Properties

Label 4002.2.a.bk.1.4
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 30x^{6} + 52x^{5} + 267x^{4} - 352x^{3} - 632x^{2} + 240x + 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.652958\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.652958 q^{5} -1.00000 q^{6} -3.89658 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.652958 q^{5} -1.00000 q^{6} -3.89658 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.652958 q^{10} +5.43246 q^{11} -1.00000 q^{12} +3.14335 q^{13} -3.89658 q^{14} +0.652958 q^{15} +1.00000 q^{16} +4.77950 q^{17} +1.00000 q^{18} -7.24090 q^{19} -0.652958 q^{20} +3.89658 q^{21} +5.43246 q^{22} -1.00000 q^{23} -1.00000 q^{24} -4.57365 q^{25} +3.14335 q^{26} -1.00000 q^{27} -3.89658 q^{28} -1.00000 q^{29} +0.652958 q^{30} +5.19796 q^{31} +1.00000 q^{32} -5.43246 q^{33} +4.77950 q^{34} +2.54430 q^{35} +1.00000 q^{36} -1.28454 q^{37} -7.24090 q^{38} -3.14335 q^{39} -0.652958 q^{40} -5.34588 q^{41} +3.89658 q^{42} -2.02783 q^{43} +5.43246 q^{44} -0.652958 q^{45} -1.00000 q^{46} +4.83411 q^{47} -1.00000 q^{48} +8.18332 q^{49} -4.57365 q^{50} -4.77950 q^{51} +3.14335 q^{52} +9.97902 q^{53} -1.00000 q^{54} -3.54717 q^{55} -3.89658 q^{56} +7.24090 q^{57} -1.00000 q^{58} +11.0844 q^{59} +0.652958 q^{60} -3.43246 q^{61} +5.19796 q^{62} -3.89658 q^{63} +1.00000 q^{64} -2.05247 q^{65} -5.43246 q^{66} -4.99831 q^{67} +4.77950 q^{68} +1.00000 q^{69} +2.54430 q^{70} -0.305382 q^{71} +1.00000 q^{72} -4.98203 q^{73} -1.28454 q^{74} +4.57365 q^{75} -7.24090 q^{76} -21.1680 q^{77} -3.14335 q^{78} +3.65080 q^{79} -0.652958 q^{80} +1.00000 q^{81} -5.34588 q^{82} +8.46140 q^{83} +3.89658 q^{84} -3.12081 q^{85} -2.02783 q^{86} +1.00000 q^{87} +5.43246 q^{88} +7.44828 q^{89} -0.652958 q^{90} -12.2483 q^{91} -1.00000 q^{92} -5.19796 q^{93} +4.83411 q^{94} +4.72800 q^{95} -1.00000 q^{96} +16.6682 q^{97} +8.18332 q^{98} +5.43246 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9} + 2 q^{10} + 3 q^{11} - 8 q^{12} + 13 q^{13} + 5 q^{14} - 2 q^{15} + 8 q^{16} + 5 q^{17} + 8 q^{18} + 7 q^{19} + 2 q^{20} - 5 q^{21} + 3 q^{22} - 8 q^{23} - 8 q^{24} + 24 q^{25} + 13 q^{26} - 8 q^{27} + 5 q^{28} - 8 q^{29} - 2 q^{30} + 15 q^{31} + 8 q^{32} - 3 q^{33} + 5 q^{34} + 9 q^{35} + 8 q^{36} + 22 q^{37} + 7 q^{38} - 13 q^{39} + 2 q^{40} - 8 q^{41} - 5 q^{42} - q^{43} + 3 q^{44} + 2 q^{45} - 8 q^{46} - 9 q^{47} - 8 q^{48} + 33 q^{49} + 24 q^{50} - 5 q^{51} + 13 q^{52} + 14 q^{53} - 8 q^{54} - 17 q^{55} + 5 q^{56} - 7 q^{57} - 8 q^{58} - 4 q^{59} - 2 q^{60} + 13 q^{61} + 15 q^{62} + 5 q^{63} + 8 q^{64} + 21 q^{65} - 3 q^{66} - 3 q^{67} + 5 q^{68} + 8 q^{69} + 9 q^{70} + 7 q^{71} + 8 q^{72} + 16 q^{73} + 22 q^{74} - 24 q^{75} + 7 q^{76} - 13 q^{78} + 14 q^{79} + 2 q^{80} + 8 q^{81} - 8 q^{82} + 36 q^{83} - 5 q^{84} + 47 q^{85} - q^{86} + 8 q^{87} + 3 q^{88} - 12 q^{89} + 2 q^{90} + 20 q^{91} - 8 q^{92} - 15 q^{93} - 9 q^{94} + 7 q^{95} - 8 q^{96} + 10 q^{97} + 33 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −0.652958 −0.292012 −0.146006 0.989284i \(-0.546642\pi\)
−0.146006 + 0.989284i \(0.546642\pi\)
\(6\) −1.00000 −0.408248
\(7\) −3.89658 −1.47277 −0.736384 0.676564i \(-0.763468\pi\)
−0.736384 + 0.676564i \(0.763468\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.652958 −0.206483
\(11\) 5.43246 1.63795 0.818974 0.573831i \(-0.194543\pi\)
0.818974 + 0.573831i \(0.194543\pi\)
\(12\) −1.00000 −0.288675
\(13\) 3.14335 0.871808 0.435904 0.899993i \(-0.356429\pi\)
0.435904 + 0.899993i \(0.356429\pi\)
\(14\) −3.89658 −1.04140
\(15\) 0.652958 0.168593
\(16\) 1.00000 0.250000
\(17\) 4.77950 1.15920 0.579600 0.814901i \(-0.303209\pi\)
0.579600 + 0.814901i \(0.303209\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.24090 −1.66118 −0.830589 0.556886i \(-0.811996\pi\)
−0.830589 + 0.556886i \(0.811996\pi\)
\(20\) −0.652958 −0.146006
\(21\) 3.89658 0.850303
\(22\) 5.43246 1.15820
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) −4.57365 −0.914729
\(26\) 3.14335 0.616462
\(27\) −1.00000 −0.192450
\(28\) −3.89658 −0.736384
\(29\) −1.00000 −0.185695
\(30\) 0.652958 0.119213
\(31\) 5.19796 0.933581 0.466791 0.884368i \(-0.345410\pi\)
0.466791 + 0.884368i \(0.345410\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.43246 −0.945670
\(34\) 4.77950 0.819678
\(35\) 2.54430 0.430065
\(36\) 1.00000 0.166667
\(37\) −1.28454 −0.211177 −0.105588 0.994410i \(-0.533673\pi\)
−0.105588 + 0.994410i \(0.533673\pi\)
\(38\) −7.24090 −1.17463
\(39\) −3.14335 −0.503339
\(40\) −0.652958 −0.103242
\(41\) −5.34588 −0.834887 −0.417443 0.908703i \(-0.637074\pi\)
−0.417443 + 0.908703i \(0.637074\pi\)
\(42\) 3.89658 0.601255
\(43\) −2.02783 −0.309241 −0.154621 0.987974i \(-0.549416\pi\)
−0.154621 + 0.987974i \(0.549416\pi\)
\(44\) 5.43246 0.818974
\(45\) −0.652958 −0.0973372
\(46\) −1.00000 −0.147442
\(47\) 4.83411 0.705128 0.352564 0.935788i \(-0.385310\pi\)
0.352564 + 0.935788i \(0.385310\pi\)
\(48\) −1.00000 −0.144338
\(49\) 8.18332 1.16905
\(50\) −4.57365 −0.646811
\(51\) −4.77950 −0.669264
\(52\) 3.14335 0.435904
\(53\) 9.97902 1.37072 0.685362 0.728203i \(-0.259644\pi\)
0.685362 + 0.728203i \(0.259644\pi\)
\(54\) −1.00000 −0.136083
\(55\) −3.54717 −0.478300
