Properties

Label 4002.2.a.l.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.00000 q^{5} -1.00000 q^{6} +4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.00000 q^{5} -1.00000 q^{6} +4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +2.00000 q^{10} -1.00000 q^{12} -2.00000 q^{13} +4.00000 q^{14} -2.00000 q^{15} +1.00000 q^{16} -6.00000 q^{17} +1.00000 q^{18} +4.00000 q^{19} +2.00000 q^{20} -4.00000 q^{21} +1.00000 q^{23} -1.00000 q^{24} -1.00000 q^{25} -2.00000 q^{26} -1.00000 q^{27} +4.00000 q^{28} +1.00000 q^{29} -2.00000 q^{30} +8.00000 q^{31} +1.00000 q^{32} -6.00000 q^{34} +8.00000 q^{35} +1.00000 q^{36} +10.0000 q^{37} +4.00000 q^{38} +2.00000 q^{39} +2.00000 q^{40} +10.0000 q^{41} -4.00000 q^{42} +4.00000 q^{43} +2.00000 q^{45} +1.00000 q^{46} -8.00000 q^{47} -1.00000 q^{48} +9.00000 q^{49} -1.00000 q^{50} +6.00000 q^{51} -2.00000 q^{52} -6.00000 q^{53} -1.00000 q^{54} +4.00000 q^{56} -4.00000 q^{57} +1.00000 q^{58} +12.0000 q^{59} -2.00000 q^{60} -14.0000 q^{61} +8.00000 q^{62} +4.00000 q^{63} +1.00000 q^{64} -4.00000 q^{65} +16.0000 q^{67} -6.00000 q^{68} -1.00000 q^{69} +8.00000 q^{70} -8.00000 q^{71} +1.00000 q^{72} +2.00000 q^{73} +10.0000 q^{74} +1.00000 q^{75} +4.00000 q^{76} +2.00000 q^{78} -16.0000 q^{79} +2.00000 q^{80} +1.00000 q^{81} +10.0000 q^{82} -12.0000 q^{83} -4.00000 q^{84} -12.0000 q^{85} +4.00000 q^{86} -1.00000 q^{87} +10.0000 q^{89} +2.00000 q^{90} -8.00000 q^{91} +1.00000 q^{92} -8.00000 q^{93} -8.00000 q^{94} +8.00000 q^{95} -1.00000 q^{96} +6.00000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) −1.00000 −0.408248
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 2.00000 0.632456
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 4.00000 1.06904
\(15\) −2.00000 −0.516398
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 1.00000 0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 2.00000 0.447214
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −1.00000 −0.200000
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) 4.00000 0.755929
\(29\) 1.00000 0.185695
\(30\) −2.00000 −0.365148
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 8.00000 1.35225
\(36\) 1.00000 0.166667
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 4.00000 0.648886
\(39\) 2.00000 0.320256
\(40\) 2.00000 0.316228
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) −4.00000 −0.617213
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 1.00000 0.147442
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) −1.00000 −0.144338
\(49\) 9.00000 1.28571
\(50\) −1.00000 −0.141421
\(51\) 6.00000 0.840168
\(52\) −2.00000 −0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) −4.00000 −0.529813
\(58\) 1.00000 0.131306
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) −2.00000 −0.258199
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 8.00000 1.01600
\(63\) 4.00000 0.503953
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 16.0000 1.95471 0.977356 0.211604i \(-0.0678686\pi\)
0.977356 + 0.211604i \(0.0678686\pi\)
\(68\) −6.00000 −0.727607
\(69\) −1.00000 −0.120386
\(70\) 8.00000 0.956183
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 10.0000 1.16248
\(75\) 1.00000 0.115470
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 2.00000 0.223607
\(81\) 1.00000 0.111111
\(82\) 10.0000 1.10432
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) −4.00000 −0.436436
\(85\) −12.0000 −1.30158
\(86\) 4.00000 0.431331
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 2.00000 0.210819
\(91\) −8.00000 −0.838628
