
\(535\) 46.0540 1.99109
\(536\) 0 0
\(537\) −16.0000 −0.690451
\(538\) 4.24621 0.183067
\(539\) −11.3693 −0.489711
\(540\) 3.56155 0.153265
\(541\) −38.6847 −1.66318 −0.831592 0.555387i \(-0.812570\pi\)
−0.831592 + 0.555387i \(0.812570\pi\)
\(542\) −4.00000 −0.171815
\(543\) −10.2462 −0.439707
\(544\) 2.43845 0.104548
\(545\) −42.7386 −1.83072
\(546\) −18.2462 −0.780866
\(547\) −13.3693 −0.571631 −0.285815 0.958285i \(-0.592264\pi\)
−0.285815 + 0.958285i \(0.592264\pi\)
\(548\) −13.3693 −0.571109
\(549\) −3.12311 −0.133291
\(550\) 15.3693 0.655350
\(551\) −1.56155 −0.0665244
\(552\) −1.00000 −0.0425628
\(553\) 0.876894 0.0372893
\(554\) 10.4924 0.445780
\(555\) −5.56155 −0.236075
\(556\) −15.1231 −0.641363
\(557\) 28.4384 1.20498 0.602488 0.798128i \(-0.294176\pi\)
0.602488 + 0.798128i \(0.294176\pi\)
\(558\) 0 0
\(559\) 3.50758 0.148355
\(560\) −12.6847 −0.536025
\(561\) −4.87689 −0.205903
\(562\) −29.8617 −1.25964
\(563\) −22.9848 −0.968696 −0.484348 0.874876i \(-0.660943\pi\)
−0.484348 + 0.874876i \(0.660943\pi\)
\(564\) −2.43845 −0.102677
\(565\) −53.1771 −2.23718
\(566\) 5.36932 0.225689
\(567\) 3.56155 0.149571
\(568\) 8.00000 0.335673
\(569\) −23.3153 −0.977430 −0.488715 0.872444i \(-0.662534\pi\)
−0.488715 + 0.872444i \(0.662534\pi\)
\(570\) 5.56155 0.232948
\(571\) 43.1231 1.80465 0.902323 0.431061i \(-0.141861\pi\)
0.902323 + 0.431061i \(0.141861\pi\)
\(572\) 10.2462 0.428416
\(573\) −21.5616 −0.900747
\(574\) 12.6847 0.529447
\(575\) −7.68466 −0.320472
\(576\) 1.00000 0.0416667
\(577\) −41.1231 −1.71198 −0.855989 0.516995i \(-0.827051\pi\)
−0.855989 + 0.516995i \(0.827051\pi\)
\(578\) 11.0540 0.459785
\(579\) −9.12311 −0.379143
\(580\) −3.56155 −0.147885
\(581\) −10.2462 −0.425084
\(582\) 13.1231 0.543970
\(583\) 4.00000 0.165663
\(584\) −6.00000 −0.248282
\(585\) 18.2462 0.754388
\(586\) −22.0000 −0.908812
\(587\) −12.1922 −0.503227 −0.251614 0.967828i \(-0.580961\pi\)
−0.251614 + 0.967828i \(0.580961\pi\)
\(588\) −5.68466 −0.234431
\(589\) 0 0
\(590\) −5.56155 −0.228966
\(591\) −2.68466 −0.110432
\(592\) −1.56155 −0.0641794
\(593\) 35.3693 1.45244 0.726222 0.687460i \(-0.241275\pi\)
0.726222 + 0.687460i \(0.241275\pi\)
\(594\) −2.00000 −0.0820610
\(595\) 30.9309 1.26804
\(596\) −14.6847 −0.601507
\(597\) 7.36932 0.301606
\(598\) −5.12311 −0.209499
\(599\) 9.75379 0.398529 0.199265 0.979946i \(-0.436145\pi\)
0.199265 + 0.979946i \(0.436145\pi\)
\(600\) 7.68466 0.313725
\(601\) −1.12311 −0.0458124 −0.0229062 0.999738i \(-0.507292\pi\)
−0.0229062 + 0.999738i \(0.507292\pi\)
\(602\) 2.43845 0.0993837
\(603\) 0 0
\(604\) −3.31534 −0.134899
\(605\) 24.9309 1.01358
\(606\) −4.24621 −0.172491
\(607\) 22.7386 0.922933 0.461466 0.887158i \(-0.347324\pi\)
0.461466 + 0.887158i \(0.347324\pi\)
\(608\) 1.56155 0.0633293
\(609\) −3.56155 −0.144321
\(610\) −11.1231 −0.450361
