Properties

Label 4002.2.a.bk.1.6
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 30x^{6} + 52x^{5} + 267x^{4} - 352x^{3} - 632x^{2} + 240x + 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.56063\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.56063 q^{5} -1.00000 q^{6} +3.94138 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.56063 q^{5} -1.00000 q^{6} +3.94138 q^{7} +1.00000 q^{8} +1.00000 q^{9} +2.56063 q^{10} +1.29902 q^{11} -1.00000 q^{12} -5.00113 q^{13} +3.94138 q^{14} -2.56063 q^{15} +1.00000 q^{16} +3.85966 q^{17} +1.00000 q^{18} +4.54152 q^{19} +2.56063 q^{20} -3.94138 q^{21} +1.29902 q^{22} -1.00000 q^{23} -1.00000 q^{24} +1.55684 q^{25} -5.00113 q^{26} -1.00000 q^{27} +3.94138 q^{28} -1.00000 q^{29} -2.56063 q^{30} +1.25832 q^{31} +1.00000 q^{32} -1.29902 q^{33} +3.85966 q^{34} +10.0924 q^{35} +1.00000 q^{36} +8.85699 q^{37} +4.54152 q^{38} +5.00113 q^{39} +2.56063 q^{40} -7.41434 q^{41} -3.94138 q^{42} -6.81438 q^{43} +1.29902 q^{44} +2.56063 q^{45} -1.00000 q^{46} +8.11911 q^{47} -1.00000 q^{48} +8.53447 q^{49} +1.55684 q^{50} -3.85966 q^{51} -5.00113 q^{52} +11.1325 q^{53} -1.00000 q^{54} +3.32632 q^{55} +3.94138 q^{56} -4.54152 q^{57} -1.00000 q^{58} -6.72787 q^{59} -2.56063 q^{60} +0.700976 q^{61} +1.25832 q^{62} +3.94138 q^{63} +1.00000 q^{64} -12.8061 q^{65} -1.29902 q^{66} -2.80720 q^{67} +3.85966 q^{68} +1.00000 q^{69} +10.0924 q^{70} +7.16777 q^{71} +1.00000 q^{72} -14.2751 q^{73} +8.85699 q^{74} -1.55684 q^{75} +4.54152 q^{76} +5.11995 q^{77} +5.00113 q^{78} +6.58464 q^{79} +2.56063 q^{80} +1.00000 q^{81} -7.41434 q^{82} -2.40118 q^{83} -3.94138 q^{84} +9.88316 q^{85} -6.81438 q^{86} +1.00000 q^{87} +1.29902 q^{88} -17.5887 q^{89} +2.56063 q^{90} -19.7114 q^{91} -1.00000 q^{92} -1.25832 q^{93} +8.11911 q^{94} +11.6292 q^{95} -1.00000 q^{96} -1.23989 q^{97} +8.53447 q^{98} +1.29902 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9} + 2 q^{10} + 3 q^{11} - 8 q^{12} + 13 q^{13} + 5 q^{14} - 2 q^{15} + 8 q^{16} + 5 q^{17} + 8 q^{18} + 7 q^{19} + 2 q^{20} - 5 q^{21} + 3 q^{22} - 8 q^{23} - 8 q^{24} + 24 q^{25} + 13 q^{26} - 8 q^{27} + 5 q^{28} - 8 q^{29} - 2 q^{30} + 15 q^{31} + 8 q^{32} - 3 q^{33} + 5 q^{34} + 9 q^{35} + 8 q^{36} + 22 q^{37} + 7 q^{38} - 13 q^{39} + 2 q^{40} - 8 q^{41} - 5 q^{42} - q^{43} + 3 q^{44} + 2 q^{45} - 8 q^{46} - 9 q^{47} - 8 q^{48} + 33 q^{49} + 24 q^{50} - 5 q^{51} + 13 q^{52} + 14 q^{53} - 8 q^{54} - 17 q^{55} + 5 q^{56} - 7 q^{57} - 8 q^{58} - 4 q^{59} - 2 q^{60} + 13 q^{61} + 15 q^{62} + 5 q^{63} + 8 q^{64} + 21 q^{65} - 3 q^{66} - 3 q^{67} + 5 q^{68} + 8 q^{69} + 9 q^{70} + 7 q^{71} + 8 q^{72} + 16 q^{73} + 22 q^{74} - 24 q^{75} + 7 q^{76} - 13 q^{78} + 14 q^{79} + 2 q^{80} + 8 q^{81} - 8 q^{82} + 36 q^{83} - 5 q^{84} + 47 q^{85} - q^{86} + 8 q^{87} + 3 q^{88} - 12 q^{89} + 2 q^{90} + 20 q^{91} - 8 q^{92} - 15 q^{93} - 9 q^{94} + 7 q^{95} - 8 q^{96} + 10 q^{97} + 33 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 2.56063 1.14515 0.572575 0.819853i \(-0.305945\pi\)
0.572575 + 0.819853i \(0.305945\pi\)
\(6\) −1.00000 −0.408248
\(7\) 3.94138 1.48970 0.744851 0.667231i \(-0.232521\pi\)
0.744851 + 0.667231i \(0.232521\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 2.56063 0.809743
\(11\) 1.29902 0.391670 0.195835 0.980637i \(-0.437258\pi\)
0.195835 + 0.980637i \(0.437258\pi\)
\(12\) −1.00000 −0.288675
\(13\) −5.00113 −1.38707 −0.693533 0.720425i \(-0.743947\pi\)
−0.693533 + 0.720425i \(0.743947\pi\)
\(14\) 3.94138 1.05338
\(15\) −2.56063 −0.661152
\(16\) 1.00000 0.250000
\(17\) 3.85966 0.936104 0.468052 0.883701i \(-0.344956\pi\)
0.468052 + 0.883701i \(0.344956\pi\)
\(18\) 1.00000 0.235702
\(19\) 4.54152 1.04190 0.520948 0.853588i \(-0.325579\pi\)
0.520948 + 0.853588i \(0.325579\pi\)
\(20\) 2.56063 0.572575
\(21\) −3.94138 −0.860079
\(22\) 1.29902 0.276953
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 1.55684 0.311367
\(26\) −5.00113 −0.980803
\(27\) −1.00000 −0.192450
\(28\) 3.94138 0.744851
\(29\) −1.00000 −0.185695
\(30\) −2.56063 −0.467505
\(31\) 1.25832 0.226001 0.113001 0.993595i \(-0.463954\pi\)
0.113001 + 0.993595i \(0.463954\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.29902 −0.226131
\(34\) 3.85966 0.661926
\(35\) 10.0924 1.70593
\(36\) 1.00000 0.166667
\(37\) 8.85699 1.45608 0.728040 0.685534i \(-0.240431\pi\)
0.728040 + 0.685534i \(0.240431\pi\)
\(38\) 4.54152 0.736732
\(39\) 5.00113 0.800822
\(40\) 2.56063 0.404871
\(41\) −7.41434 −1.15793 −0.578963 0.815354i \(-0.696542\pi\)
−0.578963 + 0.815354i \(0.696542\pi\)
\(42\) −3.94138 −0.608168
\(43\) −6.81438 −1.03918 −0.519592 0.854415i \(-0.673916\pi\)
−0.519592 + 0.854415i \(0.673916\pi\)
\(44\) 1.29902 0.195835
\(45\) 2.56063 0.381716
\(46\) −1.00000 −0.147442
\(47\) 8.11911 1.18429 0.592147 0.805830i \(-0.298280\pi\)
0.592147 + 0.805830i \(0.298280\pi\)
\(48\) −1.00000 −0.144338
\(49\) 8.53447 1.21921
\(50\) 1.55684 0.220170
\(51\) −3.85966 −0.540460
\(52\) −5.00113 −0.693533
\(53\) 11.1325 1.52916 0.764580 0.644528i \(-0.222946\pi\)
0.764580 + 0.644528i \(0.222946\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.32632 0.448521
\(56\) 3.94138 0.526689
\(57\) −4.54152 −0.601539