\(92\) 1.00000 0.104257
\(93\) −8.00000 −0.829561
\(94\) −8.00000 −0.825137
\(95\) 8.00000 0.820783
\(96\) −1.00000 −0.102062
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 6.00000 0.594089
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −2.00000 −0.196116
\(105\) −8.00000 −0.780720
\(106\) −6.00000 −0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 4.00000 0.377964
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) −4.00000 −0.374634
\(115\) 2.00000 0.186501
\(116\) 1.00000 0.0928477
\(117\) −2.00000 −0.184900
\(118\) 12.0000 1.10469
\(119\) −24.0000 −2.20008
\(120\) −2.00000 −0.182574
\(121\) −11.0000 −1.00000
\(122\) −14.0000 −1.26750
\(123\) −10.0000 −0.901670
\(124\) 8.00000 0.718421
\(125\) −12.0000 −1.07331
\(126\) 4.00000 0.356348
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.00000 −0.352180
\(130\) −4.00000 −0.350823
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) 16.0000 1.38219
\(135\) −2.00000 −0.172133
\(136\) −6.00000 −0.514496
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 8.00000 0.676123
\(141\) 8.00000 0.673722
\(142\) −8.00000 −0.671345
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 2.00000 0.166091
\(146\) 2.00000 0.165521
\(147\) −9.00000 −0.742307
\(148\) 10.0000 0.821995
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 1.00000 0.0816497
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 4.00000 0.324443
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 2.00000 0.160128
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −16.0000 −1.27289
\(159\) 6.00000 0.475831
\(160\) 2.00000 0.158114
\(161\) 4.00000 0.315244
\(162\) 1.00000 0.0785674
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) −4.00000 −0.308607
\(169\) −9.00000 −0.692308
\(170\) −12.0000 −0.920358
\(171\) 4.00000 0.305888
\(172\) 4.00000 0.304997
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 10.0000 0.749532
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 2.00000 0.149071
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) −8.00000 −0.592999
\(183\) 14.0000 1.03491
\(184\) 1.00000 0.0737210
\(185\) 20.0000 1.47043
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) −4.00000 −0.290957
\(190\) 8.00000 0.580381
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 26.0000 1.87152 0.935760 0.352636i \(-0.114715\pi\)
0.935760 + 0.352636i \(0.114715\pi\)
\(194\) 6.00000 0.430775
\(195\) 4.00000 0.286446
\(196\) 9.00000 0.642857
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −16.0000 −1.12855
\(202\) −10.0000 −0.703598
\(203\) 4.00000 0.280745
\(204\) 6.00000 0.420084
\(205\) 20.0000 1.39686
\(206\) 4.00000 0.278693
\(207\) 1.00000 0.0695048
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) −8.00000 −0.552052
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) −6.00000 −0.412082
\(213\) 8.00000 0.548151
\(214\) −12.0000 −0.820303
\(215\) 8.00000 0.545595
\(216\) −1.00000 −0.0680414
\(217\) 32.0000 2.17230
\(218\) −2.00000 −0.135457
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) −10.0000 −0.671156
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 4.00000 0.267261
\(225\) −1.00000 −0.0666667
\(226\) 10.0000 0.665190
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) −4.00000 −0.264906
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 2.00000 0.131876
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −2.00000 −0.130744
\(235\) −16.0000 −1.04372
\(236\) 12.0000 0.781133
\(237\) 16.0000 1.03931
\(238\) −24.0000 −1.55569
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) −2.00000 −0.129099