\(56\) −3.89658 −0.520702
\(57\) 7.24090 0.959081
\(58\) −1.00000 −0.131306
\(59\) 11.0844 1.44307 0.721535 0.692378i \(-0.243437\pi\)
0.721535 + 0.692378i \(0.243437\pi\)
\(60\) 0.652958 0.0842965
\(61\) −3.43246 −0.439481 −0.219741 0.975558i \(-0.570521\pi\)
−0.219741 + 0.975558i \(0.570521\pi\)
\(62\) 5.19796 0.660142
\(63\) −3.89658 −0.490923
\(64\) 1.00000 0.125000
\(65\) −2.05247 −0.254578
\(66\) −5.43246 −0.668689
\(67\) −4.99831 −0.610640 −0.305320 0.952250i \(-0.598763\pi\)
−0.305320 + 0.952250i \(0.598763\pi\)
\(68\) 4.77950 0.579600
\(69\) 1.00000 0.120386
\(70\) 2.54430 0.304102
\(71\) −0.305382 −0.0362422 −0.0181211 0.999836i \(-0.505768\pi\)
−0.0181211 + 0.999836i \(0.505768\pi\)
\(72\) 1.00000 0.117851
\(73\) −4.98203 −0.583103 −0.291552 0.956555i \(-0.594171\pi\)
−0.291552 + 0.956555i \(0.594171\pi\)
\(74\) −1.28454 −0.149324
\(75\) 4.57365 0.528119
\(76\) −7.24090 −0.830589
\(77\) −21.1680 −2.41232
\(78\) −3.14335 −0.355914
\(79\) 3.65080 0.410747 0.205373 0.978684i \(-0.434159\pi\)
0.205373 + 0.978684i \(0.434159\pi\)
\(80\) −0.652958 −0.0730029
\(81\) 1.00000 0.111111
\(82\) −5.34588 −0.590354
\(83\) 8.46140 0.928760 0.464380 0.885636i \(-0.346277\pi\)
0.464380 + 0.885636i \(0.346277\pi\)
\(84\) 3.89658 0.425151
\(85\) −3.12081 −0.338500
\(86\) −2.02783 −0.218667
\(87\) 1.00000 0.107211
\(88\) 5.43246 0.579102
\(89\) 7.44828 0.789516 0.394758 0.918785i \(-0.370829\pi\)
0.394758 + 0.918785i \(0.370829\pi\)
\(90\) −0.652958 −0.0688278
\(91\) −12.2483 −1.28397
\(92\) −1.00000 −0.104257
\(93\) −5.19796 −0.539003
\(94\) 4.83411 0.498601
\(95\) 4.72800 0.485083
\(96\) −1.00000 −0.102062
\(97\) 16.6682 1.69240 0.846199 0.532867i \(-0.178885\pi\)
0.846199 + 0.532867i \(0.178885\pi\)
\(98\) 8.18332 0.826640
\(99\) 5.43246 0.545983
\(100\) −4.57365 −0.457365
\(101\) 14.1175 1.40474 0.702371 0.711811i \(-0.252125\pi\)
0.702371 + 0.711811i \(0.252125\pi\)
\(102\) −4.77950 −0.473241
\(103\) 0.187986 0.0185228 0.00926139 0.999957i \(-0.497052\pi\)
0.00926139 + 0.999957i \(0.497052\pi\)
\(104\) 3.14335 0.308231
\(105\) −2.54430 −0.248298
\(106\) 9.97902 0.969248
\(107\) 10.1145 0.977809 0.488904 0.872337i \(-0.337397\pi\)
0.488904 + 0.872337i \(0.337397\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 16.9130 1.61997 0.809985 0.586451i \(-0.199475\pi\)
0.809985 + 0.586451i \(0.199475\pi\)
\(110\) −3.54717 −0.338209
\(111\) 1.28454 0.121923
\(112\) −3.89658 −0.368192
\(113\) 19.0614 1.79315 0.896574 0.442894i \(-0.146048\pi\)
0.896574 + 0.442894i \(0.146048\pi\)
\(114\) 7.24090 0.678173
\(115\) 0.652958 0.0608886
\(116\) −1.00000 −0.0928477
\(117\) 3.14335 0.290603
\(118\) 11.0844 1.02040
\(119\) −18.6237 −1.70723
\(120\) 0.652958 0.0596066
\(121\) 18.5116 1.68287
\(122\) −3.43246 −0.310760
\(123\) 5.34588 0.482022
\(124\) 5.19796 0.466791
\(125\) 6.25119 0.559123
\(126\) −3.89658 −0.347135
\(127\) −17.0070 −1.50912 −0.754562 0.656229i \(-0.772150\pi\)
−0.754562 + 0.656229i \(0.772150\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.02783 0.178540
\(130\) −2.05247 −0.180014
\(131\) −14.8267 −1.29541 −0.647707 0.761890i \(-0.724272\pi\)
−0.647707 + 0.761890i \(0.724272\pi\)
\(132\) −5.43246 −0.472835
\(133\) 28.2147 2.44653
\(134\) −4.99831 −0.431788
\(135\) 0.652958 0.0561976
\(136\) 4.77950 0.409839
\(137\) 5.65080 0.482780 0.241390 0.970428i \(-0.422397\pi\)
0.241390 + 0.970428i \(0.422397\pi\)
\(138\) 1.00000 0.0851257
\(139\) −10.3334 −0.876469 −0.438234 0.898861i \(-0.644396\pi\)
−0.438234 + 0.898861i \(0.644396\pi\)
\(140\) 2.54430 0.215033
\(141\) −4.83411 −0.407106
\(142\) −0.305382 −0.0256271
\(143\) 17.0761 1.42798
\(144\) 1.00000 0.0833333
\(145\) 0.652958 0.0542252
\(146\) −4.98203 −0.412316
\(147\) −8.18332 −0.674949
\(148\) −1.28454 −0.105588
\(149\) 15.9143 1.30375 0.651873 0.758328i \(-0.273983\pi\)
0.651873 + 0.758328i \(0.273983\pi\)
\(150\) 4.57365 0.373437
\(151\) 0.926954 0.0754344 0.0377172 0.999288i \(-0.487991\pi\)
0.0377172 + 0.999288i \(0.487991\pi\)
\(152\) −7.24090 −0.587315
\(153\) 4.77950 0.386400
\(154\) −21.1680 −1.70577
\(155\) −3.39405 −0.272616
\(156\) −3.14335 −0.251669
\(157\) 8.37925 0.668737 0.334369 0.942442i \(-0.391477\pi\)
0.334369 + 0.942442i \(0.391477\pi\)
\(158\) 3.65080 0.290442
\(159\) −9.97902 −0.791388
\(160\) −0.652958 −0.0516208
\(161\) 3.89658 0.307093
\(162\) 1.00000 0.0785674
\(163\) 15.1905 1.18981 0.594907 0.803794i \(-0.297189\pi\)
0.594907 + 0.803794i \(0.297189\pi\)
\(164\) −5.34588 −0.417443
\(165\) 3.54717 0.276146
\(166\) 8.46140 0.656732
\(167\) 14.5570 1.12645 0.563226 0.826303i \(-0.309560\pi\)
0.563226 + 0.826303i \(0.309560\pi\)
\(168\) 3.89658 0.300627
\(169\) −3.11935 −0.239950
\(170\) −3.12081 −0.239355
\(171\) −7.24090 −0.553726
\(172\) −2.02783 −0.154621
\(173\) −10.8097 −0.821848 −0.410924 0.911670i \(-0.634794\pi\)
−0.410924 + 0.911670i \(0.634794\pi\)
\(174\) 1.00000 0.0758098
\(175\) 17.8216 1.34718
\(176\) 5.43246 0.409487
\(177\) −11.0844 −0.833157
\(178\) 7.44828 0.558272
\(179\) −8.20054 −0.612937 −0.306469 0.951881i \(-0.599147\pi\)
−0.306469 + 0.951881i \(0.599147\pi\)
\(180\) −0.652958 −0.0486686
\(181\) −4.40352 −0.327311 −0.163655 0.986518i \(-0.552329\pi\)
−0.163655 + 0.986518i \(0.552329\pi\)