\(58\) −1.00000 −0.131306
\(59\) −6.72787 −0.875895 −0.437947 0.899001i \(-0.644294\pi\)
−0.437947 + 0.899001i \(0.644294\pi\)
\(60\) −2.56063 −0.330576
\(61\) 0.700976 0.0897508 0.0448754 0.998993i \(-0.485711\pi\)
0.0448754 + 0.998993i \(0.485711\pi\)
\(62\) 1.25832 0.159807
\(63\) 3.94138 0.496567
\(64\) 1.00000 0.125000
\(65\) −12.8061 −1.58840
\(66\) −1.29902 −0.159899
\(67\) −2.80720 −0.342954 −0.171477 0.985188i \(-0.554854\pi\)
−0.171477 + 0.985188i \(0.554854\pi\)
\(68\) 3.85966 0.468052
\(69\) 1.00000 0.120386
\(70\) 10.0924 1.20627
\(71\) 7.16777 0.850658 0.425329 0.905039i \(-0.360158\pi\)
0.425329 + 0.905039i \(0.360158\pi\)
\(72\) 1.00000 0.117851
\(73\) −14.2751 −1.67078 −0.835389 0.549659i \(-0.814757\pi\)
−0.835389 + 0.549659i \(0.814757\pi\)
\(74\) 8.85699 1.02960
\(75\) −1.55684 −0.179768
\(76\) 4.54152 0.520948
\(77\) 5.11995 0.583472
\(78\) 5.00113 0.566267
\(79\) 6.58464 0.740830 0.370415 0.928866i \(-0.379215\pi\)
0.370415 + 0.928866i \(0.379215\pi\)
\(80\) 2.56063 0.286287
\(81\) 1.00000 0.111111
\(82\) −7.41434 −0.818777
\(83\) −2.40118 −0.263563 −0.131782 0.991279i \(-0.542070\pi\)
−0.131782 + 0.991279i \(0.542070\pi\)
\(84\) −3.94138 −0.430040
\(85\) 9.88316 1.07198
\(86\) −6.81438 −0.734814
\(87\) 1.00000 0.107211
\(88\) 1.29902 0.138476
\(89\) −17.5887 −1.86439 −0.932197 0.361950i \(-0.882111\pi\)
−0.932197 + 0.361950i \(0.882111\pi\)
\(90\) 2.56063 0.269914
\(91\) −19.7114 −2.06631
\(92\) −1.00000 −0.104257
\(93\) −1.25832 −0.130482
\(94\) 8.11911 0.837422
\(95\) 11.6292 1.19313
\(96\) −1.00000 −0.102062
\(97\) −1.23989 −0.125892 −0.0629460 0.998017i \(-0.520050\pi\)
−0.0629460 + 0.998017i \(0.520050\pi\)
\(98\) 8.53447 0.862111
\(99\) 1.29902 0.130557
\(100\) 1.55684 0.155684
\(101\) 6.11583 0.608547 0.304274 0.952585i \(-0.401586\pi\)
0.304274 + 0.952585i \(0.401586\pi\)
\(102\) −3.85966 −0.382163
\(103\) −13.6082 −1.34085 −0.670427 0.741976i \(-0.733889\pi\)
−0.670427 + 0.741976i \(0.733889\pi\)
\(104\) −5.00113 −0.490402
\(105\) −10.0924 −0.984919
\(106\) 11.1325 1.08128
\(107\) −13.2818 −1.28400 −0.641999 0.766705i \(-0.721895\pi\)
−0.641999 + 0.766705i \(0.721895\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 7.74423 0.741763 0.370881 0.928680i \(-0.379056\pi\)
0.370881 + 0.928680i \(0.379056\pi\)
\(110\) 3.32632 0.317152
\(111\) −8.85699 −0.840669
\(112\) 3.94138 0.372425
\(113\) 4.72818 0.444790 0.222395 0.974957i \(-0.428613\pi\)
0.222395 + 0.974957i \(0.428613\pi\)
\(114\) −4.54152 −0.425352
\(115\) −2.56063 −0.238780
\(116\) −1.00000 −0.0928477
\(117\) −5.00113 −0.462355
\(118\) −6.72787 −0.619351
\(119\) 15.2124 1.39452
\(120\) −2.56063 −0.233753
\(121\) −9.31254 −0.846594
\(122\) 0.700976 0.0634634
\(123\) 7.41434 0.668528
\(124\) 1.25832 0.113001
\(125\) −8.81668 −0.788588
\(126\) 3.94138 0.351126
\(127\) −0.512958 −0.0455176 −0.0227588 0.999741i \(-0.507245\pi\)
−0.0227588 + 0.999741i \(0.507245\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.81438 0.599973
\(130\) −12.8061 −1.12317
\(131\) −0.622867 −0.0544201 −0.0272101 0.999630i \(-0.508662\pi\)
−0.0272101 + 0.999630i \(0.508662\pi\)
\(132\) −1.29902 −0.113066
\(133\) 17.8999 1.55211
\(134\) −2.80720 −0.242505
\(135\) −2.56063 −0.220384
\(136\) 3.85966 0.330963
\(137\) 8.58464 0.733436 0.366718 0.930332i \(-0.380481\pi\)
0.366718 + 0.930332i \(0.380481\pi\)
\(138\) 1.00000 0.0851257
\(139\) 10.9010 0.924609 0.462305 0.886721i \(-0.347023\pi\)
0.462305 + 0.886721i \(0.347023\pi\)
\(140\) 10.0924 0.852965
\(141\) −8.11911 −0.683753
\(142\) 7.16777 0.601506
\(143\) −6.49659 −0.543273
\(144\) 1.00000 0.0833333
\(145\) −2.56063 −0.212649
\(146\) −14.2751 −1.18142
\(147\) −8.53447 −0.703911
\(148\) 8.85699 0.728040
\(149\) 5.97382 0.489394 0.244697 0.969600i \(-0.421311\pi\)
0.244697 + 0.969600i \(0.421311\pi\)
\(150\) −1.55684 −0.127115
\(151\) 14.3537 1.16809 0.584046 0.811721i \(-0.301469\pi\)
0.584046 + 0.811721i \(0.301469\pi\)
\(152\) 4.54152 0.368366
\(153\) 3.85966 0.312035
\(154\) 5.11995 0.412577
\(155\) 3.22210 0.258805
\(156\) 5.00113 0.400411
\(157\) 7.11639 0.567949 0.283975 0.958832i \(-0.408347\pi\)
0.283975 + 0.958832i \(0.408347\pi\)
\(158\) 6.58464 0.523846
\(159\) −11.1325 −0.882861
\(160\) 2.56063 0.202436
\(161\) −3.94138 −0.310624
\(162\) 1.00000 0.0785674
\(163\) −6.23792 −0.488592 −0.244296 0.969701i \(-0.578557\pi\)
−0.244296 + 0.969701i \(0.578557\pi\)
\(164\) −7.41434 −0.578963
\(165\) −3.32632 −0.258954
\(166\) −2.40118 −0.186367
\(167\) −3.11626 −0.241143 −0.120572 0.992705i \(-0.538473\pi\)
−0.120572 + 0.992705i \(0.538473\pi\)
\(168\) −3.94138 −0.304084
\(169\) 12.0113 0.923950
\(170\) 9.88316 0.758004
\(171\) 4.54152 0.347299
\(172\) −6.81438 −0.519592
\(173\) 15.3688 1.16847 0.584234 0.811585i \(-0.301395\pi\)
0.584234 + 0.811585i \(0.301395\pi\)
\(174\) 1.00000 0.0758098
\(175\) 6.13608 0.463844
\(176\) 1.29902 0.0979176
\(177\) 6.72787 0.505698
\(178\) −17.5887 −1.31833
\(179\) −15.2408 −1.13915 −0.569575 0.821940i \(-0.692892\pi\)
−0.569575 + 0.821940i \(0.692892\pi\)
\(180\) 2.56063 0.190858
\(181\) −6.99922 −0.520248 −0.260124 0.965575i \(-0.583763\pi\)
−0.260124 + 0.965575i \(0.583763\pi\)
\(182\) −19.7114 −1.46110
