Properties

Label 4002.2.a.bk.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 30x^{6} + 52x^{5} + 267x^{4} - 352x^{3} - 632x^{2} + 240x + 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.12580\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.12580 q^{5} -1.00000 q^{6} -0.350474 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.12580 q^{5} -1.00000 q^{6} -0.350474 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.12580 q^{10} -2.98960 q^{11} -1.00000 q^{12} +2.39608 q^{13} -0.350474 q^{14} +1.12580 q^{15} +1.00000 q^{16} -4.11540 q^{17} +1.00000 q^{18} +8.36517 q^{19} -1.12580 q^{20} +0.350474 q^{21} -2.98960 q^{22} -1.00000 q^{23} -1.00000 q^{24} -3.73257 q^{25} +2.39608 q^{26} -1.00000 q^{27} -0.350474 q^{28} -1.00000 q^{29} +1.12580 q^{30} +7.08620 q^{31} +1.00000 q^{32} +2.98960 q^{33} -4.11540 q^{34} +0.394564 q^{35} +1.00000 q^{36} -8.11825 q^{37} +8.36517 q^{38} -2.39608 q^{39} -1.12580 q^{40} +8.02165 q^{41} +0.350474 q^{42} +5.37579 q^{43} -2.98960 q^{44} -1.12580 q^{45} -1.00000 q^{46} -1.42528 q^{47} -1.00000 q^{48} -6.87717 q^{49} -3.73257 q^{50} +4.11540 q^{51} +2.39608 q^{52} +1.66480 q^{53} -1.00000 q^{54} +3.36569 q^{55} -0.350474 q^{56} -8.36517 q^{57} -1.00000 q^{58} -12.0108 q^{59} +1.12580 q^{60} +4.98960 q^{61} +7.08620 q^{62} -0.350474 q^{63} +1.00000 q^{64} -2.69751 q^{65} +2.98960 q^{66} +13.7129 q^{67} -4.11540 q^{68} +1.00000 q^{69} +0.394564 q^{70} +4.56540 q^{71} +1.00000 q^{72} +16.5331 q^{73} -8.11825 q^{74} +3.73257 q^{75} +8.36517 q^{76} +1.04778 q^{77} -2.39608 q^{78} +12.4519 q^{79} -1.12580 q^{80} +1.00000 q^{81} +8.02165 q^{82} +1.75023 q^{83} +0.350474 q^{84} +4.63312 q^{85} +5.37579 q^{86} +1.00000 q^{87} -2.98960 q^{88} -7.49934 q^{89} -1.12580 q^{90} -0.839764 q^{91} -1.00000 q^{92} -7.08620 q^{93} -1.42528 q^{94} -9.41752 q^{95} -1.00000 q^{96} +14.1692 q^{97} -6.87717 q^{98} -2.98960 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9} + 2 q^{10} + 3 q^{11} - 8 q^{12} + 13 q^{13} + 5 q^{14} - 2 q^{15} + 8 q^{16} + 5 q^{17} + 8 q^{18} + 7 q^{19} + 2 q^{20} - 5 q^{21} + 3 q^{22} - 8 q^{23} - 8 q^{24} + 24 q^{25} + 13 q^{26} - 8 q^{27} + 5 q^{28} - 8 q^{29} - 2 q^{30} + 15 q^{31} + 8 q^{32} - 3 q^{33} + 5 q^{34} + 9 q^{35} + 8 q^{36} + 22 q^{37} + 7 q^{38} - 13 q^{39} + 2 q^{40} - 8 q^{41} - 5 q^{42} - q^{43} + 3 q^{44} + 2 q^{45} - 8 q^{46} - 9 q^{47} - 8 q^{48} + 33 q^{49} + 24 q^{50} - 5 q^{51} + 13 q^{52} + 14 q^{53} - 8 q^{54} - 17 q^{55} + 5 q^{56} - 7 q^{57} - 8 q^{58} - 4 q^{59} - 2 q^{60} + 13 q^{61} + 15 q^{62} + 5 q^{63} + 8 q^{64} + 21 q^{65} - 3 q^{66} - 3 q^{67} + 5 q^{68} + 8 q^{69} + 9 q^{70} + 7 q^{71} + 8 q^{72} + 16 q^{73} + 22 q^{74} - 24 q^{75} + 7 q^{76} - 13 q^{78} + 14 q^{79} + 2 q^{80} + 8 q^{81} - 8 q^{82} + 36 q^{83} - 5 q^{84} + 47 q^{85} - q^{86} + 8 q^{87} + 3 q^{88} - 12 q^{89} + 2 q^{90} + 20 q^{91} - 8 q^{92} - 15 q^{93} - 9 q^{94} + 7 q^{95} - 8 q^{96} + 10 q^{97} + 33 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.12580 −0.503474 −0.251737 0.967796i \(-0.581002\pi\)
−0.251737 + 0.967796i \(0.581002\pi\)
\(6\) −1.00000 −0.408248
\(7\) −0.350474 −0.132467 −0.0662334 0.997804i \(-0.521098\pi\)
−0.0662334 + 0.997804i \(0.521098\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.12580 −0.356010
\(11\) −2.98960 −0.901397 −0.450698 0.892676i \(-0.648825\pi\)
−0.450698 + 0.892676i \(0.648825\pi\)
\(12\) −1.00000 −0.288675
\(13\) 2.39608 0.664553 0.332277 0.943182i \(-0.392183\pi\)
0.332277 + 0.943182i \(0.392183\pi\)
\(14\) −0.350474 −0.0936681
\(15\) 1.12580 0.290681
\(16\) 1.00000 0.250000
\(17\) −4.11540 −0.998130 −0.499065 0.866564i \(-0.666323\pi\)
−0.499065 + 0.866564i \(0.666323\pi\)
\(18\) 1.00000 0.235702
\(19\) 8.36517 1.91910 0.959551 0.281536i \(-0.0908438\pi\)
0.959551 + 0.281536i \(0.0908438\pi\)
\(20\) −1.12580 −0.251737
\(21\) 0.350474 0.0764797
\(22\) −2.98960 −0.637384
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) −3.73257 −0.746514
\(26\) 2.39608 0.469910
\(27\) −1.00000 −0.192450
\(28\) −0.350474 −0.0662334
\(29\) −1.00000 −0.185695
\(30\) 1.12580 0.205542
\(31\) 7.08620 1.27272 0.636359 0.771393i \(-0.280440\pi\)