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) −11.0000 −0.707107
\(243\) −1.00000 −0.0641500
\(244\) −14.0000 −0.896258
\(245\) 18.0000 1.14998
\(246\) −10.0000 −0.637577
\(247\) −8.00000 −0.509028
\(248\) 8.00000 0.508001
\(249\) 12.0000 0.760469
\(250\) −12.0000 −0.758947
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 4.00000 0.251976
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 12.0000 0.751469
\(256\) 1.00000 0.0625000
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) −4.00000 −0.249029
\(259\) 40.0000 2.48548
\(260\) −4.00000 −0.248069
\(261\) 1.00000 0.0618984
\(262\) 12.0000 0.741362
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 16.0000 0.981023
\(267\) −10.0000 −0.611990
\(268\) 16.0000 0.977356
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) −2.00000 −0.121716
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −6.00000 −0.363803
\(273\) 8.00000 0.484182
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) −1.00000 −0.0601929
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 4.00000 0.239904
\(279\) 8.00000 0.478947
\(280\) 8.00000 0.478091
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 8.00000 0.476393
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) −8.00000 −0.474713
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 40.0000 2.36113
\(288\) 1.00000 0.0589256
\(289\) 19.0000 1.11765
\(290\) 2.00000 0.117444
\(291\) −6.00000 −0.351726
\(292\) 2.00000 0.117041
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) −9.00000 −0.524891
\(295\) 24.0000 1.39733
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) 10.0000 0.579284
\(299\) −2.00000 −0.115663
\(300\) 1.00000 0.0577350
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 4.00000 0.229416
\(305\) −28.0000 −1.60328
\(306\) −6.00000 −0.342997
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 16.0000 0.908739
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 2.00000 0.113228
\(313\) −30.0000 −1.69570 −0.847850 0.530236i \(-0.822103\pi\)
−0.847850 + 0.530236i \(0.822103\pi\)
\(314\) 2.00000 0.112867
\(315\) 8.00000 0.450749
\(316\) −16.0000 −0.900070
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 6.00000 0.336463
\(319\) 0 0
\(320\) 2.00000 0.111803
\(321\) 12.0000 0.669775
\(322\) 4.00000 0.222911
\(323\) −24.0000 −1.33540
\(324\) 1.00000 0.0555556
\(325\) 2.00000 0.110940
\(326\) 12.0000 0.664619
\(327\) 2.00000 0.110600
\(328\) 10.0000 0.552158
\(329\) −32.0000 −1.76422
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −12.0000 −0.658586
\(333\) 10.0000 0.547997
\(334\) 16.0000 0.875481
\(335\) 32.0000 1.74835
\(336\) −4.00000 −0.218218
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −9.00000 −0.489535
\(339\) −10.0000 −0.543125
\(340\) −12.0000 −0.650791
\(341\) 0 0
\(342\) 4.00000 0.216295
\(343\) 8.00000 0.431959
\(344\) 4.00000 0.215666
\(345\) −2.00000 −0.107676
\(346\) −18.0000 −0.967686
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) −4.00000 −0.213809
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) −12.0000 −0.637793
\(355\) −16.0000 −0.849192
\(356\) 10.0000 0.529999
\(357\) 24.0000 1.27021
\(358\) −20.0000 −1.05703
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 2.00000 0.105409
\(361\) −3.00000 −0.157895
\(362\) −2.00000 −0.105118
\(363\) 11.0000 0.577350
\(364\) −8.00000 −0.419314
\(365\) 4.00000 0.209370
\(366\) 14.0000 0.731792
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 1.00000 0.0521286
\(369\) 10.0000 0.520579
\(370\) 20.0000 1.03975
