Properties

Label 4002.2.a.c
Level $4002$
Weight $2$
Character orbit 4002.a
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{10} - 3 q^{11} - q^{12} + q^{13} - 4 q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} + 6 q^{19} + q^{20} - 4 q^{21} + 3 q^{22} - q^{23} + q^{24} - 4 q^{25} - q^{26} - q^{27} + 4 q^{28} + q^{29} + q^{30} - q^{31} - q^{32} + 3 q^{33} - 6 q^{34} + 4 q^{35} + q^{36} + 3 q^{37} - 6 q^{38} - q^{39} - q^{40} + q^{41} + 4 q^{42} + 6 q^{43} - 3 q^{44} + q^{45} + q^{46} + 4 q^{47} - q^{48} + 9 q^{49} + 4 q^{50} - 6 q^{51} + q^{52} - 10 q^{53} + q^{54} - 3 q^{55} - 4 q^{56} - 6 q^{57} - q^{58} - 3 q^{59} - q^{60} + 7 q^{61} + q^{62} + 4 q^{63} + q^{64} + q^{65} - 3 q^{66} + 3 q^{67} + 6 q^{68} + q^{69} - 4 q^{70} + 9 q^{71} - q^{72} + 2 q^{73} - 3 q^{74} + 4 q^{75} + 6 q^{76} - 12 q^{77} + q^{78} + 12 q^{79} + q^{80} + q^{81} - q^{82} - 10 q^{83} - 4 q^{84} + 6 q^{85} - 6 q^{86} - q^{87} + 3 q^{88} + 12 q^{89} - q^{90} + 4 q^{91} - q^{92} + q^{93} - 4 q^{94} + 6 q^{95} + q^{96} - 6 q^{97} - 9 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 1.00000 1.00000 4.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(23\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4002.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4002.2.a.c 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4002))\):

\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T + 3 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T - 3 \) Copy content Toggle raw display
$41$ \( T - 1 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T + 3 \) Copy content Toggle raw display
$61$ \( T - 7 \) Copy content Toggle raw display
$67$ \( T - 3 \) Copy content Toggle raw display
$71$ \( T - 9 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 12 \) Copy content Toggle raw display
$83$ \( T + 10 \) Copy content Toggle raw display
$89$ \( T - 12 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less