0.636359 + 0.771393i \(0.280440\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.98960 0.520422
\(34\) −4.11540 −0.705785
\(35\) 0.394564 0.0666935
\(36\) 1.00000 0.166667
\(37\) −8.11825 −1.33463 −0.667316 0.744775i \(-0.732557\pi\)
−0.667316 + 0.744775i \(0.732557\pi\)
\(38\) 8.36517 1.35701
\(39\) −2.39608 −0.383680
\(40\) −1.12580 −0.178005
\(41\) 8.02165 1.25277 0.626385 0.779514i \(-0.284534\pi\)
0.626385 + 0.779514i \(0.284534\pi\)
\(42\) 0.350474 0.0540793
\(43\) 5.37579 0.819801 0.409900 0.912130i \(-0.365563\pi\)
0.409900 + 0.912130i \(0.365563\pi\)
\(44\) −2.98960 −0.450698
\(45\) −1.12580 −0.167825
\(46\) −1.00000 −0.147442
\(47\) −1.42528 −0.207898 −0.103949 0.994583i \(-0.533148\pi\)
−0.103949 + 0.994583i \(0.533148\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.87717 −0.982453
\(50\) −3.73257 −0.527865
\(51\) 4.11540 0.576271
\(52\) 2.39608 0.332277
\(53\) 1.66480 0.228678 0.114339 0.993442i \(-0.463525\pi\)
0.114339 + 0.993442i \(0.463525\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.36569 0.453830
\(56\) −0.350474 −0.0468341
\(57\) −8.36517 −1.10799
\(58\) −1.00000 −0.131306
\(59\) −12.0108 −1.56367 −0.781837 0.623482i \(-0.785717\pi\)
−0.781837 + 0.623482i \(0.785717\pi\)
\(60\) 1.12580 0.145340
\(61\) 4.98960 0.638852 0.319426 0.947611i \(-0.396510\pi\)
0.319426 + 0.947611i \(0.396510\pi\)
\(62\) 7.08620 0.899948
\(63\) −0.350474 −0.0441556
\(64\) 1.00000 0.125000
\(65\) −2.69751 −0.334585
\(66\) 2.98960 0.367994
\(67\) 13.7129 1.67529 0.837646 0.546214i \(-0.183931\pi\)
0.837646 + 0.546214i \(0.183931\pi\)
\(68\) −4.11540 −0.499065
\(69\) 1.00000 0.120386
\(70\) 0.394564 0.0471594
\(71\) 4.56540 0.541814 0.270907 0.962606i \(-0.412676\pi\)
0.270907 + 0.962606i \(0.412676\pi\)
\(72\) 1.00000 0.117851
\(73\) 16.5331 1.93506 0.967528 0.252764i \(-0.0813398\pi\)
0.967528 + 0.252764i \(0.0813398\pi\)
\(74\) −8.11825 −0.943727
\(75\) 3.73257 0.431000
\(76\) 8.36517 0.959551
\(77\) 1.04778 0.119405
\(78\) −2.39608 −0.271303
\(79\) 12.4519 1.40095 0.700473 0.713678i \(-0.252972\pi\)
0.700473 + 0.713678i \(0.252972\pi\)
\(80\) −1.12580 −0.125868
\(81\) 1.00000 0.111111
\(82\) 8.02165 0.885843
\(83\) 1.75023 0.192112 0.0960562 0.995376i \(-0.469377\pi\)
0.0960562 + 0.995376i \(0.469377\pi\)
\(84\) 0.350474 0.0382399
\(85\) 4.63312 0.502532
\(86\) 5.37579 0.579687
\(87\) 1.00000 0.107211
\(88\) −2.98960 −0.318692
\(89\) −7.49934 −0.794928 −0.397464 0.917618i \(-0.630110\pi\)
−0.397464 + 0.917618i \(0.630110\pi\)
\(90\) −1.12580 −0.118670
\(91\) −0.839764 −0.0880312
\(92\) −1.00000 −0.104257
\(93\) −7.08620 −0.734804
\(94\) −1.42528 −0.147006
\(95\) −9.41752 −0.966217
\(96\) −1.00000 −0.102062
\(97\) 14.1692 1.43867 0.719334 0.694664i \(-0.244447\pi\)
0.719334 + 0.694664i \(0.244447\pi\)
\(98\) −6.87717 −0.694699
\(99\) −2.98960 −0.300466
\(100\) −3.73257 −0.373257
\(101\) 1.79712 0.178820 0.0894102 0.995995i \(-0.471502\pi\)
0.0894102 + 0.995995i \(0.471502\pi\)
\(102\) 4.11540 0.407485
\(103\) 0.657566 0.0647919 0.0323959 0.999475i \(-0.489686\pi\)
0.0323959 + 0.999475i \(0.489686\pi\)
\(104\) 2.39608 0.234955
\(105\) −0.394564 −0.0385055
\(106\) 1.66480 0.161699
\(107\) 1.62485 0.157080 0.0785402 0.996911i \(-0.474974\pi\)
0.0785402 + 0.996911i \(0.474974\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −0.828964 −0.0794003 −0.0397002 0.999212i \(-0.512640\pi\)
−0.0397002 + 0.999212i \(0.512640\pi\)
\(110\) 3.36569 0.320906
\(111\) 8.11825 0.770550
\(112\) −0.350474 −0.0331167
\(113\) 15.9989 1.50505 0.752526 0.658562i \(-0.228835\pi\)
0.752526 + 0.658562i \(0.228835\pi\)
\(114\) −8.36517 −0.783470
\(115\) 1.12580 0.104982
\(116\) −1.00000 −0.0928477
\(117\) 2.39608 0.221518
\(118\) −12.0108 −1.10569
\(119\) 1.44234 0.132219
\(120\) 1.12580 0.102771
\(121\) −2.06232 −0.187483
\(122\) 4.98960 0.451737
\(123\) −8.02165 −0.723287
\(124\) 7.08620 0.636359
\(125\) 9.83114 0.879324
\(126\) −0.350474 −0.0312227
\(127\) −14.0607 −1.24769 −0.623844 0.781549i \(-0.714430\pi\)
−0.623844 + 0.781549i \(0.714430\pi\)
\(128\) 1.00000 0.0883883
\(129\) −5.37579 −0.473312
\(130\) −2.69751 −0.236587
\(131\) 8.53005 0.745274 0.372637 0.927977i \(-0.378454\pi\)