\(371\) −24.0000 −1.24602
\(372\) −8.00000 −0.414781
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) −8.00000 −0.412568
\(377\) −2.00000 −0.103005
\(378\) −4.00000 −0.205738
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 8.00000 0.410391
\(381\) −8.00000 −0.409852
\(382\) 12.0000 0.613973
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) 4.00000 0.203331
\(388\) 6.00000 0.304604
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 4.00000 0.202548
\(391\) −6.00000 −0.303433
\(392\) 9.00000 0.454569
\(393\) −12.0000 −0.605320
\(394\) 22.0000 1.10834
\(395\) −32.0000 −1.61009
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 4.00000 0.200502
\(399\) −16.0000 −0.801002
\(400\) −1.00000 −0.0500000
\(401\) 38.0000 1.89763 0.948815 0.315833i \(-0.102284\pi\)
0.948815 + 0.315833i \(0.102284\pi\)
\(402\) −16.0000 −0.798007
\(403\) −16.0000 −0.797017
\(404\) −10.0000 −0.497519
\(405\) 2.00000 0.0993808
\(406\) 4.00000 0.198517
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 20.0000 0.987730
\(411\) −10.0000 −0.493264
\(412\) 4.00000 0.197066
\(413\) 48.0000 2.36193
\(414\) 1.00000 0.0491473
\(415\) −24.0000 −1.17811
\(416\) −2.00000 −0.0980581
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −8.00000 −0.390360
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −20.0000 −0.973585
\(423\) −8.00000 −0.388973
\(424\) −6.00000 −0.291386
\(425\) 6.00000 0.291043
\(426\) 8.00000 0.387601
\(427\) −56.0000 −2.71003
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 32.0000 1.53605
\(435\) −2.00000 −0.0958927
\(436\) −2.00000 −0.0957826
\(437\) 4.00000 0.191346
\(438\) −2.00000 −0.0955637
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 12.0000 0.570782
\(443\) −20.0000 −0.950229 −0.475114 0.879924i \(-0.657593\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(444\) −10.0000 −0.474579
\(445\) 20.0000 0.948091
\(446\) −16.0000 −0.757622
\(447\) −10.0000 −0.472984
\(448\) 4.00000 0.188982
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) 10.0000 0.470360
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) −16.0000 −0.750092
\(456\) −4.00000 −0.187317
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) −6.00000 −0.280362
\(459\) 6.00000 0.280056
\(460\) 2.00000 0.0932505
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 1.00000 0.0464238
\(465\) −16.0000 −0.741982
\(466\) −6.00000 −0.277945
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 64.0000 2.95525
\(470\) −16.0000 −0.738025
\(471\) −2.00000 −0.0921551
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 16.0000 0.734904
\(475\) −4.00000 −0.183533
\(476\) −24.0000 −1.10004
\(477\) −6.00000 −0.274721
\(478\) −24.0000 −1.09773
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) −2.00000 −0.0912871
\(481\) −20.0000 −0.911922
\(482\) 2.00000 0.0910975
\(483\) −4.00000 −0.182006
\(484\) −11.0000 −0.500000
\(485\) 12.0000 0.544892
\(486\) −1.00000 −0.0453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −14.0000 −0.633750
\(489\) −12.0000 −0.542659
\(490\) 18.0000 0.813157
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) −10.0000 −0.450835
\(493\) −6.00000 −0.270226
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) −32.0000 −1.43540
\(498\) 12.0000 0.537733
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) −12.0000 −0.536656
\(501\) −16.0000 −0.714827
\(502\) −8.00000 −0.357057
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 4.00000 0.178174
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 8.00000 0.354943
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 12.0000 0.531369