\(183\) −0.700976 −0.0518176
\(184\) −1.00000 −0.0737210
\(185\) 22.6795 1.66743
\(186\) −1.25832 −0.0922646
\(187\) 5.01379 0.366644
\(188\) 8.11911 0.592147
\(189\) −3.94138 −0.286693
\(190\) 11.6292 0.843668
\(191\) −18.9929 −1.37428 −0.687139 0.726526i \(-0.741134\pi\)
−0.687139 + 0.726526i \(0.741134\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −13.0004 −0.935788 −0.467894 0.883785i \(-0.654987\pi\)
−0.467894 + 0.883785i \(0.654987\pi\)
\(194\) −1.23989 −0.0890191
\(195\) 12.8061 0.917061
\(196\) 8.53447 0.609605
\(197\) −9.44605 −0.673003 −0.336502 0.941683i \(-0.609244\pi\)
−0.336502 + 0.941683i \(0.609244\pi\)
\(198\) 1.29902 0.0923176
\(199\) 25.1472 1.78264 0.891320 0.453374i \(-0.149780\pi\)
0.891320 + 0.453374i \(0.149780\pi\)
\(200\) 1.55684 0.110085
\(201\) 2.80720 0.198005
\(202\) 6.11583 0.430308
\(203\) −3.94138 −0.276631
\(204\) −3.85966 −0.270230
\(205\) −18.9854 −1.32600
\(206\) −13.6082 −0.948127
\(207\) −1.00000 −0.0695048
\(208\) −5.00113 −0.346766
\(209\) 5.89954 0.408080
\(210\) −10.0924 −0.696443
\(211\) 12.9638 0.892467 0.446233 0.894917i \(-0.352765\pi\)
0.446233 + 0.894917i \(0.352765\pi\)
\(212\) 11.1325 0.764580
\(213\) −7.16777 −0.491128
\(214\) −13.2818 −0.907924
\(215\) −17.4491 −1.19002
\(216\) −1.00000 −0.0680414
\(217\) 4.95952 0.336674
\(218\) 7.74423 0.524505
\(219\) 14.2751 0.964624
\(220\) 3.32632 0.224261
\(221\) −19.3027 −1.29844
\(222\) −8.85699 −0.594443
\(223\) 9.95293 0.666497 0.333249 0.942839i \(-0.391855\pi\)
0.333249 + 0.942839i \(0.391855\pi\)
\(224\) 3.94138 0.263344
\(225\) 1.55684 0.103789
\(226\) 4.72818 0.314514
\(227\) 7.74988 0.514378 0.257189 0.966361i \(-0.417204\pi\)
0.257189 + 0.966361i \(0.417204\pi\)
\(228\) −4.54152 −0.300770
\(229\) 17.1578 1.13382 0.566908 0.823781i \(-0.308139\pi\)
0.566908 + 0.823781i \(0.308139\pi\)
\(230\) −2.56063 −0.168843
\(231\) −5.11995 −0.336868
\(232\) −1.00000 −0.0656532
\(233\) 2.97688 0.195022 0.0975109 0.995234i \(-0.468912\pi\)
0.0975109 + 0.995234i \(0.468912\pi\)
\(234\) −5.00113 −0.326934
\(235\) 20.7901 1.35619
\(236\) −6.72787 −0.437947
\(237\) −6.58464 −0.427719
\(238\) 15.2124 0.986071
\(239\) 7.01362 0.453674 0.226837 0.973933i \(-0.427162\pi\)
0.226837 + 0.973933i \(0.427162\pi\)
\(240\) −2.56063 −0.165288
\(241\) −26.3107 −1.69482 −0.847411 0.530937i \(-0.821840\pi\)
−0.847411 + 0.530937i \(0.821840\pi\)
\(242\) −9.31254 −0.598633
\(243\) −1.00000 −0.0641500
\(244\) 0.700976 0.0448754
\(245\) 21.8536 1.39618
\(246\) 7.41434 0.472721
\(247\) −22.7128 −1.44518
\(248\) 1.25832 0.0799035
\(249\) 2.40118 0.152168
\(250\) −8.81668 −0.557616
\(251\) −30.3765 −1.91735 −0.958674 0.284507i \(-0.908170\pi\)
−0.958674 + 0.284507i \(0.908170\pi\)
\(252\) 3.94138 0.248284
\(253\) −1.29902 −0.0816689
\(254\) −0.512958 −0.0321858
\(255\) −9.88316 −0.618907
\(256\) 1.00000 0.0625000
\(257\) 13.1573 0.820727 0.410363 0.911922i \(-0.365402\pi\)
0.410363 + 0.911922i \(0.365402\pi\)
\(258\) 6.81438 0.424245
\(259\) 34.9088 2.16913
\(260\) −12.8061 −0.794198
\(261\) −1.00000 −0.0618984
\(262\) −0.622867 −0.0384809
\(263\) −21.8819 −1.34930 −0.674649 0.738139i \(-0.735705\pi\)
−0.674649 + 0.738139i \(0.735705\pi\)
\(264\) −1.29902 −0.0799494
\(265\) 28.5061 1.75112
\(266\) 17.8999 1.09751
\(267\) 17.5887 1.07641
\(268\) −2.80720 −0.171477
\(269\) 2.55644 0.155869 0.0779343 0.996958i \(-0.475168\pi\)
0.0779343 + 0.996958i \(0.475168\pi\)
\(270\) −2.56063 −0.155835
\(271\) −0.612404 −0.0372009 −0.0186005 0.999827i \(-0.505921\pi\)
−0.0186005 + 0.999827i \(0.505921\pi\)
\(272\) 3.85966 0.234026
\(273\) 19.7114 1.19299
\(274\) 8.58464 0.518617
\(275\) 2.02237 0.121953
\(276\) 1.00000 0.0601929
\(277\) 11.1060 0.667298 0.333649 0.942697i \(-0.391720\pi\)
0.333649 + 0.942697i \(0.391720\pi\)
\(278\) 10.9010 0.653797
\(279\) 1.25832 0.0753337
\(280\) 10.0924 0.603137
\(281\) 23.8468 1.42258 0.711290 0.702899i \(-0.248111\pi\)
0.711290 + 0.702899i \(0.248111\pi\)
\(282\) −8.11911 −0.483486
\(283\) 17.1729 1.02082 0.510411 0.859931i \(-0.329493\pi\)
0.510411 + 0.859931i \(0.329493\pi\)
\(284\) 7.16777 0.425329
\(285\) −11.6292 −0.688852
\(286\) −6.49659 −0.384152
\(287\) −29.2227 −1.72496
\(288\) 1.00000 0.0589256
\(289\) −2.10306 −0.123709
\(290\) −2.56063 −0.150365
\(291\) 1.23989 0.0726838
\(292\) −14.2751 −0.835389
\(293\) 1.70479 0.0995951 0.0497976 0.998759i \(-0.484142\pi\)
0.0497976 + 0.998759i \(0.484142\pi\)
\(294\) −8.53447 −0.497740
\(295\) −17.2276 −1.00303
\(296\) 8.85699 0.514802
\(297\) −1.29902 −0.0753770
\(298\) 5.97382 0.346054
\(299\) 5.00113 0.289223
\(300\) −1.55684 −0.0898839
\(301\) −26.8581 −1.54807
\(302\) 14.3537 0.825965
\(303\) −6.11583 −0.351345
\(304\) 4.54152 0.260474
\(305\) 1.79494 0.102778
\(306\) 3.85966 0.220642
\(307\) 13.7302 0.783625 0.391813 0.920045i \(-0.371848\pi\)
0.391813 + 0.920045i \(0.371848\pi\)
\(308\) 5.11995 0.291736
\(309\) 13.6082 0.774142
\(310\) 3.22210 0.183003
\(311\) 4.72949 0.268185 0.134092 0.990969i \(-0.457188\pi\)
0.134092 + 0.990969i \(0.457188\pi\)
\(312\) 5.00113 0.283133
\(313\) 6.76189 0.382205 0.191102 0.981570i \(-0.438794\pi\)
0.191102 + 0.981570i \(0.438794\pi\)
\(314\) 7.11639 0.401601