\(611\) −12.4924 −0.505389
\(612\) −2.43845 −0.0985684
\(613\) −6.63068 −0.267811 −0.133905 0.990994i \(-0.542752\pi\)
−0.133905 + 0.990994i \(0.542752\pi\)
\(614\) 8.49242 0.342726
\(615\) −12.6847 −0.511495
\(616\) 7.12311 0.286998
\(617\) 4.19224 0.168773 0.0843865 0.996433i \(-0.473107\pi\)
0.0843865 + 0.996433i \(0.473107\pi\)
\(618\) −5.80776 −0.233623
\(619\) 1.56155 0.0627641 0.0313821 0.999507i \(-0.490009\pi\)
0.0313821 + 0.999507i \(0.490009\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 10.0540 0.403128
\(623\) −11.1231 −0.445638
\(624\) 5.12311 0.205088
\(625\) −4.36932 −0.174773
\(626\) −10.1922 −0.407364
\(627\) −3.12311 −0.124725
\(628\) 4.68466 0.186938
\(629\) 3.80776 0.151825
\(630\) 12.6847 0.505369
\(631\) 19.1771 0.763428 0.381714 0.924281i \(-0.375334\pi\)
0.381714 + 0.924281i \(0.375334\pi\)
\(632\) −0.246211 −0.00979376
\(633\) −14.4384 −0.573877
\(634\) −25.1231 −0.997766
\(635\) −31.6155 −1.25462
\(636\) 2.00000 0.0793052
\(637\) −29.1231 −1.15390
\(638\) 2.00000 0.0791808
\(639\) −8.00000 −0.316475
\(640\) 3.56155 0.140783
\(641\) 18.4384 0.728275 0.364137 0.931345i \(-0.381364\pi\)
0.364137 + 0.931345i \(0.381364\pi\)
\(642\) −12.9309 −0.510341
\(643\) −3.50758 −0.138325 −0.0691627 0.997605i \(-0.522033\pi\)
−0.0691627 + 0.997605i \(0.522033\pi\)
\(644\) −3.56155 −0.140345
\(645\) −2.43845 −0.0960138
\(646\) −3.80776 −0.149814
\(647\) −3.12311 −0.122782 −0.0613910 0.998114i \(-0.519554\pi\)
−0.0613910 + 0.998114i \(0.519554\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 3.12311 0.122593
\(650\) 39.3693 1.54419
\(651\) 0 0
\(652\) 3.31534 0.129839
\(653\) 46.4924 1.81939 0.909695 0.415278i \(-0.136316\pi\)
0.909695 + 0.415278i \(0.136316\pi\)
\(654\) 12.0000 0.469237
\(655\) 22.2462 0.869231
\(656\) −3.56155 −0.139055
\(657\) 6.00000 0.234082
\(658\) −8.68466 −0.338563
\(659\) −27.3693 −1.06616 −0.533079 0.846066i \(-0.678965\pi\)
−0.533079 + 0.846066i \(0.678965\pi\)
\(660\) −7.12311 −0.277267
\(661\) −17.7538 −0.690542 −0.345271 0.938503i \(-0.612213\pi\)
−0.345271 + 0.938503i \(0.612213\pi\)
\(662\) −25.5616 −0.993478
\(663\) −12.4924 −0.485165
\(664\) 2.87689 0.111645
\(665\) 19.8078 0.768112
\(666\) 1.56155 0.0605089
\(667\) −1.00000 −0.0387202
\(668\) −11.1231 −0.430366
\(669\) −18.2462 −0.705439
\(670\) 0 0
\(671\) 6.24621 0.241132
\(672\) 3.56155 0.137390
\(673\) −15.0691 −0.580872 −0.290436 0.956894i \(-0.593800\pi\)
−0.290436 + 0.956894i \(0.593800\pi\)
\(674\) −6.00000 −0.231111
\(675\) −7.68466 −0.295783
\(676\) 13.2462 0.509470
\(677\) −32.7386 −1.25825 −0.629124 0.777305i \(-0.716586\pi\)
−0.629124 + 0.777305i \(0.716586\pi\)
\(678\) 14.9309 0.573417
\(679\) 46.7386 1.79366
\(680\) −8.68466 −0.333041
\(681\) −9.31534 −0.356965
\(682\) 0 0
\(683\) 51.4233 1.96766 0.983829 0.179111i \(-0.0573223\pi\)
0.983829 + 0.179111i \(0.0573223\pi\)