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) −4.00000 −0.176604
\(514\) −14.0000 −0.617514
\(515\) 8.00000 0.352522
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 40.0000 1.75750
\(519\) 18.0000 0.790112
\(520\) −4.00000 −0.175412
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 1.00000 0.0437688
\(523\) 24.0000 1.04945 0.524723 0.851273i \(-0.324169\pi\)
0.524723 + 0.851273i \(0.324169\pi\)
\(524\) 12.0000 0.524222
\(525\) 4.00000 0.174574
\(526\) 4.00000 0.174408
\(527\) −48.0000 −2.09091
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −12.0000 −0.521247
\(531\) 12.0000 0.520756
\(532\) 16.0000 0.693688
\(533\) −20.0000 −0.866296
\(534\) −10.0000 −0.432742
\(535\) −24.0000 −1.03761
\(536\) 16.0000 0.691095
\(537\) 20.0000 0.863064
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) −2.00000 −0.0860663
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −8.00000 −0.343629
\(543\) 2.00000 0.0858282
\(544\) −6.00000 −0.257248
\(545\) −4.00000 −0.171341
\(546\) 8.00000 0.342368
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 10.0000 0.427179
\(549\) −14.0000 −0.597505
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) −1.00000 −0.0425628
\(553\) −64.0000 −2.72156
\(554\) −10.0000 −0.424859
\(555\) −20.0000 −0.848953
\(556\) 4.00000 0.169638
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 8.00000 0.338667
\(559\) −8.00000 −0.338364
\(560\) 8.00000 0.338062
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −8.00000 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(564\) 8.00000 0.336861
\(565\) 20.0000 0.841406
\(566\) 16.0000 0.672530
\(567\) 4.00000 0.167984
\(568\) −8.00000 −0.335673
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) −8.00000 −0.335083
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 40.0000 1.66957
\(575\) −1.00000 −0.0417029
\(576\) 1.00000 0.0416667
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 19.0000 0.790296
\(579\) −26.0000 −1.08052
\(580\) 2.00000 0.0830455
\(581\) −48.0000 −1.99138
\(582\) −6.00000 −0.248708
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) −4.00000 −0.165380
\(586\) 6.00000 0.247858
\(587\) −4.00000 −0.165098 −0.0825488 0.996587i \(-0.526306\pi\)
−0.0825488 + 0.996587i \(0.526306\pi\)
\(588\) −9.00000 −0.371154
\(589\) 32.0000 1.31854
\(590\) 24.0000 0.988064
\(591\) −22.0000 −0.904959
\(592\) 10.0000 0.410997
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) −48.0000 −1.96781
\(596\) 10.0000 0.409616
\(597\) −4.00000 −0.163709
\(598\) −2.00000 −0.0817861
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 1.00000 0.0408248
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 16.0000 0.652111
\(603\) 16.0000 0.651570
\(604\) 0 0
\(605\) −22.0000 −0.894427
\(606\) 10.0000 0.406222
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 4.00000 0.162221
\(609\) −4.00000 −0.162088
\(610\) −28.0000 −1.13369
\(611\) 16.0000 0.647291
\(612\) −6.00000 −0.242536
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 28.0000 1.12999
\(615\) −20.0000 −0.806478
\(616\) 0 0
\(617\) 34.0000 1.36879 0.684394 0.729112i \(-0.260067\pi\)
0.684394 + 0.729112i \(0.260067\pi\)
\(618\) −4.00000 −0.160904
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 16.0000 0.642575
\(621\) −1.00000 −0.0401286
\(622\) −32.0000 −1.28308
\(623\) 40.0000 1.60257
\(624\) 2.00000 0.0800641
\(625\) −19.0000 −0.760000
\(626\) −30.0000 −1.19904
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) −60.0000 −2.39236
\(630\) 8.00000 0.318728