0.372637 + 0.927977i \(0.378454\pi\)
\(132\) 2.98960 0.260211
\(133\) −2.93177 −0.254217
\(134\) 13.7129 1.18461
\(135\) 1.12580 0.0968936
\(136\) −4.11540 −0.352892
\(137\) 14.4519 1.23471 0.617354 0.786685i \(-0.288205\pi\)
0.617354 + 0.786685i \(0.288205\pi\)
\(138\) 1.00000 0.0851257
\(139\) −21.4164 −1.81652 −0.908259 0.418407i \(-0.862588\pi\)
−0.908259 + 0.418407i \(0.862588\pi\)
\(140\) 0.394564 0.0333468
\(141\) 1.42528 0.120030
\(142\) 4.56540 0.383120
\(143\) −7.16331 −0.599026
\(144\) 1.00000 0.0833333
\(145\) 1.12580 0.0934927
\(146\) 16.5331 1.36829
\(147\) 6.87717 0.567219
\(148\) −8.11825 −0.667316
\(149\) 12.6490 1.03625 0.518124 0.855306i \(-0.326631\pi\)
0.518124 + 0.855306i \(0.326631\pi\)
\(150\) 3.73257 0.304763
\(151\) 3.81570 0.310517 0.155259 0.987874i \(-0.450379\pi\)
0.155259 + 0.987874i \(0.450379\pi\)
\(152\) 8.36517 0.678505
\(153\) −4.11540 −0.332710
\(154\) 1.04778 0.0844322
\(155\) −7.97765 −0.640780
\(156\) −2.39608 −0.191840
\(157\) 23.5540 1.87981 0.939906 0.341434i \(-0.110913\pi\)
0.939906 + 0.341434i \(0.110913\pi\)
\(158\) 12.4519 0.990619
\(159\) −1.66480 −0.132027
\(160\) −1.12580 −0.0890024
\(161\) 0.350474 0.0276212
\(162\) 1.00000 0.0785674
\(163\) −0.0185758 −0.00145497 −0.000727486 1.00000i \(-0.500232\pi\)
−0.000727486 1.00000i \(0.500232\pi\)
\(164\) 8.02165 0.626385
\(165\) −3.36569 −0.262019
\(166\) 1.75023 0.135844
\(167\) −0.936111 −0.0724385 −0.0362192 0.999344i \(-0.511531\pi\)
−0.0362192 + 0.999344i \(0.511531\pi\)
\(168\) 0.350474 0.0270397
\(169\) −7.25880 −0.558369
\(170\) 4.63312 0.355344
\(171\) 8.36517 0.639700
\(172\) 5.37579 0.409900
\(173\) 18.2665 1.38878 0.694390 0.719599i \(-0.255674\pi\)
0.694390 + 0.719599i \(0.255674\pi\)
\(174\) 1.00000 0.0758098
\(175\) 1.30817 0.0988883
\(176\) −2.98960 −0.225349
\(177\) 12.0108 0.902788
\(178\) −7.49934 −0.562099
\(179\) −1.65718 −0.123864 −0.0619319 0.998080i \(-0.519726\pi\)
−0.0619319 + 0.998080i \(0.519726\pi\)
\(180\) −1.12580 −0.0839123
\(181\) 5.72942 0.425864 0.212932 0.977067i \(-0.431699\pi\)
0.212932 + 0.977067i \(0.431699\pi\)
\(182\) −0.839764 −0.0622474
\(183\) −4.98960 −0.368842
\(184\) −1.00000 −0.0737210
\(185\) 9.13953 0.671952
\(186\) −7.08620 −0.519585
\(187\) 12.3034 0.899712
\(188\) −1.42528 −0.103949
\(189\) 0.350474 0.0254932
\(190\) −9.41752 −0.683219
\(191\) −17.0860 −1.23630 −0.618151 0.786060i \(-0.712118\pi\)
−0.618151 + 0.786060i \(0.712118\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 1.53464 0.110466 0.0552328 0.998474i \(-0.482410\pi\)
0.0552328 + 0.998474i \(0.482410\pi\)
\(194\) 14.1692 1.01729
\(195\) 2.69751 0.193173
\(196\) −6.87717 −0.491226
\(197\) −6.17610 −0.440029 −0.220014 0.975497i \(-0.570610\pi\)
−0.220014 + 0.975497i \(0.570610\pi\)
\(198\) −2.98960 −0.212461
\(199\) 17.1526 1.21591 0.607956 0.793971i \(-0.291990\pi\)
0.607956 + 0.793971i \(0.291990\pi\)
\(200\) −3.73257 −0.263933
\(201\) −13.7129 −0.967230
\(202\) 1.79712 0.126445
\(203\) 0.350474 0.0245985
\(204\) 4.11540 0.288135
\(205\) −9.03078 −0.630737
\(206\) 0.657566 0.0458148
\(207\) −1.00000 −0.0695048
\(208\) 2.39608 0.166138
\(209\) −25.0085 −1.72987
\(210\) −0.394564 −0.0272275
\(211\) 13.9524 0.960524 0.480262 0.877125i \(-0.340542\pi\)
0.480262 + 0.877125i \(0.340542\pi\)
\(212\) 1.66480 0.114339
\(213\) −4.56540 −0.312816
\(214\) 1.62485 0.111073
\(215\) −6.05208 −0.412748
\(216\) −1.00000 −0.0680414
\(217\) −2.48353 −0.168593
\(218\) −0.828964 −0.0561445
\(219\) −16.5331 −1.11720
\(220\) 3.36569 0.226915
\(221\) −9.86082 −0.663311
\(222\) 8.11825 0.544861
\(223\) −20.6482 −1.38270 −0.691352 0.722519i \(-0.742984\pi\)
−0.691352 + 0.722519i \(0.742984\pi\)
\(224\) −0.350474 −0.0234170
\(225\) −3.73257 −0.248838
\(226\) 15.9989 1.06423
\(227\) −4.64032 −0.307989 −0.153995 0.988072i \(-0.549214\pi\)
−0.153995 + 0.988072i \(0.549214\pi\)
\(228\) −8.36517 −0.553997
\(229\) −7.32879 −0.484300 −0.242150 0.970239i \(-0.577853\pi\)
−0.242150 + 0.970239i \(0.577853\pi\)
\(230\) 1.12580 0.0742331
\(231\) −1.04778 −0.0689386
\(232\) −1.00000 −0.0656532
\(233\) 21.9859 1.44035 0.720173 0.693794i \(-0.244062\pi\)