\(182\) −12.2483 −0.907905
\(183\) 3.43246 0.253735
\(184\) −1.00000 −0.0737210
\(185\) 0.838748 0.0616660
\(186\) −5.19796 −0.381133
\(187\) 25.9644 1.89871
\(188\) 4.83411 0.352564
\(189\) 3.89658 0.283434
\(190\) 4.72800 0.343005
\(191\) 3.17330 0.229612 0.114806 0.993388i \(-0.463375\pi\)
0.114806 + 0.993388i \(0.463375\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 24.6898 1.77721 0.888606 0.458671i \(-0.151674\pi\)
0.888606 + 0.458671i \(0.151674\pi\)
\(194\) 16.6682 1.19671
\(195\) 2.05247 0.146981
\(196\) 8.18332 0.584523
\(197\) −1.61793 −0.115272 −0.0576362 0.998338i \(-0.518356\pi\)
−0.0576362 + 0.998338i \(0.518356\pi\)
\(198\) 5.43246 0.386068
\(199\) 1.43101 0.101441 0.0507207 0.998713i \(-0.483848\pi\)
0.0507207 + 0.998713i \(0.483848\pi\)
\(200\) −4.57365 −0.323406
\(201\) 4.99831 0.352553
\(202\) 14.1175 0.993303
\(203\) 3.89658 0.273486
\(204\) −4.77950 −0.334632
\(205\) 3.49063 0.243797
\(206\) 0.187986 0.0130976
\(207\) −1.00000 −0.0695048
\(208\) 3.14335 0.217952
\(209\) −39.3359 −2.72092
\(210\) −2.54430 −0.175573
\(211\) 4.87050 0.335299 0.167649 0.985847i \(-0.446382\pi\)
0.167649 + 0.985847i \(0.446382\pi\)
\(212\) 9.97902 0.685362
\(213\) 0.305382 0.0209244
\(214\) 10.1145 0.691415
\(215\) 1.32409 0.0903020
\(216\) −1.00000 −0.0680414
\(217\) −20.2543 −1.37495
\(218\) 16.9130 1.14549
\(219\) 4.98203 0.336655
\(220\) −3.54717 −0.239150
\(221\) 15.0236 1.01060
\(222\) 1.28454 0.0862125
\(223\) −26.7563 −1.79173 −0.895867 0.444323i \(-0.853444\pi\)
−0.895867 + 0.444323i \(0.853444\pi\)
\(224\) −3.89658 −0.260351
\(225\) −4.57365 −0.304910
\(226\) 19.0614 1.26795
\(227\) −22.8435 −1.51618 −0.758089 0.652152i \(-0.773867\pi\)
−0.758089 + 0.652152i \(0.773867\pi\)
\(228\) 7.24090 0.479541
\(229\) −12.2649 −0.810485 −0.405243 0.914209i \(-0.632813\pi\)
−0.405243 + 0.914209i \(0.632813\pi\)
\(230\) 0.652958 0.0430548
\(231\) 21.1680 1.39275
\(232\) −1.00000 −0.0656532
\(233\) 26.6506 1.74594 0.872971 0.487773i \(-0.162191\pi\)
0.872971 + 0.487773i \(0.162191\pi\)
\(234\) 3.14335 0.205487
\(235\) −3.15647 −0.205905
\(236\) 11.0844 0.721535
\(237\) −3.65080 −0.237145
\(238\) −18.6237 −1.20720
\(239\) −13.4123 −0.867573 −0.433786 0.901016i \(-0.642823\pi\)
−0.433786 + 0.901016i \(0.642823\pi\)
\(240\) 0.652958 0.0421482
\(241\) 11.8596 0.763945 0.381973 0.924174i \(-0.375245\pi\)
0.381973 + 0.924174i \(0.375245\pi\)
\(242\) 18.5116 1.18997
\(243\) −1.00000 −0.0641500
\(244\) −3.43246 −0.219741
\(245\) −5.34336 −0.341375
\(246\) 5.34588 0.340841
\(247\) −22.7607 −1.44823
\(248\) 5.19796 0.330071
\(249\) −8.46140 −0.536220
\(250\) 6.25119 0.395360
\(251\) −3.49169 −0.220393 −0.110197 0.993910i \(-0.535148\pi\)
−0.110197 + 0.993910i \(0.535148\pi\)
\(252\) −3.89658 −0.245461
\(253\) −5.43246 −0.341536
\(254\) −17.0070 −1.06711
\(255\) 3.12081 0.195433
\(256\) 1.00000 0.0625000
\(257\) −19.4752 −1.21483 −0.607416 0.794384i \(-0.707794\pi\)
−0.607416 + 0.794384i \(0.707794\pi\)
\(258\) 2.02783 0.126247
\(259\) 5.00530 0.311014
\(260\) −2.05247 −0.127289
\(261\) −1.00000 −0.0618984
\(262\) −14.8267 −0.915996
\(263\) 5.45886 0.336607 0.168304 0.985735i \(-0.446171\pi\)
0.168304 + 0.985735i \(0.446171\pi\)
\(264\) −5.43246 −0.334345
\(265\) −6.51588 −0.400267
\(266\) 28.2147 1.72996
\(267\) −7.44828 −0.455827
\(268\) −4.99831 −0.305320
\(269\) −6.24599 −0.380825 −0.190412 0.981704i \(-0.560982\pi\)
−0.190412 + 0.981704i \(0.560982\pi\)
\(270\) 0.652958 0.0397377
\(271\) −1.67221 −0.101580 −0.0507898 0.998709i \(-0.516174\pi\)
−0.0507898 + 0.998709i \(0.516174\pi\)
\(272\) 4.77950 0.289800
\(273\) 12.2483 0.741301
\(274\) 5.65080 0.341377
\(275\) −24.8461 −1.49828
\(276\) 1.00000 0.0601929
\(277\) 0.419039 0.0251776 0.0125888 0.999921i \(-0.495993\pi\)
0.0125888 + 0.999921i \(0.495993\pi\)
\(278\) −10.3334 −0.619757
\(279\) 5.19796 0.311194
\(280\) 2.54430 0.152051
\(281\) −13.6630 −0.815067 −0.407534 0.913190i \(-0.633611\pi\)
−0.407534 + 0.913190i \(0.633611\pi\)
\(282\) −4.83411 −0.287867
\(283\) 21.4837 1.27707 0.638536 0.769592i \(-0.279540\pi\)
0.638536 + 0.769592i \(0.279540\pi\)
\(284\) −0.305382 −0.0181211
\(285\) −4.72800 −0.280063
\(286\) 17.0761 1.00973
\(287\) 20.8306 1.22959
\(288\) 1.00000 0.0589256
\(289\) 5.84363 0.343743
\(290\) 0.652958 0.0383430
\(291\) −16.6682 −0.977106
\(292\) −4.98203 −0.291552
\(293\) −26.4618 −1.54591 −0.772956 0.634459i \(-0.781223\pi\)
−0.772956 + 0.634459i \(0.781223\pi\)
\(294\) −8.18332 −0.477261
\(295\) −7.23766 −0.421393
\(296\) −1.28454 −0.0746622
\(297\) −5.43246 −0.315223
\(298\) 15.9143 0.921888
\(299\) −3.14335 −0.181785
\(300\) 4.57365 0.264060
\(301\) 7.90160 0.455440
\(302\) 0.926954 0.0533402
\(303\) −14.1175 −0.811029
\(304\) −7.24090 −0.415294
\(305\) 2.24125 0.128334
\(306\) 4.77950 0.273226
\(307\) 26.1141 1.49041 0.745205 0.666835i \(-0.232351\pi\)
0.745205 + 0.666835i \(0.232351\pi\)
\(308\) −21.1680 −1.20616
\(309\) −0.187986 −0.0106941
\(310\) −3.39405 −0.192769
\(311\) 27.9298 1.58375 0.791877 0.610681i \(-0.209104\pi\)
0.791877 + 0.610681i \(0.209104\pi\)
\(312\) −3.14335 −0.177957
\(313\) 0.185103 0.0104627 0.00523133 0.999986i \(-0.498335\pi\)
0.00523133 + 0.999986i \(0.498335\pi\)