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) −16.0000 −0.636446
\(633\) 20.0000 0.794929
\(634\) 30.0000 1.19145
\(635\) 16.0000 0.634941
\(636\) 6.00000 0.237915
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 2.00000 0.0790569
\(641\) −46.0000 −1.81689 −0.908445 0.418004i \(-0.862730\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(642\) 12.0000 0.473602
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 4.00000 0.157622
\(645\) −8.00000 −0.315000
\(646\) −24.0000 −0.944267
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 2.00000 0.0784465
\(651\) −32.0000 −1.25418
\(652\) 12.0000 0.469956
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 2.00000 0.0782062
\(655\) 24.0000 0.937758
\(656\) 10.0000 0.390434
\(657\) 2.00000 0.0780274
\(658\) −32.0000 −1.24749
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) −20.0000 −0.777322
\(663\) −12.0000 −0.466041
\(664\) −12.0000 −0.465690
\(665\) 32.0000 1.24091
\(666\) 10.0000 0.387492
\(667\) 1.00000 0.0387202
\(668\) 16.0000 0.619059
\(669\) 16.0000 0.618596
\(670\) 32.0000 1.23627
\(671\) 0 0
\(672\) −4.00000 −0.154303
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 22.0000 0.847408
\(675\) 1.00000 0.0384900
\(676\) −9.00000 −0.346154
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) −10.0000 −0.384048
\(679\) 24.0000 0.921035
\(680\) −12.0000 −0.460179
\(681\) 4.00000 0.153280
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 4.00000 0.152944
\(685\) 20.0000 0.764161
\(686\) 8.00000 0.305441
\(687\) 6.00000 0.228914
\(688\) 4.00000 0.152499
\(689\) 12.0000 0.457164
\(690\) −2.00000 −0.0761387
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 8.00000 0.303457
\(696\) −1.00000 −0.0379049
\(697\) −60.0000 −2.27266
\(698\) −2.00000 −0.0757011
\(699\) 6.00000 0.226941
\(700\) −4.00000 −0.151186
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 2.00000 0.0754851
\(703\) 40.0000 1.50863
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) 10.0000 0.376355
\(707\) −40.0000 −1.50435
\(708\) −12.0000 −0.450988
\(709\) −18.0000 −0.676004 −0.338002 0.941145i \(-0.609751\pi\)
−0.338002 + 0.941145i \(0.609751\pi\)
\(710\) −16.0000 −0.600469
\(711\) −16.0000 −0.600047
\(712\) 10.0000 0.374766
\(713\) 8.00000 0.299602
\(714\) 24.0000 0.898177
\(715\) 0 0
\(716\) −20.0000 −0.747435
\(717\) 24.0000 0.896296
\(718\) −4.00000 −0.149279
\(719\) −32.0000 −1.19340 −0.596699 0.802465i \(-0.703521\pi\)
−0.596699 + 0.802465i \(0.703521\pi\)
\(720\) 2.00000 0.0745356
\(721\) 16.0000 0.595871
\(722\) −3.00000 −0.111648
\(723\) −2.00000 −0.0743808
\(724\) −2.00000 −0.0743294
\(725\) −1.00000 −0.0371391
\(726\) 11.0000 0.408248
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) −8.00000 −0.296500
\(729\) 1.00000 0.0370370
\(730\) 4.00000 0.148047
\(731\) −24.0000 −0.887672
\(732\) 14.0000 0.517455
\(733\) 50.0000 1.84679 0.923396 0.383849i \(-0.125402\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) −32.0000 −1.18114
\(735\) −18.0000 −0.663940
\(736\) 1.00000 0.0368605
\(737\) 0 0
\(738\) 10.0000 0.368105
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 20.0000 0.735215
\(741\) 8.00000 0.293887
\(742\) −24.0000 −0.881068
\(743\) −28.0000 −1.02722 −0.513610 0.858024i \(-0.671692\pi\)
−0.513610 + 0.858024i \(0.671692\pi\)
\(744\) −8.00000 −0.293294
\(745\) 20.0000 0.732743
\(746\) −10.0000 −0.366126
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) −48.0000 −1.75388
\(750\) 12.0000 0.438178
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −8.00000 −0.291730
\(753\) 8.00000 0.291536