0.720173 + 0.693794i \(0.244062\pi\)
\(234\) 2.39608 0.156637
\(235\) 1.60458 0.104671
\(236\) −12.0108 −0.781837
\(237\) −12.4519 −0.808837
\(238\) 1.44234 0.0934930
\(239\) 7.54702 0.488176 0.244088 0.969753i \(-0.421511\pi\)
0.244088 + 0.969753i \(0.421511\pi\)
\(240\) 1.12580 0.0726702
\(241\) −2.82443 −0.181937 −0.0909686 0.995854i \(-0.528996\pi\)
−0.0909686 + 0.995854i \(0.528996\pi\)
\(242\) −2.06232 −0.132571
\(243\) −1.00000 −0.0641500
\(244\) 4.98960 0.319426
\(245\) 7.74232 0.494639
\(246\) −8.02165 −0.511441
\(247\) 20.0436 1.27534
\(248\) 7.08620 0.449974
\(249\) −1.75023 −0.110916
\(250\) 9.83114 0.621776
\(251\) 13.0232 0.822015 0.411008 0.911632i \(-0.365177\pi\)
0.411008 + 0.911632i \(0.365177\pi\)
\(252\) −0.350474 −0.0220778
\(253\) 2.98960 0.187954
\(254\) −14.0607 −0.882249
\(255\) −4.63312 −0.290137
\(256\) 1.00000 0.0625000
\(257\) 16.4400 1.02550 0.512750 0.858538i \(-0.328627\pi\)
0.512750 + 0.858538i \(0.328627\pi\)
\(258\) −5.37579 −0.334682
\(259\) 2.84523 0.176794
\(260\) −2.69751 −0.167293
\(261\) −1.00000 −0.0618984
\(262\) 8.53005 0.526988
\(263\) −15.0908 −0.930538 −0.465269 0.885169i \(-0.654042\pi\)
−0.465269 + 0.885169i \(0.654042\pi\)
\(264\) 2.98960 0.183997
\(265\) −1.87423 −0.115133
\(266\) −2.93177 −0.179759
\(267\) 7.49934 0.458952
\(268\) 13.7129 0.837646
\(269\) −6.06664 −0.369889 −0.184945 0.982749i \(-0.559211\pi\)
−0.184945 + 0.982749i \(0.559211\pi\)
\(270\) 1.12580 0.0685141
\(271\) −14.0182 −0.851544 −0.425772 0.904831i \(-0.639997\pi\)
−0.425772 + 0.904831i \(0.639997\pi\)
\(272\) −4.11540 −0.249533
\(273\) 0.839764 0.0508248
\(274\) 14.4519 0.873070
\(275\) 11.1589 0.672906
\(276\) 1.00000 0.0601929
\(277\) 20.7988 1.24968 0.624840 0.780753i \(-0.285164\pi\)
0.624840 + 0.780753i \(0.285164\pi\)
\(278\) −21.4164 −1.28447
\(279\) 7.08620 0.424240
\(280\) 0.394564 0.0235797
\(281\) 9.21258 0.549576 0.274788 0.961505i \(-0.411392\pi\)
0.274788 + 0.961505i \(0.411392\pi\)
\(282\) 1.42528 0.0848742
\(283\) −21.7252 −1.29143 −0.645714 0.763579i \(-0.723440\pi\)
−0.645714 + 0.763579i \(0.723440\pi\)
\(284\) 4.56540 0.270907
\(285\) 9.41752 0.557846
\(286\) −7.16331 −0.423575
\(287\) −2.81138 −0.165950
\(288\) 1.00000 0.0589256
\(289\) −0.0635084 −0.00373579
\(290\) 1.12580 0.0661093
\(291\) −14.1692 −0.830616
\(292\) 16.5331 0.967528
\(293\) 13.1872 0.770406 0.385203 0.922832i \(-0.374131\pi\)
0.385203 + 0.922832i \(0.374131\pi\)
\(294\) 6.87717 0.401085
\(295\) 13.5218 0.787269
\(296\) −8.11825 −0.471864
\(297\) 2.98960 0.173474
\(298\) 12.6490 0.732738
\(299\) −2.39608 −0.138569
\(300\) 3.73257 0.215500
\(301\) −1.88408 −0.108596
\(302\) 3.81570 0.219569
\(303\) −1.79712 −0.103242
\(304\) 8.36517 0.479775
\(305\) −5.61729 −0.321645
\(306\) −4.11540 −0.235262
\(307\) −23.6286 −1.34855 −0.674277 0.738478i \(-0.735545\pi\)
−0.674277 + 0.738478i \(0.735545\pi\)
\(308\) 1.04778 0.0597026
\(309\) −0.657566 −0.0374076
\(310\) −7.97765 −0.453100
\(311\) −21.8984 −1.24175 −0.620873 0.783911i \(-0.713222\pi\)
−0.620873 + 0.783911i \(0.713222\pi\)
\(312\) −2.39608 −0.135651
\(313\) 8.88472 0.502194 0.251097 0.967962i \(-0.419209\pi\)
0.251097 + 0.967962i \(0.419209\pi\)
\(314\) 23.5540 1.32923
\(315\) 0.394564 0.0222312
\(316\) 12.4519 0.700473
\(317\) 13.6485 0.766578 0.383289 0.923628i \(-0.374791\pi\)
0.383289 + 0.923628i \(0.374791\pi\)
\(318\) −1.66480 −0.0933572
\(319\) 2.98960 0.167385
\(320\) −1.12580 −0.0629342
\(321\) −1.62485 −0.0906905
\(322\) 0.350474 0.0195312
\(323\) −34.4260 −1.91551
\(324\) 1.00000 0.0555556
\(325\) −8.94354 −0.496098
\(326\) −0.0185758 −0.00102882
\(327\) 0.828964 0.0458418
\(328\) 8.02165 0.442921
\(329\) 0.499524 0.0275396
\(330\) −3.36569 −0.185275
\(331\) −25.9849 −1.42826 −0.714129 0.700014i \(-0.753177\pi\)
−0.714129 + 0.700014i \(0.753177\pi\)
\(332\) 1.75023 0.0960562
\(333\) −8.11825 −0.444877
\(334\) −0.936111 −0.0512217
\(335\) −15.4379 −0.843465
\(336\) 0.350474 0.0191199
\(337\) 12.2127 0.665270 0.332635 0.943056i \(-0.392062\pi\)
0.332635 + 0.943056i \(0.392062\pi\)
\(338\) −7.25880 −0.394827
\(339\) −15.9989 −0.868942
\(340\) 4.63312 0.251266