\(314\) 8.37925 0.472869
\(315\) 2.54430 0.143355
\(316\) 3.65080 0.205373
\(317\) −21.8614 −1.22786 −0.613928 0.789362i \(-0.710412\pi\)
−0.613928 + 0.789362i \(0.710412\pi\)
\(318\) −9.97902 −0.559596
\(319\) −5.43246 −0.304159
\(320\) −0.652958 −0.0365014
\(321\) −10.1145 −0.564538
\(322\) 3.89658 0.217148
\(323\) −34.6079 −1.92564
\(324\) 1.00000 0.0555556
\(325\) −14.3766 −0.797469
\(326\) 15.1905 0.841326
\(327\) −16.9130 −0.935290
\(328\) −5.34588 −0.295177
\(329\) −18.8365 −1.03849
\(330\) 3.54717 0.195265
\(331\) −7.34947 −0.403963 −0.201982 0.979389i \(-0.564738\pi\)
−0.201982 + 0.979389i \(0.564738\pi\)
\(332\) 8.46140 0.464380
\(333\) −1.28454 −0.0703922
\(334\) 14.5570 0.796522
\(335\) 3.26368 0.178314
\(336\) 3.89658 0.212576
\(337\) 20.0701 1.09329 0.546645 0.837365i \(-0.315905\pi\)
0.546645 + 0.837365i \(0.315905\pi\)
\(338\) −3.11935 −0.169670
\(339\) −19.0614 −1.03527
\(340\) −3.12081 −0.169250
\(341\) 28.2377 1.52916
\(342\) −7.24090 −0.391543
\(343\) −4.61089 −0.248964
\(344\) −2.02783 −0.109333
\(345\) −0.652958 −0.0351541
\(346\) −10.8097 −0.581135
\(347\) −15.6156 −0.838290 −0.419145 0.907919i \(-0.637670\pi\)
−0.419145 + 0.907919i \(0.637670\pi\)
\(348\) 1.00000 0.0536056
\(349\) −13.1335 −0.703019 −0.351509 0.936184i \(-0.614331\pi\)
−0.351509 + 0.936184i \(0.614331\pi\)
\(350\) 17.8216 0.952603
\(351\) −3.14335 −0.167780
\(352\) 5.43246 0.289551
\(353\) 4.91671 0.261690 0.130845 0.991403i \(-0.458231\pi\)
0.130845 + 0.991403i \(0.458231\pi\)
\(354\) −11.0844 −0.589131
\(355\) 0.199402 0.0105831
\(356\) 7.44828 0.394758
\(357\) 18.6237 0.985671
\(358\) −8.20054 −0.433412
\(359\) 12.3197 0.650210 0.325105 0.945678i \(-0.394600\pi\)
0.325105 + 0.945678i \(0.394600\pi\)
\(360\) −0.652958 −0.0344139
\(361\) 33.4307 1.75951
\(362\) −4.40352 −0.231444
\(363\) −18.5116 −0.971608
\(364\) −12.2483 −0.641986
\(365\) 3.25306 0.170273
\(366\) 3.43246 0.179418
\(367\) −33.3993 −1.74343 −0.871715 0.490012i \(-0.836992\pi\)
−0.871715 + 0.490012i \(0.836992\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −5.34588 −0.278296
\(370\) 0.838748 0.0436044
\(371\) −38.8840 −2.01876
\(372\) −5.19796 −0.269502
\(373\) 11.0525 0.572278 0.286139 0.958188i \(-0.407628\pi\)
0.286139 + 0.958188i \(0.407628\pi\)
\(374\) 25.9644 1.34259
\(375\) −6.25119 −0.322810
\(376\) 4.83411 0.249300
\(377\) −3.14335 −0.161891
\(378\) 3.89658 0.200418
\(379\) −22.4468 −1.15302 −0.576509 0.817091i \(-0.695585\pi\)
−0.576509 + 0.817091i \(0.695585\pi\)
\(380\) 4.72800 0.242541
\(381\) 17.0070 0.871293
\(382\) 3.17330 0.162360
\(383\) 15.0211 0.767543 0.383771 0.923428i \(-0.374625\pi\)
0.383771 + 0.923428i \(0.374625\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 13.8218 0.704424
\(386\) 24.6898 1.25668
\(387\) −2.02783 −0.103080
\(388\) 16.6682 0.846199
\(389\) 0.578161 0.0293139 0.0146570 0.999893i \(-0.495334\pi\)
0.0146570 + 0.999893i \(0.495334\pi\)
\(390\) 2.05247 0.103931
\(391\) −4.77950 −0.241710
\(392\) 8.18332 0.413320
\(393\) 14.8267 0.747907
\(394\) −1.61793 −0.0815099
\(395\) −2.38381 −0.119943
\(396\) 5.43246 0.272991
\(397\) −17.2881 −0.867667 −0.433834 0.900993i \(-0.642839\pi\)
−0.433834 + 0.900993i \(0.642839\pi\)
\(398\) 1.43101 0.0717299
\(399\) −28.2147 −1.41250
\(400\) −4.57365 −0.228682
\(401\) −24.7150 −1.23421 −0.617103 0.786882i \(-0.711694\pi\)
−0.617103 + 0.786882i \(0.711694\pi\)
\(402\) 4.99831 0.249293
\(403\) 16.3390 0.813904
\(404\) 14.1175 0.702371
\(405\) −0.652958 −0.0324457
\(406\) 3.89658 0.193384
\(407\) −6.97820 −0.345896
\(408\) −4.77950 −0.236621
\(409\) −21.3137 −1.05389 −0.526947 0.849898i \(-0.676663\pi\)
−0.526947 + 0.849898i \(0.676663\pi\)
\(410\) 3.49063 0.172390
\(411\) −5.65080 −0.278733
\(412\) 0.187986 0.00926139
\(413\) −43.1913 −2.12531
\(414\) −1.00000 −0.0491473
\(415\) −5.52494 −0.271208
\(416\) 3.14335 0.154115
\(417\) 10.3334 0.506030
\(418\) −39.3359 −1.92398
\(419\) −17.1381 −0.837253 −0.418627 0.908158i \(-0.637488\pi\)
−0.418627 + 0.908158i \(0.637488\pi\)
\(420\) −2.54430 −0.124149
\(421\) 34.8943 1.70064 0.850322 0.526263i \(-0.176407\pi\)
0.850322 + 0.526263i \(0.176407\pi\)
\(422\) 4.87050 0.237092
\(423\) 4.83411 0.235043
\(424\) 9.97902 0.484624
\(425\) −21.8597 −1.06035
\(426\) 0.305382 0.0147958
\(427\) 13.3748 0.647254
\(428\) 10.1145 0.488904
\(429\) −17.0761 −0.824443
\(430\) 1.32409 0.0638531
\(431\) −23.7793 −1.14541 −0.572705 0.819762i \(-0.694106\pi\)
−0.572705 + 0.819762i \(0.694106\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 7.11867 0.342101 0.171051 0.985262i \(-0.445284\pi\)
0.171051 + 0.985262i \(0.445284\pi\)
\(434\) −20.2543 −0.972235
\(435\) −0.652958 −0.0313069
\(436\) 16.9130 0.809985
\(437\) 7.24090 0.346379
\(438\) 4.98203 0.238051
\(439\) 22.6902 1.08294 0.541471 0.840719i \(-0.317868\pi\)
0.541471 + 0.840719i \(0.317868\pi\)
\(440\) −3.54717 −0.169104
\(441\) 8.18332 0.389682
\(442\) 15.0236 0.714602
\(443\) 22.0150 1.04597 0.522983 0.852343i \(-0.324819\pi\)
0.522983 + 0.852343i \(0.324819\pi\)
\(444\) 1.28454 0.0609614
\(445\) −4.86341 −0.230548
\(446\) −26.7563 −1.26695
\(447\) −15.9143 −0.752718
\(448\) −3.89658 −0.184096