\(754\) −2.00000 −0.0728357
\(755\) 0 0
\(756\) −4.00000 −0.145479
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 8.00000 0.290191
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) −8.00000 −0.289809
\(763\) −8.00000 −0.289619
\(764\) 12.0000 0.434145
\(765\) −12.0000 −0.433861
\(766\) −32.0000 −1.15621
\(767\) −24.0000 −0.866590
\(768\) −1.00000 −0.0360844
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) 26.0000 0.935760
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 4.00000 0.143777
\(775\) −8.00000 −0.287368
\(776\) 6.00000 0.215387
\(777\) −40.0000 −1.43499
\(778\) 6.00000 0.215110
\(779\) 40.0000 1.43315
\(780\) 4.00000 0.143223
\(781\) 0 0
\(782\) −6.00000 −0.214560
\(783\) −1.00000 −0.0357371
\(784\) 9.00000 0.321429
\(785\) 4.00000 0.142766
\(786\) −12.0000 −0.428026
\(787\) −24.0000 −0.855508 −0.427754 0.903895i \(-0.640695\pi\)
−0.427754 + 0.903895i \(0.640695\pi\)
\(788\) 22.0000 0.783718
\(789\) −4.00000 −0.142404
\(790\) −32.0000 −1.13851
\(791\) 40.0000 1.42224
\(792\) 0 0
\(793\) 28.0000 0.994309
\(794\) −18.0000 −0.638796
\(795\) 12.0000 0.425596
\(796\) 4.00000 0.141776
\(797\) −10.0000 −0.354218 −0.177109 0.984191i \(-0.556675\pi\)
−0.177109 + 0.984191i \(0.556675\pi\)
\(798\) −16.0000 −0.566394
\(799\) 48.0000 1.69812
\(800\) −1.00000 −0.0353553
\(801\) 10.0000 0.353333
\(802\) 38.0000 1.34183
\(803\) 0 0
\(804\) −16.0000 −0.564276
\(805\) 8.00000 0.281963
\(806\) −16.0000 −0.563576
\(807\) 18.0000 0.633630
\(808\) −10.0000 −0.351799
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 2.00000 0.0702728
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 4.00000 0.140372
\(813\) 8.00000 0.280572
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 6.00000 0.210042
\(817\) 16.0000 0.559769
\(818\) 2.00000 0.0699284
\(819\) −8.00000 −0.279543
\(820\) 20.0000 0.698430
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) −10.0000 −0.348790
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 48.0000 1.67013
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 1.00000 0.0347524
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) −24.0000 −0.833052
\(831\) 10.0000 0.346896
\(832\) −2.00000 −0.0693375
\(833\) −54.0000 −1.87099
\(834\) −4.00000 −0.138509
\(835\) 32.0000 1.10741
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) −12.0000 −0.414533
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) −8.00000 −0.276026
\(841\) 1.00000 0.0344828
\(842\) 2.00000 0.0689246
\(843\) −6.00000 −0.206651
\(844\) −20.0000 −0.688428
\(845\) −18.0000 −0.619219
\(846\) −8.00000 −0.275046
\(847\) −44.0000 −1.51186
\(848\) −6.00000 −0.206041
\(849\) −16.0000 −0.549119
\(850\) 6.00000 0.205798
\(851\) 10.0000 0.342796
\(852\) 8.00000 0.274075
\(853\) −34.0000 −1.16414 −0.582069 0.813139i \(-0.697757\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(854\) −56.0000 −1.91628
\(855\) 8.00000 0.273594
\(856\) −12.0000 −0.410152
\(857\) −54.0000 −1.84460 −0.922302 0.386469i \(-0.873695\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 8.00000 0.272798
\(861\) −40.0000 −1.36320
\(862\) −16.0000 −0.544962
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −36.0000 −1.22404
\(866\) −10.0000 −0.339814
\(867\) −19.0000 −0.645274
\(868\) 32.0000 1.08615
\(869\) 0 0
\(870\) −2.00000 −0.0678064
\(871\) −32.0000 −1.08428
\(872\) −2.00000 −0.0677285
\(873\) 6.00000 0.203069
\(874\) 4.00000 0.135302
\(875\) −48.0000 −1.62270
\(876\) −2.00000 −0.0675737
\(877\) −50.0000 −1.68838 −0.844190 0.536044i \(-0.819918\pi\)