\(315\) 10.0924 0.568643
\(316\) 6.58464 0.370415
\(317\) 13.7503 0.772294 0.386147 0.922437i \(-0.373806\pi\)
0.386147 + 0.922437i \(0.373806\pi\)
\(318\) −11.1325 −0.624277
\(319\) −1.29902 −0.0727314
\(320\) 2.56063 0.143144
\(321\) 13.2818 0.741317
\(322\) −3.94138 −0.219644
\(323\) 17.5287 0.975323
\(324\) 1.00000 0.0555556
\(325\) −7.78594 −0.431886
\(326\) −6.23792 −0.345487
\(327\) −7.74423 −0.428257
\(328\) −7.41434 −0.409388
\(329\) 32.0005 1.76424
\(330\) −3.32632 −0.183108
\(331\) −22.6054 −1.24251 −0.621253 0.783610i \(-0.713376\pi\)
−0.621253 + 0.783610i \(0.713376\pi\)
\(332\) −2.40118 −0.131782
\(333\) 8.85699 0.485360
\(334\) −3.11626 −0.170514
\(335\) −7.18820 −0.392734
\(336\) −3.94138 −0.215020
\(337\) 4.69618 0.255817 0.127909 0.991786i \(-0.459174\pi\)
0.127909 + 0.991786i \(0.459174\pi\)
\(338\) 12.0113 0.653331
\(339\) −4.72818 −0.256799
\(340\) 9.88316 0.535989
\(341\) 1.63459 0.0885180
\(342\) 4.54152 0.245577
\(343\) 6.04792 0.326557
\(344\) −6.81438 −0.367407
\(345\) 2.56063 0.137860
\(346\) 15.3688 0.826231
\(347\) −21.1535 −1.13558 −0.567789 0.823174i \(-0.692201\pi\)
−0.567789 + 0.823174i \(0.692201\pi\)
\(348\) 1.00000 0.0536056
\(349\) 25.0918 1.34314 0.671568 0.740943i \(-0.265621\pi\)
0.671568 + 0.740943i \(0.265621\pi\)
\(350\) 6.13608 0.327987
\(351\) 5.00113 0.266941
\(352\) 1.29902 0.0692382
\(353\) 27.9371 1.48694 0.743471 0.668768i \(-0.233178\pi\)
0.743471 + 0.668768i \(0.233178\pi\)
\(354\) 6.72787 0.357583
\(355\) 18.3540 0.974130
\(356\) −17.5887 −0.932197
\(357\) −15.2124 −0.805124
\(358\) −15.2408 −0.805500
\(359\) −18.6367 −0.983607 −0.491803 0.870706i \(-0.663662\pi\)
−0.491803 + 0.870706i \(0.663662\pi\)
\(360\) 2.56063 0.134957
\(361\) 1.62541 0.0855477
\(362\) −6.99922 −0.367871
\(363\) 9.31254 0.488781
\(364\) −19.7114 −1.03316
\(365\) −36.5534 −1.91329
\(366\) −0.700976 −0.0366406
\(367\) −20.3576 −1.06266 −0.531329 0.847166i \(-0.678307\pi\)
−0.531329 + 0.847166i \(0.678307\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −7.41434 −0.385975
\(370\) 22.6795 1.17905
\(371\) 43.8772 2.27799
\(372\) −1.25832 −0.0652409
\(373\) 1.36257 0.0705514 0.0352757 0.999378i \(-0.488769\pi\)
0.0352757 + 0.999378i \(0.488769\pi\)
\(374\) 5.01379 0.259257
\(375\) 8.81668 0.455291
\(376\) 8.11911 0.418711
\(377\) 5.00113 0.257572
\(378\) −3.94138 −0.202723
\(379\) −15.7149 −0.807221 −0.403610 0.914931i \(-0.632245\pi\)
−0.403610 + 0.914931i \(0.632245\pi\)
\(380\) 11.6292 0.596563
\(381\) 0.512958 0.0262796
\(382\) −18.9929 −0.971761
\(383\) 5.85118 0.298981 0.149491 0.988763i \(-0.452237\pi\)
0.149491 + 0.988763i \(0.452237\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 13.1103 0.668163
\(386\) −13.0004 −0.661702
\(387\) −6.81438 −0.346394
\(388\) −1.23989 −0.0629460
\(389\) 29.1921 1.48010 0.740050 0.672552i \(-0.234802\pi\)
0.740050 + 0.672552i \(0.234802\pi\)
\(390\) 12.8061 0.648460
\(391\) −3.85966 −0.195191
\(392\) 8.53447 0.431056
\(393\) 0.622867 0.0314195
\(394\) −9.44605 −0.475885
\(395\) 16.8608 0.848361
\(396\) 1.29902 0.0652784
\(397\) 28.3701 1.42386 0.711928 0.702252i \(-0.247822\pi\)
0.711928 + 0.702252i \(0.247822\pi\)
\(398\) 25.1472 1.26052
\(399\) −17.8999 −0.896113
\(400\) 1.55684 0.0778418
\(401\) 11.3449 0.566536 0.283268 0.959041i \(-0.408581\pi\)
0.283268 + 0.959041i \(0.408581\pi\)
\(402\) 2.80720 0.140010
\(403\) −6.29304 −0.313478
\(404\) 6.11583 0.304274
\(405\) 2.56063 0.127239
\(406\) −3.94138 −0.195607
\(407\) 11.5054 0.570304
\(408\) −3.85966 −0.191081
\(409\) −38.5468 −1.90602 −0.953008 0.302946i \(-0.902030\pi\)
−0.953008 + 0.302946i \(0.902030\pi\)
\(410\) −18.9854 −0.937622
\(411\) −8.58464 −0.423449
\(412\) −13.6082 −0.670427
\(413\) −26.5171 −1.30482
\(414\) −1.00000 −0.0491473
\(415\) −6.14853 −0.301819
\(416\) −5.00113 −0.245201
\(417\) −10.9010 −0.533823
\(418\) 5.89954 0.288556
\(419\) −22.8817 −1.11784 −0.558921 0.829221i \(-0.688785\pi\)
−0.558921 + 0.829221i \(0.688785\pi\)
\(420\) −10.0924 −0.492460
\(421\) 31.0742 1.51447 0.757233 0.653145i \(-0.226551\pi\)
0.757233 + 0.653145i \(0.226551\pi\)
\(422\) 12.9638 0.631069
\(423\) 8.11911 0.394765
\(424\) 11.1325 0.540640
\(425\) 6.00885 0.291472
\(426\) −7.16777 −0.347280
\(427\) 2.76281 0.133702
\(428\) −13.2818 −0.641999
\(429\) 6.49659 0.313659
\(430\) −17.4491 −0.841471
\(431\) −31.6300 −1.52356 −0.761781 0.647835i \(-0.775675\pi\)
−0.761781 + 0.647835i \(0.775675\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 0.715152 0.0343680 0.0171840 0.999852i \(-0.494530\pi\)
0.0171840 + 0.999852i \(0.494530\pi\)
\(434\) 4.95952 0.238065
\(435\) 2.56063 0.122773
\(436\) 7.74423 0.370881
\(437\) −4.54152 −0.217250
\(438\) 14.2751 0.682092
\(439\) −10.1649 −0.485145 −0.242572 0.970133i \(-0.577991\pi\)
−0.242572 + 0.970133i \(0.577991\pi\)
\(440\) 3.32632 0.158576
\(441\) 8.53447 0.406403
\(442\) −19.3027 −0.918134
\(443\) −25.5952 −1.21607 −0.608033 0.793912i \(-0.708041\pi\)
−0.608033 + 0.793912i \(0.708041\pi\)
\(444\) −8.85699 −0.420334
\(445\) −45.0381 −2.13501
\(446\) 9.95293 0.471285
\(447\) −5.97382 −0.282552
\(448\) 3.94138 0.186213
\(449\) −30.0523 −1.41826 −0.709129 0.705079i \(-0.750911\pi\)