\(449\) −0.292116 −0.0137858 −0.00689290 0.999976i \(-0.502194\pi\)
−0.00689290 + 0.999976i \(0.502194\pi\)
\(450\) −4.57365 −0.215604
\(451\) −29.0413 −1.36750
\(452\) 19.0614 0.896574
\(453\) −0.926954 −0.0435521
\(454\) −22.8435 −1.07210
\(455\) 7.99762 0.374934
\(456\) 7.24090 0.339086
\(457\) 25.2951 1.18326 0.591628 0.806211i \(-0.298485\pi\)
0.591628 + 0.806211i \(0.298485\pi\)
\(458\) −12.2649 −0.573099
\(459\) −4.77950 −0.223088
\(460\) 0.652958 0.0304443
\(461\) −13.6709 −0.636717 −0.318358 0.947970i \(-0.603131\pi\)
−0.318358 + 0.947970i \(0.603131\pi\)
\(462\) 21.1680 0.984824
\(463\) 12.7660 0.593288 0.296644 0.954988i \(-0.404132\pi\)
0.296644 + 0.954988i \(0.404132\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 3.39405 0.157395
\(466\) 26.6506 1.23457
\(467\) −32.6378 −1.51030 −0.755148 0.655555i \(-0.772435\pi\)
−0.755148 + 0.655555i \(0.772435\pi\)
\(468\) 3.14335 0.145301
\(469\) 19.4763 0.899332
\(470\) −3.15647 −0.145597
\(471\) −8.37925 −0.386096
\(472\) 11.0844 0.510202
\(473\) −11.0161 −0.506521
\(474\) −3.65080 −0.167687
\(475\) 33.1173 1.51953
\(476\) −18.6237 −0.853616
\(477\) 9.97902 0.456908
\(478\) −13.4123 −0.613466
\(479\) 10.5246 0.480882 0.240441 0.970664i \(-0.422708\pi\)
0.240441 + 0.970664i \(0.422708\pi\)
\(480\) 0.652958 0.0298033
\(481\) −4.03775 −0.184106
\(482\) 11.8596 0.540191
\(483\) −3.89658 −0.177300
\(484\) 18.5116 0.841437
\(485\) −10.8836 −0.494200
\(486\) −1.00000 −0.0453609
\(487\) −14.4635 −0.655402 −0.327701 0.944782i \(-0.606274\pi\)
−0.327701 + 0.944782i \(0.606274\pi\)
\(488\) −3.43246 −0.155380
\(489\) −15.1905 −0.686940
\(490\) −5.34336 −0.241388
\(491\) 32.7684 1.47882 0.739410 0.673256i \(-0.235105\pi\)
0.739410 + 0.673256i \(0.235105\pi\)
\(492\) 5.34588 0.241011
\(493\) −4.77950 −0.215258
\(494\) −22.7607 −1.02405
\(495\) −3.54717 −0.159433
\(496\) 5.19796 0.233395
\(497\) 1.18995 0.0533763
\(498\) −8.46140 −0.379165
\(499\) −2.09729 −0.0938875 −0.0469437 0.998898i \(-0.514948\pi\)
−0.0469437 + 0.998898i \(0.514948\pi\)
\(500\) 6.25119 0.279562
\(501\) −14.5570 −0.650357
\(502\) −3.49169 −0.155842
\(503\) 9.30673 0.414967 0.207483 0.978239i \(-0.433473\pi\)
0.207483 + 0.978239i \(0.433473\pi\)
\(504\) −3.89658 −0.173567
\(505\) −9.21812 −0.410201
\(506\) −5.43246 −0.241502
\(507\) 3.11935 0.138535
\(508\) −17.0070 −0.754562
\(509\) −27.7983 −1.23214 −0.616068 0.787693i \(-0.711275\pi\)
−0.616068 + 0.787693i \(0.711275\pi\)
\(510\) 3.12081 0.138192
\(511\) 19.4129 0.858775
\(512\) 1.00000 0.0441942
\(513\) 7.24090 0.319694
\(514\) −19.4752 −0.859015
\(515\) −0.122747 −0.00540886
\(516\) 2.02783 0.0892702
\(517\) 26.2611 1.15496
\(518\) 5.00530 0.219920
\(519\) 10.8097 0.474494
\(520\) −2.05247 −0.0900069
\(521\) −27.6140 −1.20979 −0.604895 0.796305i \(-0.706785\pi\)
−0.604895 + 0.796305i \(0.706785\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 11.6070 0.507540 0.253770 0.967265i \(-0.418329\pi\)
0.253770 + 0.967265i \(0.418329\pi\)
\(524\) −14.8267 −0.647707
\(525\) −17.8216 −0.777797
\(526\) 5.45886 0.238017
\(527\) 24.8437 1.08221
\(528\) −5.43246 −0.236417
\(529\) 1.00000 0.0434783
\(530\) −6.51588 −0.283032
\(531\) 11.0844 0.481023
\(532\) 28.2147 1.22326
\(533\) −16.8040 −0.727861
\(534\) −7.44828 −0.322318
\(535\) −6.60436 −0.285531
\(536\) −4.99831 −0.215894
\(537\) 8.20054 0.353879
\(538\) −6.24599 −0.269284
\(539\) 44.4555 1.91484
\(540\) 0.652958 0.0280988
\(541\) 25.6713 1.10369 0.551847 0.833945i \(-0.313923\pi\)
0.551847 + 0.833945i \(0.313923\pi\)
\(542\) −1.67221 −0.0718277
\(543\) 4.40352 0.188973
\(544\) 4.77950 0.204919
\(545\) −11.0435 −0.473050
\(546\) 12.2483 0.524179
\(547\) −8.82855 −0.377482 −0.188741 0.982027i \(-0.560441\pi\)
−0.188741 + 0.982027i \(0.560441\pi\)
\(548\) 5.65080 0.241390
\(549\) −3.43246 −0.146494
\(550\) −24.8461 −1.05944
\(551\) 7.24090 0.308473
\(552\) 1.00000 0.0425628
\(553\) −14.2256 −0.604934
\(554\) 0.419039 0.0178032
\(555\) −0.838748 −0.0356029
\(556\) −10.3334 −0.438234
\(557\) 23.2592 0.985523 0.492761 0.870164i \(-0.335988\pi\)
0.492761 + 0.870164i \(0.335988\pi\)
\(558\) 5.19796 0.220047
\(559\) −6.37418 −0.269599
\(560\) 2.54430 0.107516
\(561\) −25.9644 −1.09622
\(562\) −13.6630 −0.576340
\(563\) 46.2484 1.94914 0.974568 0.224090i \(-0.0719411\pi\)
0.974568 + 0.224090i \(0.0719411\pi\)
\(564\) −4.83411 −0.203553
\(565\) −12.4463 −0.523620
\(566\) 21.4837 0.903027
\(567\) −3.89658 −0.163641
\(568\) −0.305382 −0.0128136
\(569\) 33.3629 1.39864 0.699322 0.714807i \(-0.253485\pi\)
0.699322 + 0.714807i \(0.253485\pi\)
\(570\) −4.72800 −0.198034
\(571\) 28.9022 1.20952 0.604760 0.796408i \(-0.293269\pi\)
0.604760 + 0.796408i \(0.293269\pi\)
\(572\) 17.0761 0.713988
\(573\) −3.17330 −0.132566
\(574\) 20.8306 0.869454
\(575\) 4.57365 0.190734
\(576\) 1.00000 0.0416667
\(577\) −25.6706 −1.06868 −0.534341 0.845269i \(-0.679440\pi\)
−0.534341 + 0.845269i \(0.679440\pi\)
\(578\) 5.84363 0.243063
\(579\) −24.6898 −1.02607
\(580\) 0.652958 0.0271126
\(581\) −32.9705 −1.36785
\(582\) −16.6682 −0.690918
\(583\) 54.2106 2.24517
\(584\) −4.98203 −0.206158
\(585\) −2.05247 −0.0848594
\(586\) −26.4618 −1.09313
\(587\) 9.88963 0.408189 0.204094 0.978951i \(-0.434575\pi\)