\(684\) −1.56155 −0.0597075
\(685\) 47.6155 1.81930
\(686\) 4.68466 0.178861
\(687\) −9.56155 −0.364796
\(688\) −0.684658 −0.0261024
\(689\) 10.2462 0.390350
\(690\) 3.56155 0.135586
\(691\) −8.49242 −0.323067 −0.161533 0.986867i \(-0.551644\pi\)
−0.161533 + 0.986867i \(0.551644\pi\)
\(692\) 16.0540 0.610281
\(693\) −7.12311 −0.270584
\(694\) −11.8078 −0.448217
\(695\) 53.8617 2.04309
\(696\) 1.00000 0.0379049
\(697\) 8.68466 0.328955
\(698\) 22.0000 0.832712
\(699\) −5.12311 −0.193774
\(700\) 27.3693 1.03446
\(701\) −42.3002 −1.59766 −0.798828 0.601559i \(-0.794546\pi\)
−0.798828 + 0.601559i \(0.794546\pi\)
\(702\) −5.12311 −0.193359
\(703\) 2.43845 0.0919678
\(704\) −2.00000 −0.0753778
\(705\) 8.68466 0.327083
\(706\) −14.0000 −0.526897
\(707\) −15.1231 −0.568763
\(708\) 1.56155 0.0586867
\(709\) −0.384472 −0.0144391 −0.00721957 0.999974i \(-0.502298\pi\)
−0.00721957 + 0.999974i \(0.502298\pi\)
\(710\) −28.4924 −1.06930
\(711\) 0.246211 0.00923364
\(712\) 3.12311 0.117043
\(713\) 0 0
\(714\) −8.68466 −0.325015
\(715\) −36.4924 −1.36474
\(716\) 16.0000 0.597948
\(717\) −17.3693 −0.648669
\(718\) 3.80776 0.142104
\(719\) −9.75379 −0.363755 −0.181877 0.983321i \(-0.558217\pi\)
−0.181877 + 0.983321i \(0.558217\pi\)
\(720\) −3.56155 −0.132731
\(721\) −20.6847 −0.770337
\(722\) 16.5616 0.616357
\(723\) −12.0540 −0.448292
\(724\) 10.2462 0.380797
\(725\) 7.68466 0.285401
\(726\) −7.00000 −0.259794
\(727\) 29.2311 1.08412 0.542060 0.840340i \(-0.317645\pi\)
0.542060 + 0.840340i \(0.317645\pi\)
\(728\) 18.2462 0.676250
\(729\) 1.00000 0.0370370
\(730\) 21.3693 0.790914
\(731\) 1.66950 0.0617488
\(732\) 3.12311 0.115433
\(733\) 23.6155 0.872259 0.436130 0.899884i \(-0.356349\pi\)
0.436130 + 0.899884i \(0.356349\pi\)
\(734\) 32.7386 1.20841
\(735\) 20.2462 0.746793
\(736\) 1.00000 0.0368605
\(737\) 0 0
\(738\) 3.56155 0.131103
\(739\) −1.26137 −0.0464001 −0.0232001 0.999731i \(-0.507385\pi\)
−0.0232001 + 0.999731i \(0.507385\pi\)
\(740\) 5.56155 0.204447
\(741\) −8.00000 −0.293887
\(742\) 7.12311 0.261497
\(743\) −1.17708 −0.0431829 −0.0215915 0.999767i \(-0.506873\pi\)
−0.0215915 + 0.999767i \(0.506873\pi\)
\(744\) 0 0
\(745\) 52.3002 1.91613
\(746\) −20.0000 −0.732252
\(747\) −2.87689 −0.105260
\(748\) 4.87689 0.178317
\(749\) −46.0540 −1.68278
\(750\) −9.56155 −0.349139
\(751\) −30.0000 −1.09472 −0.547358 0.836899i \(-0.684366\pi\)
−0.547358 + 0.836899i \(0.684366\pi\)
\(752\) 2.43845 0.0889210
\(753\) −1.12311 −0.0409282
\(754\) 5.12311 0.186573
\(755\) 11.8078 0.429729
\(756\) −3.56155 −0.129532
\(757\) 17.5616 0.638285 0.319143 0.947707i \(-0.396605\pi\)
0.319143 + 0.947707i \(0.396605\pi\)
\(758\) 0.492423 0.0178856
\(759\) −2.00000 −0.0725954
\(760\) −5.56155 −0.201739
\(761\) −35.3693 −1.28214 −0.641068 0.767484i \(-0.721509\pi\)
−0.641068 + 0.767484i \(0.721509\pi\)
\(762\) 8.87689 0.321576
