Properties

Label 4002.2.a.g.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +4.00000 q^{5} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +4.00000 q^{5} -1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} -4.00000 q^{10} +1.00000 q^{12} -2.00000 q^{13} +4.00000 q^{15} +1.00000 q^{16} +4.00000 q^{17} -1.00000 q^{18} +4.00000 q^{19} +4.00000 q^{20} -1.00000 q^{23} -1.00000 q^{24} +11.0000 q^{25} +2.00000 q^{26} +1.00000 q^{27} -1.00000 q^{29} -4.00000 q^{30} -1.00000 q^{32} -4.00000 q^{34} +1.00000 q^{36} +2.00000 q^{37} -4.00000 q^{38} -2.00000 q^{39} -4.00000 q^{40} -6.00000 q^{41} +4.00000 q^{43} +4.00000 q^{45} +1.00000 q^{46} +1.00000 q^{48} -7.00000 q^{49} -11.0000 q^{50} +4.00000 q^{51} -2.00000 q^{52} -4.00000 q^{53} -1.00000 q^{54} +4.00000 q^{57} +1.00000 q^{58} +8.00000 q^{59} +4.00000 q^{60} +6.00000 q^{61} +1.00000 q^{64} -8.00000 q^{65} +2.00000 q^{67} +4.00000 q^{68} -1.00000 q^{69} -1.00000 q^{72} +6.00000 q^{73} -2.00000 q^{74} +11.0000 q^{75} +4.00000 q^{76} +2.00000 q^{78} -2.00000 q^{79} +4.00000 q^{80} +1.00000 q^{81} +6.00000 q^{82} +14.0000 q^{83} +16.0000 q^{85} -4.00000 q^{86} -1.00000 q^{87} -4.00000 q^{90} -1.00000 q^{92} +16.0000 q^{95} -1.00000 q^{96} -12.0000 q^{97} +7.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −4.00000 −1.26491
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 11.0000 2.20000
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) −4.00000 −0.730297
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −4.00000 −0.648886
\(39\) −2.00000 −0.320256
\(40\) −4.00000 −0.632456
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 4.00000 0.596285
\(46\) 1.00000 0.147442
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) −7.00000 −1.00000
\(50\) −11.0000 −1.55563
\(51\) 4.00000 0.560112
\(52\) −2.00000 −0.277350
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 1.00000 0.131306
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 4.00000 0.516398
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 4.00000 0.485071
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −2.00000 −0.232495
\(75\) 11.0000 1.27017
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 4.00000 0.447214
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) 16.0000 1.73544
\(86\) −4.00000 −0.431331
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −4.00000 −0.421637
\(91\) 0 0
\(92\) −1.00000 −0.104257
\(93\) 0 0
\(94\) 0 0
\(95\) 16.0000 1.64157
\(96\) −1.00000 −0.102062
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) 11.0000 1.10000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −4.00000 −0.396059
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 1.00000 0.0962250
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) −4.00000 −0.374634
\(115\) −4.00000 −0.373002
\(116\) −1.00000 −0.0928477
\(117\) −2.00000 −0.184900
\(118\) −8.00000 −0.736460
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) −11.0000 −1.00000
\(122\) −6.00000 −0.543214
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.00000 0.352180
\(130\) 8.00000 0.701646
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 4.00000 0.344265
\(136\) −4.00000 −0.342997
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 1.00000 0.0851257
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −4.00000 −0.332182
\(146\) −6.00000 −0.496564
\(147\) −7.00000 −0.577350
\(148\) 2.00000 0.164399
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −11.0000 −0.898146
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −4.00000 −0.324443
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 2.00000 0.159111
\(159\) −4.00000 −0.317221
\(160\) −4.00000 −0.316228
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −14.0000 −1.08661
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −16.0000 −1.22714
\(171\) 4.00000 0.305888
\(172\) 4.00000 0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 1.00000 0.0758098