\(341\) −21.1849 −1.14722
\(342\) 8.36517 0.452337
\(343\) 4.86359 0.262609
\(344\) 5.37579 0.289843
\(345\) −1.12580 −0.0606111
\(346\) 18.2665 0.982015
\(347\) 5.61559 0.301461 0.150730 0.988575i \(-0.451838\pi\)
0.150730 + 0.988575i \(0.451838\pi\)
\(348\) 1.00000 0.0536056
\(349\) 7.96379 0.426292 0.213146 0.977020i \(-0.431629\pi\)
0.213146 + 0.977020i \(0.431629\pi\)
\(350\) 1.30817 0.0699246
\(351\) −2.39608 −0.127893
\(352\) −2.98960 −0.159346
\(353\) −0.748592 −0.0398435 −0.0199218 0.999802i \(-0.506342\pi\)
−0.0199218 + 0.999802i \(0.506342\pi\)
\(354\) 12.0108 0.638368
\(355\) −5.13974 −0.272789
\(356\) −7.49934 −0.397464
\(357\) −1.44234 −0.0763367
\(358\) −1.65718 −0.0875849
\(359\) 31.6199 1.66883 0.834417 0.551133i \(-0.185804\pi\)
0.834417 + 0.551133i \(0.185804\pi\)
\(360\) −1.12580 −0.0593349
\(361\) 50.9761 2.68295
\(362\) 5.72942 0.301132
\(363\) 2.06232 0.108244
\(364\) −0.839764 −0.0440156
\(365\) −18.6130 −0.974250
\(366\) −4.98960 −0.260810
\(367\) −30.4244 −1.58814 −0.794072 0.607824i \(-0.792043\pi\)
−0.794072 + 0.607824i \(0.792043\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 8.02165 0.417590
\(370\) 9.13953 0.475142
\(371\) −0.583468 −0.0302922
\(372\) −7.08620 −0.367402
\(373\) 26.7664 1.38591 0.692955 0.720981i \(-0.256309\pi\)
0.692955 + 0.720981i \(0.256309\pi\)
\(374\) 12.3034 0.636192
\(375\) −9.83114 −0.507678
\(376\) −1.42528 −0.0735032
\(377\) −2.39608 −0.123404
\(378\) 0.350474 0.0180264
\(379\) 12.5308 0.643666 0.321833 0.946796i \(-0.395701\pi\)
0.321833 + 0.946796i \(0.395701\pi\)
\(380\) −9.41752 −0.483109
\(381\) 14.0607 0.720353
\(382\) −17.0860 −0.874197
\(383\) 26.9873 1.37899 0.689494 0.724292i \(-0.257833\pi\)
0.689494 + 0.724292i \(0.257833\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −1.17959 −0.0601173
\(386\) 1.53464 0.0781110
\(387\) 5.37579 0.273267
\(388\) 14.1692 0.719334
\(389\) −35.3771 −1.79369 −0.896844 0.442346i \(-0.854146\pi\)
−0.896844 + 0.442346i \(0.854146\pi\)
\(390\) 2.69751 0.136594
\(391\) 4.11540 0.208125
\(392\) −6.87717 −0.347349
\(393\) −8.53005 −0.430284
\(394\) −6.17610 −0.311147
\(395\) −14.0184 −0.705340
\(396\) −2.98960 −0.150233
\(397\) −7.82589 −0.392770 −0.196385 0.980527i \(-0.562920\pi\)
−0.196385 + 0.980527i \(0.562920\pi\)
\(398\) 17.1526 0.859780
\(399\) 2.93177 0.146772
\(400\) −3.73257 −0.186629
\(401\) −21.9564 −1.09645 −0.548226 0.836330i \(-0.684697\pi\)
−0.548226 + 0.836330i \(0.684697\pi\)
\(402\) −13.7129 −0.683935
\(403\) 16.9791 0.845789
\(404\) 1.79712 0.0894102
\(405\) −1.12580 −0.0559415
\(406\) 0.350474 0.0173937
\(407\) 24.2703 1.20303
\(408\) 4.11540 0.203743
\(409\) −31.0578 −1.53571 −0.767855 0.640624i \(-0.778676\pi\)
−0.767855 + 0.640624i \(0.778676\pi\)
\(410\) −9.03078 −0.445998
\(411\) −14.4519 −0.712859
\(412\) 0.657566 0.0323959
\(413\) 4.20948 0.207135
\(414\) −1.00000 −0.0491473
\(415\) −1.97041 −0.0967236
\(416\) 2.39608 0.117478
\(417\) 21.4164 1.04877
\(418\) −25.0085 −1.22320
\(419\) 17.5352 0.856650 0.428325 0.903625i \(-0.359104\pi\)
0.428325 + 0.903625i \(0.359104\pi\)
\(420\) −0.394564 −0.0192528
\(421\) 16.1908 0.789092 0.394546 0.918876i \(-0.370902\pi\)
0.394546 + 0.918876i \(0.370902\pi\)
\(422\) 13.9524 0.679193
\(423\) −1.42528 −0.0692995
\(424\) 1.66480 0.0808497
\(425\) 15.3610 0.745119
\(426\) −4.56540 −0.221195
\(427\) −1.74872 −0.0846267
\(428\) 1.62485 0.0785402
\(429\) 7.16331 0.345848
\(430\) −6.05208 −0.291857
\(431\) −32.9913 −1.58914 −0.794569 0.607174i \(-0.792303\pi\)
−0.794569 + 0.607174i \(0.792303\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −11.1102 −0.533920 −0.266960 0.963708i \(-0.586019\pi\)
−0.266960 + 0.963708i \(0.586019\pi\)
\(434\) −2.48353 −0.119213
\(435\) −1.12580 −0.0539780
\(436\) −0.828964 −0.0397002
\(437\) −8.36517 −0.400160
\(438\) −16.5331 −0.789983
\(439\) 19.6712 0.938854 0.469427 0.882971i \(-0.344460\pi\)
0.469427 + 0.882971i \(0.344460\pi\)
\(440\) 3.36569 0.160453
\(441\) −6.87717 −0.327484
\(442\) −9.86082 −0.469031
\(443\) −5.05453 −0.240148 −0.120074 0.992765i \(-0.538313\pi\)
−0.120074 + 0.992765i \(0.538313\pi\)
\(444\) 8.11825 0.385275
\(445\) 8.44276 0.400225