−0.844190 + 0.536044i \(0.819918\pi\)
\(878\) 40.0000 1.34993
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 9.00000 0.303046
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 12.0000 0.403604
\(885\) −24.0000 −0.806751
\(886\) −20.0000 −0.671913
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) −10.0000 −0.335578
\(889\) 32.0000 1.07325
\(890\) 20.0000 0.670402
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) −32.0000 −1.07084
\(894\) −10.0000 −0.334450
\(895\) −40.0000 −1.33705
\(896\) 4.00000 0.133631
\(897\) 2.00000 0.0667781
\(898\) 2.00000 0.0667409
\(899\) 8.00000 0.266815
\(900\) −1.00000 −0.0333333
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) −16.0000 −0.532447
\(904\) 10.0000 0.332595
\(905\) −4.00000 −0.132964
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) −4.00000 −0.132745
\(909\) −10.0000 −0.331679
\(910\) −16.0000 −0.530395
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) −4.00000 −0.132453
\(913\) 0 0
\(914\) 2.00000 0.0661541
\(915\) 28.0000 0.925651
\(916\) −6.00000 −0.198246
\(917\) 48.0000 1.58510
\(918\) 6.00000 0.198030
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 2.00000 0.0659380
\(921\) −28.0000 −0.922631
\(922\) 14.0000 0.461065
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) 8.00000 0.262896
\(927\) 4.00000 0.131377
\(928\) 1.00000 0.0328266
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) −16.0000 −0.524661
\(931\) 36.0000 1.17985
\(932\) −6.00000 −0.196537
\(933\) 32.0000 1.04763
\(934\) −24.0000 −0.785304
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −54.0000 −1.76410 −0.882052 0.471153i \(-0.843838\pi\)
−0.882052 + 0.471153i \(0.843838\pi\)
\(938\) 64.0000 2.08967
\(939\) 30.0000 0.979013
\(940\) −16.0000 −0.521862
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) −2.00000 −0.0651635
\(943\) 10.0000 0.325645
\(944\) 12.0000 0.390567
\(945\) −8.00000 −0.260240
\(946\) 0 0
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 16.0000 0.519656
\(949\) −4.00000 −0.129845
\(950\) −4.00000 −0.129777
\(951\) −30.0000 −0.972817
\(952\) −24.0000 −0.777844
\(953\) 14.0000 0.453504 0.226752 0.973952i \(-0.427189\pi\)
0.226752 + 0.973952i \(0.427189\pi\)
\(954\) −6.00000 −0.194257
\(955\) 24.0000 0.776622
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 40.0000 1.29167
\(960\) −2.00000 −0.0645497
\(961\) 33.0000 1.06452
\(962\) −20.0000 −0.644826
\(963\) −12.0000 −0.386695
\(964\) 2.00000 0.0644157
\(965\) 52.0000 1.67394
\(966\) −4.00000 −0.128698
\(967\) 56.0000 1.80084 0.900419 0.435023i \(-0.143260\pi\)
0.900419 + 0.435023i \(0.143260\pi\)
\(968\) −11.0000 −0.353553
\(969\) 24.0000 0.770991
\(970\) 12.0000 0.385297
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 16.0000 0.512936
\(974\) −32.0000 −1.02535
\(975\) −2.00000 −0.0640513
\(976\) −14.0000 −0.448129
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) −12.0000 −0.383718
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) −2.00000 −0.0638551
\(982\) −36.0000 −1.14881
\(983\) −60.0000 −1.91370 −0.956851 0.290578i \(-0.906153\pi\)
−0.956851 + 0.290578i \(0.906153\pi\)
\(984\) −10.0000 −0.318788
\(985\) 44.0000 1.40196
\(986\) −6.00000 −0.191079
\(987\) 32.0000 1.01857
\(988\) −8.00000 −0.254514
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 8.00000 0.254000
\(993\) 20.0000 0.634681
\(994\) −32.0000 −1.01498
\(995\) 8.00000 0.253617
\(996\) 12.0000 0.380235
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 4.00000 0.126618
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.l.1.1 1 1.1 even 1 trivial