\(175\) 0 0
\(176\) 0 0
\(177\) 8.00000 0.601317
\(178\) 0 0
\(179\) −8.00000 −0.597948 −0.298974 0.954261i \(-0.596644\pi\)
−0.298974 + 0.954261i \(0.596644\pi\)
\(180\) 4.00000 0.298142
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 1.00000 0.0737210
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 1.00000 0.0721688
\(193\) −26.0000 −1.87152 −0.935760 0.352636i \(-0.885285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) 12.0000 0.861550
\(195\) −8.00000 −0.572892
\(196\) −7.00000 −0.500000
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) −11.0000 −0.777817
\(201\) 2.00000 0.141069
\(202\) −10.0000 −0.703598
\(203\) 0 0
\(204\) 4.00000 0.280056
\(205\) −24.0000 −1.67623
\(206\) −8.00000 −0.557386
\(207\) −1.00000 −0.0695048
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −4.00000 −0.274721
\(213\) 0 0
\(214\) 6.00000 0.410152
\(215\) 16.0000 1.09119
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 4.00000 0.270914
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) −2.00000 −0.134231
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 4.00000 0.266076
\(227\) −6.00000 −0.398234 −0.199117 0.979976i \(-0.563807\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(228\) 4.00000 0.264906
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) −2.00000 −0.129914
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 4.00000 0.258199
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 11.0000 0.707107
\(243\) 1.00000 0.0641500
\(244\) 6.00000 0.384111
\(245\) −28.0000 −1.78885
\(246\) 6.00000 0.382546
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) 14.0000 0.887214
\(250\) −24.0000 −1.51789
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 16.0000 1.00196
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) −4.00000 −0.249029
\(259\) 0 0
\(260\) −8.00000 −0.496139
\(261\) −1.00000 −0.0618984
\(262\) −20.0000 −1.23560
\(263\) 26.0000 1.60323 0.801614 0.597841i \(-0.203975\pi\)
0.801614 + 0.597841i \(0.203975\pi\)
\(264\) 0 0
\(265\) −16.0000 −0.982872
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) −4.00000 −0.243432
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) −1.00000 −0.0601929
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −8.00000 −0.479808
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) 0 0
\(285\) 16.0000 0.947758
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) −1.00000 −0.0588235
\(290\) 4.00000 0.234888
\(291\) −12.0000 −0.703452
\(292\) 6.00000 0.351123
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 7.00000 0.408248
\(295\) 32.0000 1.86311
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 0 0
\(299\) 2.00000 0.115663
\(300\) 11.0000 0.635085
\(301\) 0 0
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 4.00000 0.229416
\(305\) 24.0000 1.37424
\(306\) −4.00000 −0.228665
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 2.00000 0.113228
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) −2.00000 −0.112509
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 4.00000 0.224309
\(319\) 0 0
\(320\) 4.00000 0.223607
\(321\) −6.00000 −0.334887
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 1.00000 0.0555556
\(325\) −22.0000 −1.22034
\(326\) 12.0000 0.664619
\(327\) −4.00000 −0.221201
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 14.0000 0.768350
\(333\) 2.00000 0.109599
\(334\) −8.00000 −0.437741
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 9.00000 0.489535
\(339\) −4.00000 −0.217250
\(340\) 16.0000 0.867722
\(341\) 0 0
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) −4.00000 −0.215353
\(346\) 6.00000 0.322562
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) −8.00000 −0.425195
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 8.00000 0.422813
\(359\) −14.0000 −0.738892 −0.369446 0.929252i \(-0.620452\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(360\) −4.00000 −0.210819