\(446\) −20.6482 −0.977719
\(447\) −12.6490 −0.598278
\(448\) −0.350474 −0.0165583
\(449\) −21.3222 −1.00626 −0.503129 0.864211i \(-0.667818\pi\)
−0.503129 + 0.864211i \(0.667818\pi\)
\(450\) −3.73257 −0.175955
\(451\) −23.9815 −1.12924
\(452\) 15.9989 0.752526
\(453\) −3.81570 −0.179277
\(454\) −4.64032 −0.217781
\(455\) 0.945407 0.0443214
\(456\) −8.36517 −0.391735
\(457\) 28.3969 1.32835 0.664176 0.747577i \(-0.268783\pi\)
0.664176 + 0.747577i \(0.268783\pi\)
\(458\) −7.32879 −0.342452
\(459\) 4.11540 0.192090
\(460\) 1.12580 0.0524908
\(461\) −26.2260 −1.22147 −0.610733 0.791837i \(-0.709125\pi\)
−0.610733 + 0.791837i \(0.709125\pi\)
\(462\) −1.04778 −0.0487469
\(463\) 13.1757 0.612325 0.306163 0.951979i \(-0.400955\pi\)
0.306163 + 0.951979i \(0.400955\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 7.97765 0.369955
\(466\) 21.9859 1.01848
\(467\) 39.2223 1.81499 0.907495 0.420064i \(-0.137992\pi\)
0.907495 + 0.420064i \(0.137992\pi\)
\(468\) 2.39608 0.110759
\(469\) −4.80600 −0.221920
\(470\) 1.60458 0.0740139
\(471\) −23.5540 −1.08531
\(472\) −12.0108 −0.552843
\(473\) −16.0714 −0.738966
\(474\) −12.4519 −0.571934
\(475\) −31.2236 −1.43264
\(476\) 1.44234 0.0661095
\(477\) 1.66480 0.0762259
\(478\) 7.54702 0.345193
\(479\) −32.1503 −1.46898 −0.734492 0.678617i \(-0.762580\pi\)
−0.734492 + 0.678617i \(0.762580\pi\)
\(480\) 1.12580 0.0513856
\(481\) −19.4520 −0.886934
\(482\) −2.82443 −0.128649
\(483\) −0.350474 −0.0159471
\(484\) −2.06232 −0.0937417
\(485\) −15.9518 −0.724332
\(486\) −1.00000 −0.0453609
\(487\) −22.2810 −1.00965 −0.504825 0.863222i \(-0.668443\pi\)
−0.504825 + 0.863222i \(0.668443\pi\)
\(488\) 4.98960 0.225868
\(489\) 0.0185758 0.000840028 0
\(490\) 7.74232 0.349763
\(491\) −14.0078 −0.632163 −0.316082 0.948732i \(-0.602367\pi\)
−0.316082 + 0.948732i \(0.602367\pi\)
\(492\) −8.02165 −0.361644
\(493\) 4.11540 0.185348
\(494\) 20.0436 0.901805
\(495\) 3.36569 0.151277
\(496\) 7.08620 0.318180
\(497\) −1.60006 −0.0717723
\(498\) −1.75023 −0.0784296
\(499\) −12.9964 −0.581800 −0.290900 0.956753i \(-0.593955\pi\)
−0.290900 + 0.956753i \(0.593955\pi\)
\(500\) 9.83114 0.439662
\(501\) 0.936111 0.0418224
\(502\) 13.0232 0.581253
\(503\) 20.9364 0.933510 0.466755 0.884387i \(-0.345423\pi\)
0.466755 + 0.884387i \(0.345423\pi\)
\(504\) −0.350474 −0.0156114
\(505\) −2.02320 −0.0900314
\(506\) 2.98960 0.132904
\(507\) 7.25880 0.322375
\(508\) −14.0607 −0.623844
\(509\) 28.7917 1.27617 0.638086 0.769965i \(-0.279727\pi\)
0.638086 + 0.769965i \(0.279727\pi\)
\(510\) −4.63312 −0.205158
\(511\) −5.79443 −0.256330
\(512\) 1.00000 0.0441942
\(513\) −8.36517 −0.369331
\(514\) 16.4400 0.725138
\(515\) −0.740289 −0.0326210
\(516\) −5.37579 −0.236656
\(517\) 4.26101 0.187399
\(518\) 2.84523 0.125012
\(519\) −18.2665 −0.801812
\(520\) −2.69751 −0.118294
\(521\) −27.3793 −1.19951 −0.599754 0.800184i \(-0.704735\pi\)
−0.599754 + 0.800184i \(0.704735\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −2.59764 −0.113587 −0.0567935 0.998386i \(-0.518088\pi\)
−0.0567935 + 0.998386i \(0.518088\pi\)
\(524\) 8.53005 0.372637
\(525\) −1.30817 −0.0570932
\(526\) −15.0908 −0.657990
\(527\) −29.1625 −1.27034
\(528\) 2.98960 0.130105
\(529\) 1.00000 0.0434783
\(530\) −1.87423 −0.0814114
\(531\) −12.0108 −0.521225
\(532\) −2.93177 −0.127109
\(533\) 19.2205 0.832533
\(534\) 7.49934 0.324528
\(535\) −1.82926 −0.0790859
\(536\) 13.7129 0.592305
\(537\) 1.65718 0.0715128
\(538\) −6.06664 −0.261551
\(539\) 20.5600 0.885580
\(540\) 1.12580 0.0484468
\(541\) −5.79191 −0.249014 −0.124507 0.992219i \(-0.539735\pi\)
−0.124507 + 0.992219i \(0.539735\pi\)
\(542\) −14.0182 −0.602132
\(543\) −5.72942 −0.245873
\(544\) −4.11540 −0.176446
\(545\) 0.933249 0.0399760
\(546\) 0.839764 0.0359386
\(547\) −1.93162 −0.0825902 −0.0412951 0.999147i \(-0.513148\pi\)
−0.0412951 + 0.999147i \(0.513148\pi\)
\(548\) 14.4519 0.617354
\(549\) 4.98960 0.212951
\(550\) 11.1589 0.475816
\(551\) −8.36517 −0.356368
\(552\) 1.00000 0.0425628
\(553\) −4.36406 −0.185579
\(554\) 20.7988 0.883658
\(555\) −9.13953 −0.387952
\(556\) −21.4164 −0.908259
\(557\) −30.0279 −1.27232 −0.636162 0.771555i \(-0.719479\pi\)