0.204094 + 0.978951i \(0.434575\pi\)
\(588\) −8.18332 −0.337474
\(589\) −37.6379 −1.55084
\(590\) −7.23766 −0.297970
\(591\) 1.61793 0.0665526
\(592\) −1.28454 −0.0527941
\(593\) −11.6160 −0.477011 −0.238506 0.971141i \(-0.576658\pi\)
−0.238506 + 0.971141i \(0.576658\pi\)
\(594\) −5.43246 −0.222896
\(595\) 12.1605 0.498531
\(596\) 15.9143 0.651873
\(597\) −1.43101 −0.0585672
\(598\) −3.14335 −0.128541
\(599\) 12.0689 0.493123 0.246562 0.969127i \(-0.420699\pi\)
0.246562 + 0.969127i \(0.420699\pi\)
\(600\) 4.57365 0.186718
\(601\) 20.5093 0.836593 0.418296 0.908311i \(-0.362627\pi\)
0.418296 + 0.908311i \(0.362627\pi\)
\(602\) 7.90160 0.322045
\(603\) −4.99831 −0.203547
\(604\) 0.926954 0.0377172
\(605\) −12.0873 −0.491419
\(606\) −14.1175 −0.573484
\(607\) 9.81332 0.398310 0.199155 0.979968i \(-0.436180\pi\)
0.199155 + 0.979968i \(0.436180\pi\)
\(608\) −7.24090 −0.293657
\(609\) −3.89658 −0.157897
\(610\) 2.24125 0.0907456
\(611\) 15.1953 0.614736
\(612\) 4.77950 0.193200
\(613\) 1.34070 0.0541505 0.0270752 0.999633i \(-0.491381\pi\)
0.0270752 + 0.999633i \(0.491381\pi\)
\(614\) 26.1141 1.05388
\(615\) −3.49063 −0.140756
\(616\) −21.1680 −0.852883
\(617\) 33.6334 1.35403 0.677015 0.735970i \(-0.263273\pi\)
0.677015 + 0.735970i \(0.263273\pi\)
\(618\) −0.187986 −0.00756189
\(619\) −26.8643 −1.07977 −0.539884 0.841739i \(-0.681532\pi\)
−0.539884 + 0.841739i \(0.681532\pi\)
\(620\) −3.39405 −0.136308
\(621\) 1.00000 0.0401286
\(622\) 27.9298 1.11988
\(623\) −29.0228 −1.16277
\(624\) −3.14335 −0.125835
\(625\) 18.7865 0.751459
\(626\) 0.185103 0.00739822
\(627\) 39.3359 1.57093
\(628\) 8.37925 0.334369
\(629\) −6.13945 −0.244796
\(630\) 2.54430 0.101367
\(631\) −44.5346 −1.77290 −0.886448 0.462828i \(-0.846835\pi\)
−0.886448 + 0.462828i \(0.846835\pi\)
\(632\) 3.65080 0.145221
\(633\) −4.87050 −0.193585
\(634\) −21.8614 −0.868225
\(635\) 11.1048 0.440681
\(636\) −9.97902 −0.395694
\(637\) 25.7230 1.01918
\(638\) −5.43246 −0.215073
\(639\) −0.305382 −0.0120807
\(640\) −0.652958 −0.0258104
\(641\) 35.3226 1.39516 0.697579 0.716508i \(-0.254261\pi\)
0.697579 + 0.716508i \(0.254261\pi\)
\(642\) −10.1145 −0.399189
\(643\) −19.0175 −0.749977 −0.374989 0.927029i \(-0.622353\pi\)
−0.374989 + 0.927029i \(0.622353\pi\)
\(644\) 3.89658 0.153547
\(645\) −1.32409 −0.0521359
\(646\) −34.6079 −1.36163
\(647\) −38.0528 −1.49601 −0.748004 0.663694i \(-0.768988\pi\)
−0.748004 + 0.663694i \(0.768988\pi\)
\(648\) 1.00000 0.0392837
\(649\) 60.2157 2.36367
\(650\) −14.3766 −0.563895
\(651\) 20.2543 0.793827
\(652\) 15.1905 0.594907
\(653\) 31.7439 1.24223 0.621117 0.783718i \(-0.286679\pi\)
0.621117 + 0.783718i \(0.286679\pi\)
\(654\) −16.9130 −0.661350
\(655\) 9.68120 0.378276
\(656\) −5.34588 −0.208722
\(657\) −4.98203 −0.194368
\(658\) −18.8365 −0.734323
\(659\) 10.9149 0.425182 0.212591 0.977141i \(-0.431810\pi\)
0.212591 + 0.977141i \(0.431810\pi\)
\(660\) 3.54717 0.138073
\(661\) 8.37866 0.325892 0.162946 0.986635i \(-0.447900\pi\)
0.162946 + 0.986635i \(0.447900\pi\)
\(662\) −7.34947 −0.285645
\(663\) −15.0236 −0.583470
\(664\) 8.46140 0.328366
\(665\) −18.4230 −0.714415
\(666\) −1.28454 −0.0497748
\(667\) 1.00000 0.0387202
\(668\) 14.5570 0.563226
\(669\) 26.7563 1.03446
\(670\) 3.26368 0.126087
\(671\) −18.6467 −0.719848
\(672\) 3.89658 0.150314
\(673\) 16.0566 0.618937 0.309468 0.950910i \(-0.399849\pi\)
0.309468 + 0.950910i \(0.399849\pi\)
\(674\) 20.0701 0.773072
\(675\) 4.57365 0.176040
\(676\) −3.11935 −0.119975
\(677\) −5.05183 −0.194158 −0.0970788 0.995277i \(-0.530950\pi\)
−0.0970788 + 0.995277i \(0.530950\pi\)
\(678\) −19.0614 −0.732049
\(679\) −64.9489 −2.49251
\(680\) −3.12081 −0.119678
\(681\) 22.8435 0.875365
\(682\) 28.2377 1.08128
\(683\) 51.1418 1.95689 0.978444 0.206511i \(-0.0662110\pi\)
0.978444 + 0.206511i \(0.0662110\pi\)
\(684\) −7.24090 −0.276863
\(685\) −3.68973 −0.140977
\(686\) −4.61089 −0.176044
\(687\) 12.2649 0.467934
\(688\) −2.02783 −0.0773103
\(689\) 31.3675 1.19501
\(690\) −0.652958 −0.0248577
\(691\) −29.9142 −1.13799 −0.568994 0.822341i \(-0.692667\pi\)
−0.568994 + 0.822341i \(0.692667\pi\)
\(692\) −10.8097 −0.410924
\(693\) −21.1680 −0.804106
\(694\) −15.6156 −0.592760
\(695\) 6.74728 0.255939
\(696\) 1.00000 0.0379049
\(697\) −25.5507 −0.967800
\(698\) −13.1335 −0.497109
\(699\) −26.6506 −1.00802
\(700\) 17.8216 0.673592
\(701\) −40.3529 −1.52411 −0.762054 0.647513i \(-0.775809\pi\)
−0.762054 + 0.647513i \(0.775809\pi\)
\(702\) −3.14335 −0.118638
\(703\) 9.30121 0.350802
\(704\) 5.43246 0.204744
\(705\) 3.15647 0.118880
\(706\) 4.91671 0.185043
\(707\) −55.0099 −2.06886
\(708\) −11.0844 −0.416578
\(709\) 20.5292 0.770988 0.385494 0.922710i \(-0.374031\pi\)
0.385494 + 0.922710i \(0.374031\pi\)
\(710\) 0.199402 0.00748341
\(711\) 3.65080 0.136916
\(712\) 7.44828 0.279136
\(713\) −5.19796 −0.194665
\(714\) 18.6237 0.696974
\(715\) −11.1500 −0.416986
\(716\) −8.20054 −0.306469
\(717\) 13.4123 0.500893
\(718\) 12.3197 0.459768
\(719\) −36.0665 −1.34505 −0.672526 0.740073i \(-0.734791\pi\)
−0.672526 + 0.740073i \(0.734791\pi\)
\(720\) −0.652958 −0.0243343
\(721\) −0.732501 −0.0272797
\(722\) 33.4307 1.24416
\(723\) −11.8596 −0.441064
\(724\) −4.40352 −0.163655