\(361\) −3.00000 −0.157895
\(362\) −8.00000 −0.420471
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 24.0000 1.25622
\(366\) −6.00000 −0.313625
\(367\) 14.0000 0.730794 0.365397 0.930852i \(-0.380933\pi\)
0.365397 + 0.930852i \(0.380933\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −6.00000 −0.312348
\(370\) −8.00000 −0.415900
\(371\) 0 0
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 16.0000 0.820783
\(381\) 4.00000 0.204926
\(382\) 18.0000 0.920960
\(383\) 20.0000 1.02195 0.510976 0.859595i \(-0.329284\pi\)
0.510976 + 0.859595i \(0.329284\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) 4.00000 0.203331
\(388\) −12.0000 −0.609208
\(389\) −22.0000 −1.11544 −0.557722 0.830028i \(-0.688325\pi\)
−0.557722 + 0.830028i \(0.688325\pi\)
\(390\) 8.00000 0.405096
\(391\) −4.00000 −0.202289
\(392\) 7.00000 0.353553
\(393\) 20.0000 1.00887
\(394\) −18.0000 −0.906827
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) −2.00000 −0.0997509
\(403\) 0 0
\(404\) 10.0000 0.497519
\(405\) 4.00000 0.198762
\(406\) 0 0
\(407\) 0 0
\(408\) −4.00000 −0.198030
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 24.0000 1.18528
\(411\) −12.0000 −0.591916
\(412\) 8.00000 0.394132
\(413\) 0 0
\(414\) 1.00000 0.0491473
\(415\) 56.0000 2.74893
\(416\) 2.00000 0.0980581
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 12.0000 0.584151
\(423\) 0 0
\(424\) 4.00000 0.194257
\(425\) 44.0000 2.13431
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) −16.0000 −0.771589
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 1.00000 0.0481125
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) −4.00000 −0.191565
\(437\) −4.00000 −0.191346
\(438\) −6.00000 −0.286691
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 8.00000 0.380521
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 2.00000 0.0949158
\(445\) 0 0
\(446\) −8.00000 −0.378811
\(447\) 0 0
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) −11.0000 −0.518545
\(451\) 0 0
\(452\) −4.00000 −0.188144
\(453\) 0 0
\(454\) 6.00000 0.281594
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 6.00000 0.280362
\(459\) 4.00000 0.186704
\(460\) −4.00000 −0.186501
\(461\) 38.0000 1.76984 0.884918 0.465746i \(-0.154214\pi\)
0.884918 + 0.465746i \(0.154214\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) 32.0000 1.48078 0.740392 0.672176i \(-0.234640\pi\)
0.740392 + 0.672176i \(0.234640\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 0 0
\(470\) 0 0
\(471\) −6.00000 −0.276465
\(472\) −8.00000 −0.368230
\(473\) 0 0
\(474\) 2.00000 0.0918630
\(475\) 44.0000 2.01886
\(476\) 0 0
\(477\) −4.00000 −0.183147
\(478\) −24.0000 −1.09773
\(479\) 30.0000 1.37073 0.685367 0.728197i \(-0.259642\pi\)
0.685367 + 0.728197i \(0.259642\pi\)
\(480\) −4.00000 −0.182574
\(481\) −4.00000 −0.182384
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −48.0000 −2.17957
\(486\) −1.00000 −0.0453609
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) −6.00000 −0.271607
\(489\) −12.0000 −0.542659
\(490\) 28.0000 1.26491
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) −6.00000 −0.270501
\(493\) −4.00000 −0.180151
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −14.0000 −0.627355
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 24.0000 1.07331
\(501\) 8.00000 0.357414
\(502\) 28.0000 1.24970
\(503\) −34.0000 −1.51599 −0.757993 0.652263i \(-0.773820\pi\)
−0.757993 + 0.652263i \(0.773820\pi\)
\(504\) 0 0
\(505\) 40.0000 1.77998
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 4.00000 0.177471
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) −16.0000 −0.708492
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 4.00000 0.176604
\(514\) −6.00000 −0.264649
\(515\) 32.0000 1.41009
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 8.00000 0.350823
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 1.00000 0.0437688