−0.709129 + 0.705079i \(0.750911\pi\)
\(450\) 1.55684 0.0733899
\(451\) −9.63141 −0.453525
\(452\) 4.72818 0.222395
\(453\) −14.3537 −0.674398
\(454\) 7.74988 0.363720
\(455\) −50.4736 −2.36624
\(456\) −4.54152 −0.212676
\(457\) −29.9139 −1.39931 −0.699656 0.714480i \(-0.746664\pi\)
−0.699656 + 0.714480i \(0.746664\pi\)
\(458\) 17.1578 0.801729
\(459\) −3.85966 −0.180153
\(460\) −2.56063 −0.119390
\(461\) −8.87221 −0.413220 −0.206610 0.978423i \(-0.566243\pi\)
−0.206610 + 0.978423i \(0.566243\pi\)
\(462\) −5.11995 −0.238201
\(463\) −21.9219 −1.01880 −0.509399 0.860530i \(-0.670132\pi\)
−0.509399 + 0.860530i \(0.670132\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −3.22210 −0.149421
\(466\) 2.97688 0.137901
\(467\) 7.40897 0.342846 0.171423 0.985197i \(-0.445163\pi\)
0.171423 + 0.985197i \(0.445163\pi\)
\(468\) −5.00113 −0.231178
\(469\) −11.0642 −0.510899
\(470\) 20.7901 0.958974
\(471\) −7.11639 −0.327906
\(472\) −6.72787 −0.309676
\(473\) −8.85204 −0.407017
\(474\) −6.58464 −0.302443
\(475\) 7.07040 0.324412
\(476\) 15.2124 0.697258
\(477\) 11.1325 0.509720
\(478\) 7.01362 0.320796
\(479\) 1.09797 0.0501673 0.0250837 0.999685i \(-0.492015\pi\)
0.0250837 + 0.999685i \(0.492015\pi\)
\(480\) −2.56063 −0.116876
\(481\) −44.2950 −2.01968
\(482\) −26.3107 −1.19842
\(483\) 3.94138 0.179339
\(484\) −9.31254 −0.423297
\(485\) −3.17491 −0.144165
\(486\) −1.00000 −0.0453609
\(487\) 13.8183 0.626167 0.313084 0.949726i \(-0.398638\pi\)
0.313084 + 0.949726i \(0.398638\pi\)
\(488\) 0.700976 0.0317317
\(489\) 6.23792 0.282089
\(490\) 21.8536 0.987246
\(491\) −9.28961 −0.419234 −0.209617 0.977784i \(-0.567222\pi\)
−0.209617 + 0.977784i \(0.567222\pi\)
\(492\) 7.41434 0.334264
\(493\) −3.85966 −0.173830
\(494\) −22.7128 −1.02190
\(495\) 3.32632 0.149507
\(496\) 1.25832 0.0565003
\(497\) 28.2509 1.26723
\(498\) 2.40118 0.107599
\(499\) 35.2253 1.57690 0.788451 0.615098i \(-0.210883\pi\)
0.788451 + 0.615098i \(0.210883\pi\)
\(500\) −8.81668 −0.394294
\(501\) 3.11626 0.139224
\(502\) −30.3765 −1.35577
\(503\) −7.45977 −0.332615 −0.166307 0.986074i \(-0.553184\pi\)
−0.166307 + 0.986074i \(0.553184\pi\)
\(504\) 3.94138 0.175563
\(505\) 15.6604 0.696878
\(506\) −1.29902 −0.0577487
\(507\) −12.0113 −0.533443
\(508\) −0.512958 −0.0227588
\(509\) −36.3148 −1.60962 −0.804812 0.593530i \(-0.797734\pi\)
−0.804812 + 0.593530i \(0.797734\pi\)
\(510\) −9.88316 −0.437634
\(511\) −56.2637 −2.48896
\(512\) 1.00000 0.0441942
\(513\) −4.54152 −0.200513
\(514\) 13.1573 0.580342
\(515\) −34.8455 −1.53548
\(516\) 6.81438 0.299986
\(517\) 10.5469 0.463853
\(518\) 34.9088 1.53380
\(519\) −15.3688 −0.674615
\(520\) −12.8061 −0.561583
\(521\) −33.9926 −1.48924 −0.744621 0.667487i \(-0.767370\pi\)
−0.744621 + 0.667487i \(0.767370\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −15.4643 −0.676206 −0.338103 0.941109i \(-0.609785\pi\)
−0.338103 + 0.941109i \(0.609785\pi\)
\(524\) −0.622867 −0.0272101
\(525\) −6.13608 −0.267800
\(526\) −21.8819 −0.954097
\(527\) 4.85669 0.211561
\(528\) −1.29902 −0.0565328
\(529\) 1.00000 0.0434783
\(530\) 28.5061 1.23823
\(531\) −6.72787 −0.291965
\(532\) 17.8999 0.776057
\(533\) 37.0801 1.60612
\(534\) 17.5887 0.761136
\(535\) −34.0098 −1.47037
\(536\) −2.80720 −0.121253
\(537\) 15.2408 0.657688
\(538\) 2.55644 0.110216
\(539\) 11.0865 0.477528
\(540\) −2.56063 −0.110192
\(541\) −22.4469 −0.965067 −0.482533 0.875878i \(-0.660283\pi\)
−0.482533 + 0.875878i \(0.660283\pi\)
\(542\) −0.612404 −0.0263050
\(543\) 6.99922 0.300365
\(544\) 3.85966 0.165481
\(545\) 19.8301 0.849429
\(546\) 19.7114 0.843569
\(547\) 12.5043 0.534646 0.267323 0.963607i \(-0.413861\pi\)
0.267323 + 0.963607i \(0.413861\pi\)
\(548\) 8.58464 0.366718
\(549\) 0.700976 0.0299169
\(550\) 2.02237 0.0862340
\(551\) −4.54152 −0.193475
\(552\) 1.00000 0.0425628
\(553\) 25.9526 1.10362
\(554\) 11.1060 0.471851
\(555\) −22.6795 −0.962691
\(556\) 10.9010 0.462305
\(557\) 25.8404 1.09489 0.547446 0.836841i \(-0.315600\pi\)
0.547446 + 0.836841i \(0.315600\pi\)
\(558\) 1.25832 0.0532690
\(559\) 34.0796 1.44142
\(560\) 10.0924 0.426483
\(561\) −5.01379 −0.211682
\(562\) 23.8468 1.00592
\(563\) −38.6286 −1.62800 −0.814000 0.580865i \(-0.802714\pi\)
−0.814000 + 0.580865i \(0.802714\pi\)
\(564\) −8.11911 −0.341876
\(565\) 12.1071 0.509351
\(566\) 17.1729 0.721830
\(567\) 3.94138 0.165522
\(568\) 7.16777 0.300753
\(569\) 26.0031 1.09011 0.545054 0.838401i \(-0.316509\pi\)
0.545054 + 0.838401i \(0.316509\pi\)
\(570\) −11.6292 −0.487092
\(571\) 39.9500 1.67186 0.835928 0.548840i \(-0.184930\pi\)
0.835928 + 0.548840i \(0.184930\pi\)
\(572\) −6.49659 −0.271636
\(573\) 18.9929 0.793440
\(574\) −29.2227 −1.21973
\(575\) −1.55684 −0.0649245
\(576\) 1.00000 0.0416667
\(577\) 21.8814 0.910934 0.455467 0.890253i \(-0.349472\pi\)
0.455467 + 0.890253i \(0.349472\pi\)
\(578\) −2.10306 −0.0874756
\(579\) 13.0004 0.540277
\(580\) −2.56063 −0.106324
\(581\) −9.46394 −0.392631
\(582\) 1.23989 0.0513952
\(583\) 14.4613 0.598927
\(584\) −14.2751 −0.590709
\(585\) −12.8061 −0.529466
\(586\) 1.70479 0.0704244
\(587\) −7.13618 −0.294542 −0.147271 0.989096i \(-0.547049\pi\)
−0.147271 + 0.989096i \(0.547049\pi\)