\(725\) 4.57365 0.169861
\(726\) −18.5116 −0.687030
\(727\) −43.4068 −1.60987 −0.804934 0.593364i \(-0.797800\pi\)
−0.804934 + 0.593364i \(0.797800\pi\)
\(728\) −12.2483 −0.453952
\(729\) 1.00000 0.0370370
\(730\) 3.25306 0.120401
\(731\) −9.69202 −0.358472
\(732\) 3.43246 0.126867
\(733\) −45.9201 −1.69610 −0.848048 0.529919i \(-0.822222\pi\)
−0.848048 + 0.529919i \(0.822222\pi\)
\(734\) −33.3993 −1.23279
\(735\) 5.34336 0.197093
\(736\) −1.00000 −0.0368605
\(737\) −27.1531 −1.00020
\(738\) −5.34588 −0.196785
\(739\) −19.2125 −0.706742 −0.353371 0.935483i \(-0.614965\pi\)
−0.353371 + 0.935483i \(0.614965\pi\)
\(740\) 0.838748 0.0308330
\(741\) 22.7607 0.836135
\(742\) −38.8840 −1.42748
\(743\) −51.9343 −1.90529 −0.952643 0.304092i \(-0.901647\pi\)
−0.952643 + 0.304092i \(0.901647\pi\)
\(744\) −5.19796 −0.190566
\(745\) −10.3913 −0.380709
\(746\) 11.0525 0.404662
\(747\) 8.46140 0.309587
\(748\) 25.9644 0.949354
\(749\) −39.4121 −1.44009
\(750\) −6.25119 −0.228261
\(751\) −26.3797 −0.962610 −0.481305 0.876553i \(-0.659837\pi\)
−0.481305 + 0.876553i \(0.659837\pi\)
\(752\) 4.83411 0.176282
\(753\) 3.49169 0.127244
\(754\) −3.14335 −0.114474
\(755\) −0.605262 −0.0220277
\(756\) 3.89658 0.141717
\(757\) −1.11874 −0.0406614 −0.0203307 0.999793i \(-0.506472\pi\)
−0.0203307 + 0.999793i \(0.506472\pi\)
\(758\) −22.4468 −0.815306
\(759\) 5.43246 0.197186
\(760\) 4.72800 0.171503
\(761\) −20.8316 −0.755147 −0.377573 0.925980i \(-0.623241\pi\)
−0.377573 + 0.925980i \(0.623241\pi\)
\(762\) 17.0070 0.616097
\(763\) −65.9028 −2.38584
\(764\) 3.17330 0.114806
\(765\) −3.12081 −0.112833
\(766\) 15.0211 0.542735
\(767\) 34.8422 1.25808
\(768\) −1.00000 −0.0360844
\(769\) 20.3376 0.733394 0.366697 0.930340i \(-0.380489\pi\)
0.366697 + 0.930340i \(0.380489\pi\)
\(770\) 13.8218 0.498103
\(771\) 19.4752 0.701383
\(772\) 24.6898 0.888606
\(773\) 47.2163 1.69825 0.849126 0.528190i \(-0.177129\pi\)
0.849126 + 0.528190i \(0.177129\pi\)
\(774\) −2.02783 −0.0728888
\(775\) −23.7736 −0.853974
\(776\) 16.6682 0.598353
\(777\) −5.00530 −0.179564
\(778\) 0.578161 0.0207281
\(779\) 38.7090 1.38689
\(780\) 2.05247 0.0734904
\(781\) −1.65898 −0.0593628
\(782\) −4.77950 −0.170915
\(783\) 1.00000 0.0357371
\(784\) 8.18332 0.292261
\(785\) −5.47130 −0.195279
\(786\) 14.8267 0.528850
\(787\) 31.8505 1.13535 0.567675 0.823253i \(-0.307843\pi\)
0.567675 + 0.823253i \(0.307843\pi\)
\(788\) −1.61793 −0.0576362
\(789\) −5.45886 −0.194340
\(790\) −2.38381 −0.0848123
\(791\) −74.2743 −2.64089
\(792\) 5.43246 0.193034
\(793\) −10.7894 −0.383144
\(794\) −17.2881 −0.613533
\(795\) 6.51588 0.231094
\(796\) 1.43101 0.0507207
\(797\) −14.9421 −0.529278 −0.264639 0.964348i \(-0.585253\pi\)
−0.264639 + 0.964348i \(0.585253\pi\)
\(798\) −28.2147 −0.998791
\(799\) 23.1046 0.817384
\(800\) −4.57365 −0.161703
\(801\) 7.44828 0.263172
\(802\) −24.7150 −0.872716
\(803\) −27.0647 −0.955092
\(804\) 4.99831 0.176277
\(805\) −2.54430 −0.0896748
\(806\) 16.3390 0.575517
\(807\) 6.24599 0.219869
\(808\) 14.1175 0.496652
\(809\) 37.2618 1.31005 0.655027 0.755606i \(-0.272657\pi\)
0.655027 + 0.755606i \(0.272657\pi\)
\(810\) −0.652958 −0.0229426
\(811\) 11.5548 0.405744 0.202872 0.979205i \(-0.434972\pi\)
0.202872 + 0.979205i \(0.434972\pi\)
\(812\) 3.89658 0.136743
\(813\) 1.67221 0.0586471
\(814\) −6.97820 −0.244586
\(815\) −9.91878 −0.347440
\(816\) −4.77950 −0.167316
\(817\) 14.6833 0.513704
\(818\) −21.3137 −0.745216
\(819\) −12.2483 −0.427990
\(820\) 3.49063 0.121898
\(821\) −48.0919 −1.67842 −0.839209 0.543810i \(-0.816981\pi\)
−0.839209 + 0.543810i \(0.816981\pi\)
\(822\) −5.65080 −0.197094
\(823\) −16.1071 −0.561457 −0.280728 0.959787i \(-0.590576\pi\)
−0.280728 + 0.959787i \(0.590576\pi\)
\(824\) 0.187986 0.00654879
\(825\) 24.8461 0.865032
\(826\) −43.1913 −1.50282
\(827\) −19.8361 −0.689769 −0.344884 0.938645i \(-0.612082\pi\)
−0.344884 + 0.938645i \(0.612082\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −24.9727 −0.867339 −0.433670 0.901072i \(-0.642781\pi\)
−0.433670 + 0.901072i \(0.642781\pi\)
\(830\) −5.52494 −0.191773
\(831\) −0.419039 −0.0145363
\(832\) 3.14335 0.108976
\(833\) 39.1122 1.35516
\(834\) 10.3334 0.357817
\(835\) −9.50508 −0.328937
\(836\) −39.3359 −1.36046
\(837\) −5.19796 −0.179668
\(838\) −17.1381 −0.592027
\(839\) 28.9294 0.998753 0.499376 0.866385i \(-0.333562\pi\)
0.499376 + 0.866385i \(0.333562\pi\)
\(840\) −2.54430 −0.0877867
\(841\) 1.00000 0.0344828
\(842\) 34.8943 1.20254
\(843\) 13.6630 0.470579
\(844\) 4.87050 0.167649
\(845\) 2.03681 0.0700682
\(846\) 4.83411 0.166200
\(847\) −72.1319 −2.47848
\(848\) 9.97902 0.342681
\(849\) −21.4837 −0.737318
\(850\) −21.8597 −0.749783
\(851\) 1.28454 0.0440334
\(852\) 0.305382 0.0104622
\(853\) −42.1465 −1.44307 −0.721535 0.692378i \(-0.756563\pi\)
−0.721535 + 0.692378i \(0.756563\pi\)
\(854\) 13.3748 0.457678
\(855\) 4.72800 0.161694
\(856\) 10.1145 0.345708
\(857\) 41.3067 1.41101 0.705506 0.708704i \(-0.250720\pi\)
0.705506 + 0.708704i \(0.250720\pi\)
\(858\) −17.0761 −0.582969
\(859\) −19.9708 −0.681396 −0.340698 0.940173i \(-0.610663\pi\)
−0.340698 + 0.940173i \(0.610663\pi\)
\(860\) 1.32409 0.0451510
\(861\) −20.8306 −0.709907