\(523\) −14.0000 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) 20.0000 0.873704
\(525\) 0 0
\(526\) −26.0000 −1.13365
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 16.0000 0.694996
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −24.0000 −1.03761
\(536\) −2.00000 −0.0863868
\(537\) −8.00000 −0.345225
\(538\) −6.00000 −0.258678
\(539\) 0 0
\(540\) 4.00000 0.172133
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 28.0000 1.20270
\(543\) 8.00000 0.343313
\(544\) −4.00000 −0.171499
\(545\) −16.0000 −0.685365
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −12.0000 −0.512615
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) 1.00000 0.0425628
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 8.00000 0.339581
\(556\) 8.00000 0.339276
\(557\) −40.0000 −1.69485 −0.847427 0.530912i \(-0.821850\pi\)
−0.847427 + 0.530912i \(0.821850\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) −16.0000 −0.673125
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) −16.0000 −0.670166
\(571\) 14.0000 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(572\) 0 0
\(573\) −18.0000 −0.751961
\(574\) 0 0
\(575\) −11.0000 −0.458732
\(576\) 1.00000 0.0416667
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 1.00000 0.0415945
\(579\) −26.0000 −1.08052
\(580\) −4.00000 −0.166091
\(581\) 0 0
\(582\) 12.0000 0.497416
\(583\) 0 0
\(584\) −6.00000 −0.248282
\(585\) −8.00000 −0.330759
\(586\) −6.00000 −0.247858
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) −7.00000 −0.288675
\(589\) 0 0
\(590\) −32.0000 −1.31742
\(591\) 18.0000 0.740421
\(592\) 2.00000 0.0821995
\(593\) 34.0000 1.39621 0.698106 0.715994i \(-0.254026\pi\)
0.698106 + 0.715994i \(0.254026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.00000 0.163709
\(598\) −2.00000 −0.0817861
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) −11.0000 −0.449073
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) −44.0000 −1.78885
\(606\) −10.0000 −0.406222
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) −24.0000 −0.971732
\(611\) 0 0
\(612\) 4.00000 0.161690
\(613\) −28.0000 −1.13091 −0.565455 0.824779i \(-0.691299\pi\)
−0.565455 + 0.824779i \(0.691299\pi\)
\(614\) −12.0000 −0.484281
\(615\) −24.0000 −0.967773
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) −8.00000 −0.321807
\(619\) −24.0000 −0.964641 −0.482321 0.875995i \(-0.660206\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 4.00000 0.160385
\(623\) 0 0
\(624\) −2.00000 −0.0800641
\(625\) 41.0000 1.64000
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) −6.00000 −0.239426
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 2.00000 0.0795557
\(633\) −12.0000 −0.476957
\(634\) 2.00000 0.0794301
\(635\) 16.0000 0.634941
\(636\) −4.00000 −0.158610
\(637\) 14.0000 0.554700
\(638\) 0 0
\(639\) 0 0
\(640\) −4.00000 −0.158114
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 6.00000 0.236801
\(643\) −26.0000 −1.02534 −0.512670 0.858586i \(-0.671344\pi\)
−0.512670 + 0.858586i \(0.671344\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) −16.0000 −0.629512
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) 22.0000 0.862911
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 4.00000 0.156412
\(655\) 80.0000 3.12586
\(656\) −6.00000 −0.234261
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 20.0000 0.777910 0.388955 0.921257i \(-0.372836\pi\)
0.388955 + 0.921257i \(0.372836\pi\)
\(662\) −28.0000 −1.08825
\(663\) −8.00000 −0.310694
\(664\) −14.0000 −0.543305
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 1.00000 0.0387202
\(668\) 8.00000 0.309529
\(669\) 8.00000 0.309298
\(670\) −8.00000 −0.309067
\(671\) 0 0
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 32.0000 1.23259
\(675\) 11.0000 0.423390
\(676\) −9.00000 −0.346154
\(677\) 38.0000 1.46046 0.730229 0.683202i \(-0.239413\pi\)
0.730229 + 0.683202i \(0.239413\pi\)
\(678\) 4.00000 0.153619
\(679\) 0 0
\(680\) −16.0000 −0.613572