\(763\) 42.7386 1.54724
\(764\) 21.5616 0.780070
\(765\) 8.68466 0.313994
\(766\) 13.3693 0.483053
\(767\) 8.00000 0.288863
\(768\) −1.00000 −0.0360844
\(769\) 26.4924 0.955341 0.477671 0.878539i \(-0.341481\pi\)
0.477671 + 0.878539i \(0.341481\pi\)
\(770\) −25.3693 −0.914247
\(771\) −6.87689 −0.247665
\(772\) 9.12311 0.328348
\(773\) −19.7538 −0.710494 −0.355247 0.934772i \(-0.615603\pi\)
−0.355247 + 0.934772i \(0.615603\pi\)
\(774\) 0.684658 0.0246095
\(775\) 0 0
\(776\) −13.1231 −0.471092
\(777\) 5.56155 0.199520
\(778\) −33.6155 −1.20518
\(779\) 5.56155 0.199263
\(780\) −18.2462 −0.653319
\(781\) 16.0000 0.572525
\(782\) −2.43845 −0.0871987
\(783\) −1.00000 −0.0357371
\(784\) 5.68466 0.203024
\(785\) −16.6847 −0.595501
\(786\) −6.24621 −0.222795
\(787\) 17.7538 0.632854 0.316427 0.948617i \(-0.397517\pi\)
0.316427 + 0.948617i \(0.397517\pi\)
\(788\) 2.68466 0.0956370
\(789\) −25.1771 −0.896328
\(790\) 0.876894 0.0311985
\(791\) 53.1771 1.89076
\(792\) 2.00000 0.0710669
\(793\) 16.0000 0.568177
\(794\) 6.49242 0.230407
\(795\) −7.12311 −0.252631
\(796\) −7.36932 −0.261199
\(797\) −25.1231 −0.889906 −0.444953 0.895554i \(-0.646780\pi\)
−0.444953 + 0.895554i \(0.646780\pi\)
\(798\) −5.56155 −0.196877
\(799\) −5.94602 −0.210355
\(800\) −7.68466 −0.271694
\(801\) −3.12311 −0.110350
\(802\) 9.36932 0.330842
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 12.6847 0.447075
\(806\) 0 0
\(807\) 4.24621 0.149474
\(808\) 4.24621 0.149381
\(809\) 2.49242 0.0876289 0.0438145 0.999040i \(-0.486049\pi\)
0.0438145 + 0.999040i \(0.486049\pi\)
\(810\) 3.56155 0.125140
\(811\) −30.7386 −1.07938 −0.539690 0.841864i \(-0.681458\pi\)
−0.539690 + 0.841864i \(0.681458\pi\)
\(812\) 3.56155 0.124986
\(813\) −4.00000 −0.140286
\(814\) −3.12311 −0.109465
\(815\) −11.8078 −0.413608
\(816\) 2.43845 0.0853627
\(817\) 1.06913 0.0374041
\(818\) −10.8769 −0.380302
\(819\) −18.2462 −0.637574
\(820\) 12.6847 0.442967
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) −13.3693 −0.466308
\(823\) 52.1080 1.81637 0.908184 0.418570i \(-0.137469\pi\)
0.908184 + 0.418570i \(0.137469\pi\)
\(824\) 5.80776 0.202323
\(825\) 15.3693 0.535091
\(826\) 5.56155 0.193511
\(827\) 15.3693 0.534444 0.267222 0.963635i \(-0.413894\pi\)
0.267222 + 0.963635i \(0.413894\pi\)
\(828\) −1.00000 −0.0347524
\(829\) 5.80776 0.201712 0.100856 0.994901i \(-0.467842\pi\)
0.100856 + 0.994901i \(0.467842\pi\)
\(830\) −10.2462 −0.355651
\(831\) 10.4924 0.363978
\(832\) −5.12311 −0.177612
\(833\) −13.8617 −0.480281
\(834\) −15.1231 −0.523670
\(835\) 39.6155 1.37095
\(836\) 3.12311 0.108015
\(837\) 0 0
\(838\) −24.9309 −0.861223
\(839\) −44.3002 −1.52941 −0.764706 0.644379i \(-0.777116\pi\)
−0.764706 + 0.644379i \(0.777116\pi\)
\(840\) −12.6847 −0.437662
\(841\) 1.00000 0.0344828
\(842\) 23.6155 0.813845
\(843\) −29.8617 −1.02849