−0.636162 + 0.771555i \(0.719479\pi\)
\(558\) 7.08620 0.299983
\(559\) 12.8808 0.544801
\(560\) 0.394564 0.0166734
\(561\) −12.3034 −0.519449
\(562\) 9.21258 0.388609
\(563\) −19.7433 −0.832081 −0.416040 0.909346i \(-0.636583\pi\)
−0.416040 + 0.909346i \(0.636583\pi\)
\(564\) 1.42528 0.0600151
\(565\) −18.0116 −0.757754
\(566\) −21.7252 −0.913178
\(567\) −0.350474 −0.0147185
\(568\) 4.56540 0.191560
\(569\) −42.8764 −1.79747 −0.898736 0.438489i \(-0.855514\pi\)
−0.898736 + 0.438489i \(0.855514\pi\)
\(570\) 9.41752 0.394456
\(571\) −11.4734 −0.480147 −0.240074 0.970755i \(-0.577172\pi\)
−0.240074 + 0.970755i \(0.577172\pi\)
\(572\) −7.16331 −0.299513
\(573\) 17.0860 0.713779
\(574\) −2.81138 −0.117345
\(575\) 3.73257 0.155659
\(576\) 1.00000 0.0416667
\(577\) −0.0751962 −0.00313046 −0.00156523 0.999999i \(-0.500498\pi\)
−0.00156523 + 0.999999i \(0.500498\pi\)
\(578\) −0.0635084 −0.00264160
\(579\) −1.53464 −0.0637774
\(580\) 1.12580 0.0467464
\(581\) −0.613409 −0.0254485
\(582\) −14.1692 −0.587334
\(583\) −4.97707 −0.206129
\(584\) 16.5331 0.684145
\(585\) −2.69751 −0.111528
\(586\) 13.1872 0.544759
\(587\) 4.43290 0.182965 0.0914827 0.995807i \(-0.470839\pi\)
0.0914827 + 0.995807i \(0.470839\pi\)
\(588\) 6.87717 0.283610
\(589\) 59.2772 2.44248
\(590\) 13.5218 0.556683
\(591\) 6.17610 0.254051
\(592\) −8.11825 −0.333658
\(593\) −44.3929 −1.82300 −0.911500 0.411301i \(-0.865074\pi\)
−0.911500 + 0.411301i \(0.865074\pi\)
\(594\) 2.98960 0.122665
\(595\) −1.62379 −0.0665688
\(596\) 12.6490 0.518124
\(597\) −17.1526 −0.702007
\(598\) −2.39608 −0.0979830
\(599\) −4.00033 −0.163449 −0.0817245 0.996655i \(-0.526043\pi\)
−0.0817245 + 0.996655i \(0.526043\pi\)
\(600\) 3.73257 0.152382
\(601\) 14.2952 0.583112 0.291556 0.956554i \(-0.405827\pi\)
0.291556 + 0.956554i \(0.405827\pi\)
\(602\) −1.88408 −0.0767892
\(603\) 13.7129 0.558430
\(604\) 3.81570 0.155259
\(605\) 2.32176 0.0943930
\(606\) −1.79712 −0.0730031
\(607\) −11.6776 −0.473981 −0.236990 0.971512i \(-0.576161\pi\)
−0.236990 + 0.971512i \(0.576161\pi\)
\(608\) 8.36517 0.339252
\(609\) −0.350474 −0.0142019
\(610\) −5.61729 −0.227438
\(611\) −3.41509 −0.138160
\(612\) −4.11540 −0.166355
\(613\) −49.2290 −1.98834 −0.994169 0.107829i \(-0.965610\pi\)
−0.994169 + 0.107829i \(0.965610\pi\)
\(614\) −23.6286 −0.953572
\(615\) 9.03078 0.364156
\(616\) 1.04778 0.0422161
\(617\) −31.6489 −1.27414 −0.637069 0.770807i \(-0.719853\pi\)
−0.637069 + 0.770807i \(0.719853\pi\)
\(618\) −0.657566 −0.0264512
\(619\) −24.7636 −0.995332 −0.497666 0.867369i \(-0.665810\pi\)
−0.497666 + 0.867369i \(0.665810\pi\)
\(620\) −7.97765 −0.320390
\(621\) 1.00000 0.0401286
\(622\) −21.8984 −0.878047
\(623\) 2.62832 0.105302
\(624\) −2.39608 −0.0959200
\(625\) 7.59495 0.303798
\(626\) 8.88472 0.355105
\(627\) 25.0085 0.998742
\(628\) 23.5540 0.939906
\(629\) 33.4098 1.33214
\(630\) 0.394564 0.0157198
\(631\) 7.48180 0.297846 0.148923 0.988849i \(-0.452419\pi\)
0.148923 + 0.988849i \(0.452419\pi\)
\(632\) 12.4519 0.495310
\(633\) −13.9524 −0.554559
\(634\) 13.6485 0.542053
\(635\) 15.8296 0.628178
\(636\) −1.66480 −0.0660135
\(637\) −16.4782 −0.652892
\(638\) 2.98960 0.118359
\(639\) 4.56540 0.180605
\(640\) −1.12580 −0.0445012
\(641\) 44.1319 1.74311 0.871553 0.490302i \(-0.163113\pi\)
0.871553 + 0.490302i \(0.163113\pi\)
\(642\) −1.62485 −0.0641278
\(643\) 20.7923 0.819966 0.409983 0.912093i \(-0.365535\pi\)
0.409983 + 0.912093i \(0.365535\pi\)
\(644\) 0.350474 0.0138106
\(645\) 6.05208 0.238300
\(646\) −34.4260 −1.35447
\(647\) −14.8099 −0.582239 −0.291119 0.956687i \(-0.594028\pi\)
−0.291119 + 0.956687i \(0.594028\pi\)
\(648\) 1.00000 0.0392837
\(649\) 35.9075 1.40949
\(650\) −8.94354 −0.350795
\(651\) 2.48353 0.0973371
\(652\) −0.0185758 −0.000727486 0
\(653\) 5.40775 0.211622 0.105811 0.994386i \(-0.466256\pi\)
0.105811 + 0.994386i \(0.466256\pi\)
\(654\) 0.828964 0.0324151
\(655\) −9.60315 −0.375226
\(656\) 8.02165 0.313193
\(657\) 16.5331 0.645019
\(658\) 0.499524 0.0194735
\(659\) −3.51771 −0.137030 −0.0685152 0.997650i \(-0.521826\pi\)
−0.0685152 + 0.997650i \(0.521826\pi\)
\(660\) −3.36569 −0.131009