\(681\) −6.00000 −0.229920
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 4.00000 0.152944
\(685\) −48.0000 −1.83399
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 4.00000 0.152499
\(689\) 8.00000 0.304776
\(690\) 4.00000 0.152277
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) 32.0000 1.21383
\(696\) 1.00000 0.0379049
\(697\) −24.0000 −0.909065
\(698\) 14.0000 0.529908
\(699\) 22.0000 0.832116
\(700\) 0 0
\(701\) 44.0000 1.66186 0.830929 0.556379i \(-0.187810\pi\)
0.830929 + 0.556379i \(0.187810\pi\)
\(702\) 2.00000 0.0754851
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 0 0
\(708\) 8.00000 0.300658
\(709\) 28.0000 1.05156 0.525781 0.850620i \(-0.323773\pi\)
0.525781 + 0.850620i \(0.323773\pi\)
\(710\) 0 0
\(711\) −2.00000 −0.0750059
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −8.00000 −0.298974
\(717\) 24.0000 0.896296
\(718\) 14.0000 0.522475
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 4.00000 0.149071
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) −14.0000 −0.520666
\(724\) 8.00000 0.297318
\(725\) −11.0000 −0.408530
\(726\) 11.0000 0.408248
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −24.0000 −0.888280
\(731\) 16.0000 0.591781
\(732\) 6.00000 0.221766
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) −14.0000 −0.516749
\(735\) −28.0000 −1.03280
\(736\) 1.00000 0.0368605
\(737\) 0 0
\(738\) 6.00000 0.220863
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) 8.00000 0.294086
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −12.0000 −0.439351
\(747\) 14.0000 0.512233
\(748\) 0 0
\(749\) 0 0
\(750\) −24.0000 −0.876356
\(751\) −14.0000 −0.510867 −0.255434 0.966827i \(-0.582218\pi\)
−0.255434 + 0.966827i \(0.582218\pi\)
\(752\) 0 0
\(753\) −28.0000 −1.02038
\(754\) −2.00000 −0.0728357
\(755\) 0 0
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) −16.0000 −0.580381
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) −4.00000 −0.144905
\(763\) 0 0
\(764\) −18.0000 −0.651217
\(765\) 16.0000 0.578481
\(766\) −20.0000 −0.722629
\(767\) −16.0000 −0.577727
\(768\) 1.00000 0.0360844
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) −26.0000 −0.935760
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) 22.0000 0.788738
\(779\) −24.0000 −0.859889
\(780\) −8.00000 −0.286446
\(781\) 0 0
\(782\) 4.00000 0.143040
\(783\) −1.00000 −0.0357371
\(784\) −7.00000 −0.250000
\(785\) −24.0000 −0.856597
\(786\) −20.0000 −0.713376
\(787\) −50.0000 −1.78231 −0.891154 0.453701i \(-0.850103\pi\)
−0.891154 + 0.453701i \(0.850103\pi\)
\(788\) 18.0000 0.641223
\(789\) 26.0000 0.925625
\(790\) 8.00000 0.284627
\(791\) 0 0
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 2.00000 0.0709773
\(795\) −16.0000 −0.567462
\(796\) 4.00000 0.141776
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −11.0000 −0.388909
\(801\) 0 0
\(802\) −2.00000 −0.0706225
\(803\) 0 0
\(804\) 2.00000 0.0705346
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) −10.0000 −0.351799
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) −4.00000 −0.140546
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) −28.0000 −0.982003
\(814\) 0 0
\(815\) −48.0000 −1.68137
\(816\) 4.00000 0.140028
\(817\) 16.0000 0.559769
\(818\) 26.0000 0.909069
\(819\) 0 0
\(820\) −24.0000 −0.838116
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 12.0000 0.418548
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) −56.0000 −1.94379
\(831\) 2.00000 0.0693792
\(832\) −2.00000 −0.0693375
\(833\) −28.0000 −0.970143
\(834\) −8.00000 −0.277017
\(835\) 32.0000 1.10741
\(836\) 0 0
\(837\) 0 0
\(838\) −6.00000 −0.207267
\(839\) 14.0000 0.483334 0.241667 0.970359i \(-0.422306\pi\)
0.241667 + 0.970359i \(0.422306\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −10.0000 −0.344623
\(843\) 6.00000 0.206651
\(844\) −12.0000 −0.413057
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) 0 0