\(588\) −8.53447 −0.351956
\(589\) 5.71469 0.235470
\(590\) −17.2276 −0.709249
\(591\) 9.44605 0.388559
\(592\) 8.85699 0.364020
\(593\) −1.09241 −0.0448598 −0.0224299 0.999748i \(-0.507140\pi\)
−0.0224299 + 0.999748i \(0.507140\pi\)
\(594\) −1.29902 −0.0532996
\(595\) 38.9533 1.59693
\(596\) 5.97382 0.244697
\(597\) −25.1472 −1.02921
\(598\) 5.00113 0.204512
\(599\) 7.88408 0.322135 0.161067 0.986943i \(-0.448506\pi\)
0.161067 + 0.986943i \(0.448506\pi\)
\(600\) −1.55684 −0.0635575
\(601\) 20.8136 0.849004 0.424502 0.905427i \(-0.360449\pi\)
0.424502 + 0.905427i \(0.360449\pi\)
\(602\) −26.8581 −1.09465
\(603\) −2.80720 −0.114318
\(604\) 14.3537 0.584046
\(605\) −23.8460 −0.969477
\(606\) −6.11583 −0.248438
\(607\) −15.0359 −0.610289 −0.305144 0.952306i \(-0.598705\pi\)
−0.305144 + 0.952306i \(0.598705\pi\)
\(608\) 4.54152 0.184183
\(609\) 3.94138 0.159713
\(610\) 1.79494 0.0726750
\(611\) −40.6048 −1.64269
\(612\) 3.85966 0.156017
\(613\) 17.0601 0.689053 0.344526 0.938777i \(-0.388040\pi\)
0.344526 + 0.938777i \(0.388040\pi\)
\(614\) 13.7302 0.554107
\(615\) 18.9854 0.765565
\(616\) 5.11995 0.206289
\(617\) −33.0478 −1.33045 −0.665226 0.746642i \(-0.731665\pi\)
−0.665226 + 0.746642i \(0.731665\pi\)
\(618\) 13.6082 0.547401
\(619\) −4.28930 −0.172401 −0.0862007 0.996278i \(-0.527473\pi\)
−0.0862007 + 0.996278i \(0.527473\pi\)
\(620\) 3.22210 0.129403
\(621\) 1.00000 0.0401286
\(622\) 4.72949 0.189635
\(623\) −69.3236 −2.77739
\(624\) 5.00113 0.200206
\(625\) −30.3604 −1.21442
\(626\) 6.76189 0.270260
\(627\) −5.89954 −0.235605
\(628\) 7.11639 0.283975
\(629\) 34.1849 1.36304
\(630\) 10.0924 0.402092
\(631\) −17.9790 −0.715733 −0.357867 0.933773i \(-0.616496\pi\)
−0.357867 + 0.933773i \(0.616496\pi\)
\(632\) 6.58464 0.261923
\(633\) −12.9638 −0.515266
\(634\) 13.7503 0.546094
\(635\) −1.31350 −0.0521245
\(636\) −11.1325 −0.441431
\(637\) −42.6820 −1.69112
\(638\) −1.29902 −0.0514289
\(639\) 7.16777 0.283553
\(640\) 2.56063 0.101218
\(641\) −15.6214 −0.617009 −0.308505 0.951223i \(-0.599829\pi\)
−0.308505 + 0.951223i \(0.599829\pi\)
\(642\) 13.2818 0.524190
\(643\) −29.8162 −1.17583 −0.587917 0.808921i \(-0.700052\pi\)
−0.587917 + 0.808921i \(0.700052\pi\)
\(644\) −3.94138 −0.155312
\(645\) 17.4491 0.687058
\(646\) 17.5287 0.689658
\(647\) −39.7274 −1.56184 −0.780922 0.624629i \(-0.785250\pi\)
−0.780922 + 0.624629i \(0.785250\pi\)
\(648\) 1.00000 0.0392837
\(649\) −8.73967 −0.343062
\(650\) −7.78594 −0.305390
\(651\) −4.95952 −0.194379
\(652\) −6.23792 −0.244296
\(653\) −2.78743 −0.109081 −0.0545403 0.998512i \(-0.517369\pi\)
−0.0545403 + 0.998512i \(0.517369\pi\)
\(654\) −7.74423 −0.302823
\(655\) −1.59493 −0.0623192
\(656\) −7.41434 −0.289481
\(657\) −14.2751 −0.556926
\(658\) 32.0005 1.24751
\(659\) −25.2988 −0.985500 −0.492750 0.870171i \(-0.664008\pi\)
−0.492750 + 0.870171i \(0.664008\pi\)
\(660\) −3.32632 −0.129477
\(661\) 13.3248 0.518275 0.259138 0.965840i \(-0.416562\pi\)
0.259138 + 0.965840i \(0.416562\pi\)
\(662\) −22.6054 −0.878585
\(663\) 19.3027 0.749653
\(664\) −2.40118 −0.0931837
\(665\) 45.8349 1.77740
\(666\) 8.85699 0.343202
\(667\) 1.00000 0.0387202
\(668\) −3.11626 −0.120572
\(669\) −9.95293 −0.384802
\(670\) −7.18820 −0.277705
\(671\) 0.910585 0.0351527
\(672\) −3.94138 −0.152042
\(673\) 23.4342 0.903320 0.451660 0.892190i \(-0.350832\pi\)
0.451660 + 0.892190i \(0.350832\pi\)
\(674\) 4.69618 0.180890
\(675\) −1.55684 −0.0599226
\(676\) 12.0113 0.461975
\(677\) −40.3000 −1.54886 −0.774428 0.632663i \(-0.781962\pi\)
−0.774428 + 0.632663i \(0.781962\pi\)
\(678\) −4.72818 −0.181585
\(679\) −4.88689 −0.187541
\(680\) 9.88316 0.379002
\(681\) −7.74988 −0.296976
\(682\) 1.63459 0.0625917
\(683\) −6.93127 −0.265218 −0.132609 0.991168i \(-0.542335\pi\)
−0.132609 + 0.991168i \(0.542335\pi\)
\(684\) 4.54152 0.173649
\(685\) 21.9821 0.839893
\(686\) 6.04792 0.230911
\(687\) −17.1578 −0.654609
\(688\) −6.81438 −0.259796
\(689\) −55.6749 −2.12105
\(690\) 2.56063 0.0974816
\(691\) 1.81864 0.0691844 0.0345922 0.999402i \(-0.488987\pi\)
0.0345922 + 0.999402i \(0.488987\pi\)
\(692\) 15.3688 0.584234
\(693\) 5.11995 0.194491
\(694\) −21.1535 −0.802975
\(695\) 27.9134 1.05882
\(696\) 1.00000 0.0379049
\(697\) −28.6168 −1.08394
\(698\) 25.0918 0.949740
\(699\) −2.97688 −0.112596
\(700\) 6.13608 0.231922
\(701\) 29.9909 1.13274 0.566370 0.824151i \(-0.308347\pi\)
0.566370 + 0.824151i \(0.308347\pi\)
\(702\) 5.00113 0.188756
\(703\) 40.2242 1.51709
\(704\) 1.29902 0.0489588
\(705\) −20.7901 −0.782999
\(706\) 27.9371 1.05143
\(707\) 24.1048 0.906554
\(708\) 6.72787 0.252849
\(709\) −33.6637 −1.26427 −0.632133 0.774860i \(-0.717820\pi\)
−0.632133 + 0.774860i \(0.717820\pi\)
\(710\) 18.3540 0.688814
\(711\) 6.58464 0.246943
\(712\) −17.5887 −0.659163
\(713\) −1.25832 −0.0471245
\(714\) −15.2124 −0.569309
\(715\) −16.6354 −0.622128
\(716\) −15.2408 −0.569575
\(717\) −7.01362 −0.261929
\(718\) −18.6367 −0.695515
\(719\) −51.0227 −1.90282 −0.951412 0.307920i \(-0.900367\pi\)
−0.951412 + 0.307920i \(0.900367\pi\)
\(720\) 2.56063 0.0954291
\(721\) −53.6350 −1.99747
\(722\) 1.62541 0.0604913
\(723\) 26.3107 0.978506
\(724\) −6.99922 −0.260124
\(725\) −1.55684 −0.0578194