\(844\) 14.4384 0.496992
\(845\) −47.1771 −1.62294
\(846\) −2.43845 −0.0838355
\(847\) −24.9309 −0.856635
\(848\) −2.00000 −0.0686803
\(849\) 5.36932 0.184274
\(850\) 18.7386 0.642730
\(851\) 1.56155 0.0535293
\(852\) 8.00000 0.274075
\(853\) −28.0540 −0.960550 −0.480275 0.877118i \(-0.659463\pi\)
−0.480275 + 0.877118i \(0.659463\pi\)
\(854\) 11.1231 0.380625
\(855\) 5.56155 0.190201
\(856\) 12.9309 0.441968
\(857\) 5.50758 0.188135 0.0940676 0.995566i \(-0.470013\pi\)
0.0940676 + 0.995566i \(0.470013\pi\)
\(858\) 10.2462 0.349800
\(859\) −0.192236 −0.00655901 −0.00327950 0.999995i \(-0.501044\pi\)
−0.00327950 + 0.999995i \(0.501044\pi\)
\(860\) 2.43845 0.0831504
\(861\) 12.6847 0.432292
\(862\) 4.00000 0.136241
\(863\) 44.4924 1.51454 0.757270 0.653102i \(-0.226533\pi\)
0.757270 + 0.653102i \(0.226533\pi\)
\(864\) 1.00000 0.0340207
\(865\) −57.1771 −1.94408
\(866\) 22.4924 0.764324
\(867\) 11.0540 0.375413
\(868\) 0 0
\(869\) −0.492423 −0.0167043
\(870\) −3.56155 −0.120748
\(871\) 0 0
\(872\) −12.0000 −0.406371
\(873\) 13.1231 0.444150
\(874\) −1.56155 −0.0528203
\(875\) −34.0540 −1.15123
\(876\) −6.00000 −0.202721
\(877\) −43.8617 −1.48111 −0.740553 0.671998i \(-0.765436\pi\)
−0.740553 + 0.671998i \(0.765436\pi\)
\(878\) 2.43845 0.0822936
\(879\) −22.0000 −0.742042
\(880\) 7.12311 0.240120
\(881\) −21.8617 −0.736541 −0.368270 0.929719i \(-0.620050\pi\)
−0.368270 + 0.929719i \(0.620050\pi\)
\(882\) −5.68466 −0.191412
\(883\) −7.50758 −0.252650 −0.126325 0.991989i \(-0.540318\pi\)
−0.126325 + 0.991989i \(0.540318\pi\)
\(884\) 12.4924 0.420166
\(885\) −5.56155 −0.186950
\(886\) 5.75379 0.193302
\(887\) 16.9848 0.570295 0.285148 0.958484i \(-0.407957\pi\)
0.285148 + 0.958484i \(0.407957\pi\)
\(888\) −1.56155 −0.0524023
\(889\) 31.6155 1.06035
\(890\) −11.1231 −0.372847
\(891\) −2.00000 −0.0670025
\(892\) 18.2462 0.610928
\(893\) −3.80776 −0.127422
\(894\) −14.6847 −0.491128
\(895\) −56.9848 −1.90479
\(896\) −3.56155 −0.118983
\(897\) −5.12311 −0.171056
\(898\) 11.5616 0.385814
\(899\) 0 0
\(900\) 7.68466 0.256155
\(901\) 4.87689 0.162473
\(902\) −7.12311 −0.237173
\(903\) 2.43845 0.0811464
\(904\) −14.9309 −0.496593
\(905\) −36.4924 −1.21305
\(906\) −3.31534 −0.110145
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 9.31534 0.309140
\(909\) −4.24621 −0.140838
\(910\) −64.9848 −2.15423
\(911\) −43.2311 −1.43231 −0.716154 0.697942i \(-0.754099\pi\)
−0.716154 + 0.697942i \(0.754099\pi\)
\(912\) 1.56155 0.0517082
\(913\) 5.75379 0.190423
\(914\) −20.4384 −0.676044
\(915\) −11.1231 −0.367719
\(916\) 9.56155 0.315923
\(917\) −22.2462 −0.734635
\(918\) −2.43845 −0.0804807
\(919\) 9.31534 0.307285 0.153642 0.988127i \(-0.450900\pi\)
0.153642 + 0.988127i \(0.450900\pi\)
\(920\) −3.56155 −0.117421
\(921\) 8.49242 0.279835
\(922\) −38.1080 −1.25502
\(923\) 40.9848 1.34903
\(924\) 7.12311 0.234333