\(848\) −4.00000 −0.137361
\(849\) −14.0000 −0.480479
\(850\) −44.0000 −1.50919
\(851\) −2.00000 −0.0685591
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) 16.0000 0.547188
\(856\) 6.00000 0.205076
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 16.0000 0.545595
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −24.0000 −0.816024
\(866\) 16.0000 0.543702
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 0 0
\(870\) 4.00000 0.135613
\(871\) −4.00000 −0.135535
\(872\) 4.00000 0.135457
\(873\) −12.0000 −0.406138
\(874\) 4.00000 0.135302
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 16.0000 0.539054 0.269527 0.962993i \(-0.413133\pi\)
0.269527 + 0.962993i \(0.413133\pi\)
\(882\) 7.00000 0.235702
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) −8.00000 −0.269069
\(885\) 32.0000 1.07567
\(886\) 12.0000 0.403148
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) −2.00000 −0.0671156
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) 0 0
\(895\) −32.0000 −1.06964
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 22.0000 0.734150
\(899\) 0 0
\(900\) 11.0000 0.366667
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 0 0
\(904\) 4.00000 0.133038
\(905\) 32.0000 1.06372
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) −6.00000 −0.199117
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) −10.0000 −0.331315 −0.165657 0.986183i \(-0.552975\pi\)
−0.165657 + 0.986183i \(0.552975\pi\)
\(912\) 4.00000 0.132453
\(913\) 0 0
\(914\) −22.0000 −0.727695
\(915\) 24.0000 0.793416
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) −4.00000 −0.132020
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 4.00000 0.131876
\(921\) 12.0000 0.395413
\(922\) −38.0000 −1.25146
\(923\) 0 0
\(924\) 0 0
\(925\) 22.0000 0.723356
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 1.00000 0.0328266
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) 22.0000 0.720634
\(933\) −4.00000 −0.130954
\(934\) −32.0000 −1.04707
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) −6.00000 −0.196011 −0.0980057 0.995186i \(-0.531246\pi\)
−0.0980057 + 0.995186i \(0.531246\pi\)
\(938\) 0 0
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) −28.0000 −0.912774 −0.456387 0.889781i \(-0.650857\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(942\) 6.00000 0.195491
\(943\) 6.00000 0.195387
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) −2.00000 −0.0649570
\(949\) −12.0000 −0.389536
\(950\) −44.0000 −1.42755
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) −30.0000 −0.971795 −0.485898 0.874016i \(-0.661507\pi\)
−0.485898 + 0.874016i \(0.661507\pi\)
\(954\) 4.00000 0.129505
\(955\) −72.0000 −2.32987
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) −30.0000 −0.969256
\(959\) 0 0
\(960\) 4.00000 0.129099
\(961\) −31.0000 −1.00000
\(962\) 4.00000 0.128965
\(963\) −6.00000 −0.193347
\(964\) −14.0000 −0.450910
\(965\) −104.000 −3.34788
\(966\) 0 0
\(967\) 28.0000 0.900419 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(968\) 11.0000 0.353553
\(969\) 16.0000 0.513994
\(970\) 48.0000 1.54119
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 0 0
\(975\) −22.0000 −0.704564
\(976\) 6.00000 0.192055
\(977\) 38.0000 1.21573 0.607864 0.794041i \(-0.292027\pi\)
0.607864 + 0.794041i \(0.292027\pi\)
\(978\) 12.0000 0.383718
\(979\) 0 0
\(980\) −28.0000 −0.894427
\(981\) −4.00000 −0.127710
\(982\) −20.0000 −0.638226
\(983\) 2.00000 0.0637901 0.0318950 0.999491i \(-0.489846\pi\)
0.0318950 + 0.999491i \(0.489846\pi\)
\(984\) 6.00000 0.191273
\(985\) 72.0000 2.29411
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) 28.0000 0.888553
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 14.0000 0.443607
\(997\) 42.0000 1.33015 0.665077 0.746775i \(-0.268399\pi\)
0.665077 + 0.746775i \(0.268399\pi\)
\(998\) −12.0000 −0.379853
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.g.1.1 1 1.1 even 1 trivial