\(726\) 9.31254 0.345621
\(727\) 5.41966 0.201004 0.100502 0.994937i \(-0.467955\pi\)
0.100502 + 0.994937i \(0.467955\pi\)
\(728\) −19.7114 −0.730552
\(729\) 1.00000 0.0370370
\(730\) −36.5534 −1.35290
\(731\) −26.3012 −0.972784
\(732\) −0.700976 −0.0259088
\(733\) −20.9515 −0.773861 −0.386931 0.922109i \(-0.626465\pi\)
−0.386931 + 0.922109i \(0.626465\pi\)
\(734\) −20.3576 −0.751413
\(735\) −21.8536 −0.806083
\(736\) −1.00000 −0.0368605
\(737\) −3.64662 −0.134325
\(738\) −7.41434 −0.272926
\(739\) −14.6555 −0.539112 −0.269556 0.962985i \(-0.586877\pi\)
−0.269556 + 0.962985i \(0.586877\pi\)
\(740\) 22.6795 0.833715
\(741\) 22.7128 0.834374
\(742\) 43.8772 1.61078
\(743\) 6.30334 0.231247 0.115624 0.993293i \(-0.463113\pi\)
0.115624 + 0.993293i \(0.463113\pi\)
\(744\) −1.25832 −0.0461323
\(745\) 15.2967 0.560430
\(746\) 1.36257 0.0498873
\(747\) −2.40118 −0.0878544
\(748\) 5.01379 0.183322
\(749\) −52.3485 −1.91277
\(750\) 8.81668 0.321940
\(751\) −43.0131 −1.56957 −0.784785 0.619769i \(-0.787226\pi\)
−0.784785 + 0.619769i \(0.787226\pi\)
\(752\) 8.11911 0.296074
\(753\) 30.3765 1.10698
\(754\) 5.00113 0.182131
\(755\) 36.7547 1.33764
\(756\) −3.94138 −0.143347
\(757\) 45.8442 1.66624 0.833118 0.553096i \(-0.186554\pi\)
0.833118 + 0.553096i \(0.186554\pi\)
\(758\) −15.7149 −0.570791
\(759\) 1.29902 0.0471516
\(760\) 11.6292 0.421834
\(761\) −14.8009 −0.536534 −0.268267 0.963345i \(-0.586451\pi\)
−0.268267 + 0.963345i \(0.586451\pi\)
\(762\) 0.512958 0.0185825
\(763\) 30.5229 1.10500
\(764\) −18.9929 −0.687139
\(765\) 9.88316 0.357326
\(766\) 5.85118 0.211412
\(767\) 33.6470 1.21492
\(768\) −1.00000 −0.0360844
\(769\) 46.8413 1.68914 0.844571 0.535444i \(-0.179856\pi\)
0.844571 + 0.535444i \(0.179856\pi\)
\(770\) 13.1103 0.472462
\(771\) −13.1573 −0.473847
\(772\) −13.0004 −0.467894
\(773\) −25.3371 −0.911312 −0.455656 0.890156i \(-0.650595\pi\)
−0.455656 + 0.890156i \(0.650595\pi\)
\(774\) −6.81438 −0.244938
\(775\) 1.95900 0.0703693
\(776\) −1.23989 −0.0445095
\(777\) −34.9088 −1.25235
\(778\) 29.1921 1.04659
\(779\) −33.6724 −1.20644
\(780\) 12.8061 0.458531
\(781\) 9.31111 0.333178
\(782\) −3.85966 −0.138021
\(783\) 1.00000 0.0357371
\(784\) 8.53447 0.304802
\(785\) 18.2224 0.650387
\(786\) 0.622867 0.0222169
\(787\) 15.1179 0.538894 0.269447 0.963015i \(-0.413159\pi\)
0.269447 + 0.963015i \(0.413159\pi\)
\(788\) −9.44605 −0.336502
\(789\) 21.8819 0.779017
\(790\) 16.8608 0.599882
\(791\) 18.6355 0.662604
\(792\) 1.29902 0.0461588
\(793\) −3.50568 −0.124490
\(794\) 28.3701 1.00682
\(795\) −28.5061 −1.01101
\(796\) 25.1472 0.891320
\(797\) −32.3613 −1.14630 −0.573149 0.819451i \(-0.694278\pi\)
−0.573149 + 0.819451i \(0.694278\pi\)
\(798\) −17.8999 −0.633648
\(799\) 31.3370 1.10862
\(800\) 1.55684 0.0550424
\(801\) −17.5887 −0.621465
\(802\) 11.3449 0.400601
\(803\) −18.5437 −0.654394
\(804\) 2.80720 0.0990023
\(805\) −10.0924 −0.355711
\(806\) −6.29304 −0.221663
\(807\) −2.55644 −0.0899908
\(808\) 6.11583 0.215154
\(809\) 12.6962 0.446374 0.223187 0.974776i \(-0.428354\pi\)
0.223187 + 0.974776i \(0.428354\pi\)
\(810\) 2.56063 0.0899714
\(811\) 13.2176 0.464132 0.232066 0.972700i \(-0.425452\pi\)
0.232066 + 0.972700i \(0.425452\pi\)
\(812\) −3.94138 −0.138315
\(813\) 0.612404 0.0214780
\(814\) 11.5054 0.403266
\(815\) −15.9730 −0.559511
\(816\) −3.85966 −0.135115
\(817\) −30.9476 −1.08272
\(818\) −38.5468 −1.34776
\(819\) −19.7114 −0.688771
\(820\) −18.9854 −0.662999
\(821\) −5.44701 −0.190102 −0.0950509 0.995472i \(-0.530301\pi\)
−0.0950509 + 0.995472i \(0.530301\pi\)
\(822\) −8.58464 −0.299424
\(823\) 22.8393 0.796129 0.398065 0.917357i \(-0.369682\pi\)
0.398065 + 0.917357i \(0.369682\pi\)
\(824\) −13.6082 −0.474063
\(825\) −2.02237 −0.0704098
\(826\) −26.5171 −0.922648
\(827\) −49.9389 −1.73655 −0.868274 0.496086i \(-0.834770\pi\)
−0.868274 + 0.496086i \(0.834770\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −17.8918 −0.621408 −0.310704 0.950507i \(-0.600565\pi\)
−0.310704 + 0.950507i \(0.600565\pi\)
\(830\) −6.14853 −0.213419
\(831\) −11.1060 −0.385264
\(832\) −5.00113 −0.173383
\(833\) 32.9401 1.14131
\(834\) −10.9010 −0.377470
\(835\) −7.97960 −0.276145
\(836\) 5.89954 0.204040
\(837\) −1.25832 −0.0434940
\(838\) −22.8817 −0.790434
\(839\) −41.3746 −1.42841 −0.714206 0.699936i \(-0.753212\pi\)
−0.714206 + 0.699936i \(0.753212\pi\)
\(840\) −10.0924 −0.348222
\(841\) 1.00000 0.0344828
\(842\) 31.0742 1.07089
\(843\) −23.8468 −0.821327
\(844\) 12.9638 0.446233
\(845\) 30.7566 1.05806
\(846\) 8.11911 0.279141
\(847\) −36.7042 −1.26117
\(848\) 11.1325 0.382290
\(849\) −17.1729 −0.589372
\(850\) 6.00885 0.206102
\(851\) −8.85699 −0.303614
\(852\) −7.16777 −0.245564
\(853\) 16.4431 0.563000 0.281500 0.959561i \(-0.409168\pi\)
0.281500 + 0.959561i \(0.409168\pi\)
\(854\) 2.76281 0.0945415
\(855\) 11.6292 0.397709
\(856\) −13.2818 −0.453962
\(857\) 32.7125 1.11744 0.558718 0.829358i \(-0.311293\pi\)
0.558718 + 0.829358i \(0.311293\pi\)
\(858\) 6.49659 0.221790
\(859\) −20.1346 −0.686984 −0.343492 0.939156i \(-0.611610\pi\)
−0.343492 + 0.939156i \(0.611610\pi\)
\(860\) −17.4491 −0.595010
\(861\) 29.2227 0.995908
\(862\) −31.6300 −1.07732