\(925\) −12.0000 −0.394558
\(926\) 8.00000 0.262896
\(927\) −5.80776 −0.190752
\(928\) −1.00000 −0.0328266
\(929\) −26.4924 −0.869188 −0.434594 0.900626i \(-0.643108\pi\)
−0.434594 + 0.900626i \(0.643108\pi\)
\(930\) 0 0
\(931\) −8.87689 −0.290928
\(932\) 5.12311 0.167813
\(933\) 10.0540 0.329152
\(934\) 0.630683 0.0206366
\(935\) −17.3693 −0.568037
\(936\) 5.12311 0.167454
\(937\) −30.3002 −0.989864 −0.494932 0.868932i \(-0.664807\pi\)
−0.494932 + 0.868932i \(0.664807\pi\)
\(938\) 0 0
\(939\) −10.1922 −0.332611
\(940\) −8.68466 −0.283262
\(941\) 2.00000 0.0651981 0.0325991 0.999469i \(-0.489622\pi\)
0.0325991 + 0.999469i \(0.489622\pi\)
\(942\) 4.68466 0.152634
\(943\) 3.56155 0.115980
\(944\) −1.56155 −0.0508242
\(945\) 12.6847 0.412632
\(946\) −1.36932 −0.0445203
\(947\) −60.4924 −1.96574 −0.982870 0.184301i \(-0.940998\pi\)
−0.982870 + 0.184301i \(0.940998\pi\)
\(948\) −0.246211 −0.00799657
\(949\) −30.7386 −0.997818
\(950\) 12.0000 0.389331
\(951\) −25.1231 −0.814673
\(952\) 8.68466 0.281471
\(953\) −47.2311 −1.52996 −0.764982 0.644052i \(-0.777252\pi\)
−0.764982 + 0.644052i \(0.777252\pi\)
\(954\) 2.00000 0.0647524
\(955\) −76.7926 −2.48495
\(956\) 17.3693 0.561764
\(957\) 2.00000 0.0646508
\(958\) −36.4924 −1.17902
\(959\) −47.6155 −1.53759
\(960\) 3.56155 0.114949
\(961\) −31.0000 −1.00000
\(962\) −8.00000 −0.257930
\(963\) −12.9309 −0.416691
\(964\) 12.0540 0.388232
\(965\) −32.4924 −1.04597
\(966\) −3.56155 −0.114591
\(967\) 38.2462 1.22992 0.614958 0.788560i \(-0.289173\pi\)
0.614958 + 0.788560i \(0.289173\pi\)
\(968\) 7.00000 0.224989
\(969\) −3.80776 −0.122323
\(970\) 46.7386 1.50069
\(971\) 3.75379 0.120465 0.0602324 0.998184i \(-0.480816\pi\)
0.0602324 + 0.998184i \(0.480816\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −53.8617 −1.72673
\(974\) −5.56155 −0.178204
\(975\) 39.3693 1.26083
\(976\) −3.12311 −0.0999682
\(977\) 28.9848 0.927307 0.463654 0.886017i \(-0.346538\pi\)
0.463654 + 0.886017i \(0.346538\pi\)
\(978\) 3.31534 0.106013
\(979\) 6.24621 0.199630
\(980\) −20.2462 −0.646741
\(981\) 12.0000 0.383131
\(982\) −25.3693 −0.809567
\(983\) −38.7386 −1.23557 −0.617785 0.786347i \(-0.711970\pi\)
−0.617785 + 0.786347i \(0.711970\pi\)
\(984\) −3.56155 −0.113538
\(985\) −9.56155 −0.304656
\(986\) 2.43845 0.0776560
\(987\) −8.68466 −0.276436
\(988\) 8.00000 0.254514
\(989\) 0.684658 0.0217709
\(990\) −7.12311 −0.226387
\(991\) −11.4233 −0.362873 −0.181436 0.983403i \(-0.558075\pi\)
−0.181436 + 0.983403i \(0.558075\pi\)
\(992\) 0 0
\(993\) −25.5616 −0.811171
\(994\) 28.4924 0.903725
\(995\) 26.2462 0.832061
\(996\) 2.87689 0.0911579
\(997\) 35.6695 1.12966 0.564832 0.825206i \(-0.308941\pi\)
0.564832 + 0.825206i \(0.308941\pi\)
\(998\) 3.61553 0.114448
\(999\) 1.56155 0.0494053
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.s.1.1 2 1.1 even 1 trivial