\(862\) −23.7793 −0.809927
\(863\) −37.1083 −1.26318 −0.631590 0.775302i \(-0.717597\pi\)
−0.631590 + 0.775302i \(0.717597\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 7.05829 0.239989
\(866\) 7.11867 0.241902
\(867\) −5.84363 −0.198460
\(868\) −20.2543 −0.687474
\(869\) 19.8328 0.672782
\(870\) −0.652958 −0.0221373
\(871\) −15.7114 −0.532361
\(872\) 16.9130 0.572746
\(873\) 16.6682 0.564133
\(874\) 7.24090 0.244927
\(875\) −24.3582 −0.823458
\(876\) 4.98203 0.168327
\(877\) 39.2808 1.32642 0.663210 0.748433i \(-0.269194\pi\)
0.663210 + 0.748433i \(0.269194\pi\)
\(878\) 22.6902 0.765756
\(879\) 26.4618 0.892533
\(880\) −3.54717 −0.119575
\(881\) −53.5324 −1.80355 −0.901776 0.432203i \(-0.857736\pi\)
−0.901776 + 0.432203i \(0.857736\pi\)
\(882\) 8.18332 0.275547
\(883\) 51.9053 1.74675 0.873377 0.487045i \(-0.161925\pi\)
0.873377 + 0.487045i \(0.161925\pi\)
\(884\) 15.0236 0.505300
\(885\) 7.23766 0.243291
\(886\) 22.0150 0.739609
\(887\) −3.83770 −0.128857 −0.0644286 0.997922i \(-0.520522\pi\)
−0.0644286 + 0.997922i \(0.520522\pi\)
\(888\) 1.28454 0.0431062
\(889\) 66.2689 2.22259
\(890\) −4.86341 −0.163022
\(891\) 5.43246 0.181994
\(892\) −26.7563 −0.895867
\(893\) −35.0033 −1.17134
\(894\) −15.9143 −0.532252
\(895\) 5.35461 0.178985
\(896\) −3.89658 −0.130176
\(897\) 3.14335 0.104953
\(898\) −0.292116 −0.00974803
\(899\) −5.19796 −0.173362
\(900\) −4.57365 −0.152455
\(901\) 47.6947 1.58894
\(902\) −29.0413 −0.966969
\(903\) −7.90160 −0.262949
\(904\) 19.0614 0.633973
\(905\) 2.87531 0.0955785
\(906\) −0.926954 −0.0307960
\(907\) −37.8368 −1.25635 −0.628176 0.778071i \(-0.716198\pi\)
−0.628176 + 0.778071i \(0.716198\pi\)
\(908\) −22.8435 −0.758089
\(909\) 14.1175 0.468248
\(910\) 7.99762 0.265119
\(911\) −24.0810 −0.797838 −0.398919 0.916986i \(-0.630615\pi\)
−0.398919 + 0.916986i \(0.630615\pi\)
\(912\) 7.24090 0.239770
\(913\) 45.9662 1.52126
\(914\) 25.2951 0.836689
\(915\) −2.24125 −0.0740934
\(916\) −12.2649 −0.405243
\(917\) 57.7733 1.90784
\(918\) −4.77950 −0.157747
\(919\) −48.0124 −1.58378 −0.791891 0.610663i \(-0.790903\pi\)
−0.791891 + 0.610663i \(0.790903\pi\)
\(920\) 0.652958 0.0215274
\(921\) −26.1141 −0.860489
\(922\) −13.6709 −0.450227
\(923\) −0.959923 −0.0315962
\(924\) 21.1680 0.696376
\(925\) 5.87502 0.193169
\(926\) 12.7660 0.419518
\(927\) 0.187986 0.00617426
\(928\) −1.00000 −0.0328266
\(929\) −32.3276 −1.06064 −0.530318 0.847799i \(-0.677927\pi\)
−0.530318 + 0.847799i \(0.677927\pi\)
\(930\) 3.39405 0.111295
\(931\) −59.2546 −1.94199
\(932\) 26.6506 0.872971
\(933\) −27.9298 −0.914381
\(934\) −32.6378 −1.06794
\(935\) −16.9537 −0.554445
\(936\) 3.14335 0.102744
\(937\) 31.2124 1.01966 0.509832 0.860274i \(-0.329708\pi\)
0.509832 + 0.860274i \(0.329708\pi\)
\(938\) 19.4763 0.635923
\(939\) −0.185103 −0.00604062
\(940\) −3.15647 −0.102953
\(941\) 24.6942 0.805009 0.402504 0.915418i \(-0.368140\pi\)
0.402504 + 0.915418i \(0.368140\pi\)
\(942\) −8.37925 −0.273011
\(943\) 5.34588 0.174086
\(944\) 11.0844 0.360767
\(945\) −2.54430 −0.0827661
\(946\) −11.0161 −0.358164
\(947\) −28.0075 −0.910120 −0.455060 0.890461i \(-0.650382\pi\)
−0.455060 + 0.890461i \(0.650382\pi\)
\(948\) −3.65080 −0.118572
\(949\) −15.6603 −0.508354
\(950\) 33.1173 1.07447
\(951\) 21.8614 0.708903
\(952\) −18.6237 −0.603598
\(953\) 37.6733 1.22036 0.610179 0.792264i \(-0.291098\pi\)
0.610179 + 0.792264i \(0.291098\pi\)
\(954\) 9.97902 0.323083
\(955\) −2.07203 −0.0670492
\(956\) −13.4123 −0.433786
\(957\) 5.43246 0.175606
\(958\) 10.5246 0.340035
\(959\) −22.0188 −0.711023
\(960\) 0.652958 0.0210741
\(961\) −3.98120 −0.128426
\(962\) −4.03775 −0.130182
\(963\) 10.1145 0.325936
\(964\) 11.8596 0.381973
\(965\) −16.1214 −0.518966
\(966\) −3.89658 −0.125370
\(967\) −34.7085 −1.11615 −0.558075 0.829790i \(-0.688460\pi\)
−0.558075 + 0.829790i \(0.688460\pi\)
\(968\) 18.5116 0.594986
\(969\) 34.6079 1.11177
\(970\) −10.8836 −0.349452
\(971\) 7.32986 0.235226 0.117613 0.993059i \(-0.462476\pi\)
0.117613 + 0.993059i \(0.462476\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 40.2650 1.29084
\(974\) −14.4635 −0.463439
\(975\) 14.3766 0.460419
\(976\) −3.43246 −0.109870
\(977\) −8.22242 −0.263059 −0.131529 0.991312i \(-0.541989\pi\)
−0.131529 + 0.991312i \(0.541989\pi\)
\(978\) −15.1905 −0.485740
\(979\) 40.4624 1.29319
\(980\) −5.34336 −0.170687
\(981\) 16.9130 0.539990
\(982\) 32.7684 1.04568
\(983\) 40.7529 1.29982 0.649908 0.760013i \(-0.274807\pi\)
0.649908 + 0.760013i \(0.274807\pi\)
\(984\) 5.34588 0.170421
\(985\) 1.05644 0.0336609
\(986\) −4.77950 −0.152210
\(987\) 18.8365 0.599572
\(988\) −22.7607 −0.724114
\(989\) 2.02783 0.0644812
\(990\) −3.54717 −0.112736
\(991\) −51.3663 −1.63171 −0.815853 0.578260i \(-0.803732\pi\)
−0.815853 + 0.578260i \(0.803732\pi\)
\(992\) 5.19796 0.165035
\(993\) 7.34947 0.233228
\(994\) 1.18995 0.0377428
\(995\) −0.934386 −0.0296220
\(996\) −8.46140 −0.268110
\(997\) −19.9052 −0.630405 −0.315202 0.949025i \(-0.602072\pi\)
−0.315202 + 0.949025i \(0.602072\pi\)
\(998\) −2.09729 −0.0663885
\(999\) 1.28454 0.0406410
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bk.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bk.1.4 8 1.1 even 1 trivial