\(863\) 18.0833 0.615561 0.307781 0.951457i \(-0.400414\pi\)
0.307781 + 0.951457i \(0.400414\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 39.3538 1.33807
\(866\) 0.715152 0.0243018
\(867\) 2.10306 0.0714236
\(868\) 4.95952 0.168337
\(869\) 8.55361 0.290161
\(870\) 2.56063 0.0868135
\(871\) 14.0392 0.475700
\(872\) 7.74423 0.262253
\(873\) −1.23989 −0.0419640
\(874\) −4.54152 −0.153619
\(875\) −34.7499 −1.17476
\(876\) 14.2751 0.482312
\(877\) 43.6504 1.47397 0.736984 0.675910i \(-0.236249\pi\)
0.736984 + 0.675910i \(0.236249\pi\)
\(878\) −10.1649 −0.343049
\(879\) −1.70479 −0.0575013
\(880\) 3.32632 0.112130
\(881\) 12.2510 0.412745 0.206373 0.978473i \(-0.433834\pi\)
0.206373 + 0.978473i \(0.433834\pi\)
\(882\) 8.53447 0.287370
\(883\) 32.3120 1.08738 0.543692 0.839285i \(-0.317026\pi\)
0.543692 + 0.839285i \(0.317026\pi\)
\(884\) −19.3027 −0.649219
\(885\) 17.2276 0.579100
\(886\) −25.5952 −0.859889
\(887\) −8.74866 −0.293751 −0.146876 0.989155i \(-0.546922\pi\)
−0.146876 + 0.989155i \(0.546922\pi\)
\(888\) −8.85699 −0.297221
\(889\) −2.02176 −0.0678077
\(890\) −45.0381 −1.50968
\(891\) 1.29902 0.0435189
\(892\) 9.95293 0.333249
\(893\) 36.8731 1.23391
\(894\) −5.97382 −0.199794
\(895\) −39.0260 −1.30450
\(896\) 3.94138 0.131672
\(897\) −5.00113 −0.166983
\(898\) −30.0523 −1.00286
\(899\) −1.25832 −0.0419674
\(900\) 1.55684 0.0518945
\(901\) 42.9675 1.43145
\(902\) −9.63141 −0.320691
\(903\) 26.8581 0.893780
\(904\) 4.72818 0.157257
\(905\) −17.9224 −0.595762
\(906\) −14.3537 −0.476871
\(907\) −12.3112 −0.408786 −0.204393 0.978889i \(-0.565522\pi\)
−0.204393 + 0.978889i \(0.565522\pi\)
\(908\) 7.74988 0.257189
\(909\) 6.11583 0.202849
\(910\) −50.4736 −1.67318
\(911\) −24.5520 −0.813445 −0.406722 0.913552i \(-0.633328\pi\)
−0.406722 + 0.913552i \(0.633328\pi\)
\(912\) −4.54152 −0.150385
\(913\) −3.11919 −0.103230
\(914\) −29.9139 −0.989463
\(915\) −1.79494 −0.0593389
\(916\) 17.1578 0.566908
\(917\) −2.45495 −0.0810698
\(918\) −3.85966 −0.127388
\(919\) 44.5887 1.47085 0.735423 0.677608i \(-0.236983\pi\)
0.735423 + 0.677608i \(0.236983\pi\)
\(920\) −2.56063 −0.0844215
\(921\) −13.7302 −0.452426
\(922\) −8.87221 −0.292191
\(923\) −35.8470 −1.17992
\(924\) −5.11995 −0.168434
\(925\) 13.7889 0.453376
\(926\) −21.9219 −0.720399
\(927\) −13.6082 −0.446951
\(928\) −1.00000 −0.0328266
\(929\) −18.6937 −0.613321 −0.306660 0.951819i \(-0.599212\pi\)
−0.306660 + 0.951819i \(0.599212\pi\)
\(930\) −3.22210 −0.105657
\(931\) 38.7595 1.27029
\(932\) 2.97688 0.0975109
\(933\) −4.72949 −0.154837
\(934\) 7.40897 0.242429
\(935\) 12.8385 0.419863
\(936\) −5.00113 −0.163467
\(937\) −22.5104 −0.735382 −0.367691 0.929948i \(-0.619852\pi\)
−0.367691 + 0.929948i \(0.619852\pi\)
\(938\) −11.0642 −0.361260
\(939\) −6.76189 −0.220666
\(940\) 20.7901 0.678097
\(941\) 28.9708 0.944422 0.472211 0.881486i \(-0.343456\pi\)
0.472211 + 0.881486i \(0.343456\pi\)
\(942\) −7.11639 −0.231864
\(943\) 7.41434 0.241444
\(944\) −6.72787 −0.218974
\(945\) −10.0924 −0.328306
\(946\) −8.85204 −0.287805
\(947\) −33.4560 −1.08717 −0.543587 0.839353i \(-0.682934\pi\)
−0.543587 + 0.839353i \(0.682934\pi\)
\(948\) −6.58464 −0.213859
\(949\) 71.3918 2.31748
\(950\) 7.07040 0.229394
\(951\) −13.7503 −0.445884
\(952\) 15.2124 0.493036
\(953\) −45.1049 −1.46109 −0.730546 0.682864i \(-0.760734\pi\)
−0.730546 + 0.682864i \(0.760734\pi\)
\(954\) 11.1325 0.360427
\(955\) −48.6338 −1.57375
\(956\) 7.01362 0.226837
\(957\) 1.29902 0.0419915
\(958\) 1.09797 0.0354737
\(959\) 33.8353 1.09260
\(960\) −2.56063 −0.0826440
\(961\) −29.4166 −0.948923
\(962\) −44.2950 −1.42813
\(963\) −13.2818 −0.427999
\(964\) −26.3107 −0.847411
\(965\) −33.2892 −1.07162
\(966\) 3.94138 0.126812
\(967\) 2.42352 0.0779352 0.0389676 0.999240i \(-0.487593\pi\)
0.0389676 + 0.999240i \(0.487593\pi\)
\(968\) −9.31254 −0.299316
\(969\) −17.5287 −0.563103
\(970\) −3.17491 −0.101940
\(971\) −8.96661 −0.287752 −0.143876 0.989596i \(-0.545957\pi\)
−0.143876 + 0.989596i \(0.545957\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 42.9649 1.37739
\(974\) 13.8183 0.442767
\(975\) 7.78594 0.249350
\(976\) 0.700976 0.0224377
\(977\) 52.0927 1.66659 0.833297 0.552826i \(-0.186451\pi\)
0.833297 + 0.552826i \(0.186451\pi\)
\(978\) 6.23792 0.199467
\(979\) −22.8481 −0.730228
\(980\) 21.8536 0.698089
\(981\) 7.74423 0.247254
\(982\) −9.28961 −0.296443
\(983\) −18.1481 −0.578833 −0.289417 0.957203i \(-0.593461\pi\)
−0.289417 + 0.957203i \(0.593461\pi\)
\(984\) 7.41434 0.236361
\(985\) −24.1879 −0.770689
\(986\) −3.85966 −0.122916
\(987\) −32.0005 −1.01859
\(988\) −22.7128 −0.722589
\(989\) 6.81438 0.216685
\(990\) 3.32632 0.105717
\(991\) −43.4064 −1.37885 −0.689425 0.724357i \(-0.742137\pi\)
−0.689425 + 0.724357i \(0.742137\pi\)
\(992\) 1.25832 0.0399518
\(993\) 22.6054 0.717361
\(994\) 28.2509 0.896064
\(995\) 64.3928 2.04139
\(996\) 2.40118 0.0760842
\(997\) 8.58828 0.271994 0.135997 0.990709i \(-0.456576\pi\)
0.135997 + 0.990709i \(0.456576\pi\)
\(998\) 35.2253 1.11504
\(999\) −8.85699 −0.280223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bk.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bk.1.6 8 1.1 even 1 trivial