\(661\) 27.1072 1.05435 0.527173 0.849758i \(-0.323252\pi\)
0.527173 + 0.849758i \(0.323252\pi\)
\(662\) −25.9849 −1.00993
\(663\) 9.86082 0.382963
\(664\) 1.75023 0.0679220
\(665\) 3.30060 0.127992
\(666\) −8.11825 −0.314576
\(667\) 1.00000 0.0387202
\(668\) −0.936111 −0.0362192
\(669\) 20.6482 0.798304
\(670\) −15.4379 −0.596420
\(671\) −14.9169 −0.575859
\(672\) 0.350474 0.0135198
\(673\) 12.6152 0.486280 0.243140 0.969991i \(-0.421822\pi\)
0.243140 + 0.969991i \(0.421822\pi\)
\(674\) 12.2127 0.470417
\(675\) 3.73257 0.143667
\(676\) −7.25880 −0.279185
\(677\) −17.4004 −0.668751 −0.334376 0.942440i \(-0.608525\pi\)
−0.334376 + 0.942440i \(0.608525\pi\)
\(678\) −15.9989 −0.614435
\(679\) −4.96595 −0.190576
\(680\) 4.63312 0.177672
\(681\) 4.64032 0.177818
\(682\) −21.1849 −0.811210
\(683\) 30.2111 1.15600 0.577998 0.816038i \(-0.303834\pi\)
0.577998 + 0.816038i \(0.303834\pi\)
\(684\) 8.36517 0.319850
\(685\) −16.2700 −0.621643
\(686\) 4.86359 0.185693
\(687\) 7.32879 0.279611
\(688\) 5.37579 0.204950
\(689\) 3.98899 0.151968
\(690\) −1.12580 −0.0428585
\(691\) 14.7690 0.561838 0.280919 0.959731i \(-0.409361\pi\)
0.280919 + 0.959731i \(0.409361\pi\)
\(692\) 18.2665 0.694390
\(693\) 1.04778 0.0398017
\(694\) 5.61559 0.213165
\(695\) 24.1107 0.914569
\(696\) 1.00000 0.0379049
\(697\) −33.0123 −1.25043
\(698\) 7.96379 0.301434
\(699\) −21.9859 −0.831584
\(700\) 1.30817 0.0494442
\(701\) −4.58767 −0.173274 −0.0866369 0.996240i \(-0.527612\pi\)
−0.0866369 + 0.996240i \(0.527612\pi\)
\(702\) −2.39608 −0.0904342
\(703\) −67.9105 −2.56129
\(704\) −2.98960 −0.112675
\(705\) −1.60458 −0.0604321
\(706\) −0.748592 −0.0281736
\(707\) −0.629845 −0.0236878
\(708\) 12.0108 0.451394
\(709\) 13.0893 0.491579 0.245789 0.969323i \(-0.420953\pi\)
0.245789 + 0.969323i \(0.420953\pi\)
\(710\) −5.13974 −0.192891
\(711\) 12.4519 0.466982
\(712\) −7.49934 −0.281050
\(713\) −7.08620 −0.265380
\(714\) −1.44234 −0.0539782
\(715\) 8.06447 0.301594
\(716\) −1.65718 −0.0619319
\(717\) −7.54702 −0.281849
\(718\) 31.6199 1.18004
\(719\) −16.0950 −0.600241 −0.300120 0.953901i \(-0.597027\pi\)
−0.300120 + 0.953901i \(0.597027\pi\)
\(720\) −1.12580 −0.0419561
\(721\) −0.230460 −0.00858277
\(722\) 50.9761 1.89713
\(723\) 2.82443 0.105042
\(724\) 5.72942 0.212932
\(725\) 3.73257 0.138624
\(726\) 2.06232 0.0765398
\(727\) 51.5776 1.91291 0.956454 0.291882i \(-0.0942816\pi\)
0.956454 + 0.291882i \(0.0942816\pi\)
\(728\) −0.839764 −0.0311237
\(729\) 1.00000 0.0370370
\(730\) −18.6130 −0.688898
\(731\) −22.1235 −0.818268
\(732\) −4.98960 −0.184421
\(733\) 15.2078 0.561711 0.280856 0.959750i \(-0.409382\pi\)
0.280856 + 0.959750i \(0.409382\pi\)
\(734\) −30.4244 −1.12299
\(735\) −7.74232 −0.285580
\(736\) −1.00000 −0.0368605
\(737\) −40.9959 −1.51010
\(738\) 8.02165 0.295281
\(739\) −23.5676 −0.866948 −0.433474 0.901166i \(-0.642712\pi\)
−0.433474 + 0.901166i \(0.642712\pi\)
\(740\) 9.13953 0.335976
\(741\) −20.0436 −0.736321
\(742\) −0.583468 −0.0214198
\(743\) 7.55971 0.277339 0.138669 0.990339i \(-0.455717\pi\)
0.138669 + 0.990339i \(0.455717\pi\)
\(744\) −7.08620 −0.259793
\(745\) −14.2403 −0.521724
\(746\) 26.7664 0.979986
\(747\) 1.75023 0.0640375
\(748\) 12.3034 0.449856
\(749\) −0.569469 −0.0208079
\(750\) −9.83114 −0.358982
\(751\) 8.40461 0.306689 0.153344 0.988173i \(-0.450996\pi\)
0.153344 + 0.988173i \(0.450996\pi\)
\(752\) −1.42528 −0.0519746
\(753\) −13.0232 −0.474591
\(754\) −2.39608 −0.0872601
\(755\) −4.29572 −0.156337
\(756\) 0.350474 0.0127466
\(757\) 1.17043 0.0425398 0.0212699 0.999774i \(-0.493229\pi\)
0.0212699 + 0.999774i \(0.493229\pi\)
\(758\) 12.5308 0.455141
\(759\) −2.98960 −0.108515
\(760\) −9.41752 −0.341609
\(761\) 17.7561 0.643658 0.321829 0.946798i \(-0.395702\pi\)
0.321829 + 0.946798i \(0.395702\pi\)
\(762\) 14.0607 0.509367
\(763\) 0.290530 0.0105179
\(764\) −17.0860 −0.618151
\(765\) 4.63312 0.167511
\(766\) 26.9873 0.975091
\(767\) −28.7789 −1.03915
\(768\) −1.00000 −0.0360844
\(769\) −15.9240 −0.574234 −0.287117 0.957896i \(-0.592697\pi\)
−0.287117 + 0.957896i \(0.592697\pi\)
\(770\) −1.17959 −0.0425094
\(771\) −16.4400 −0.592073
\(772\) 1.53464 0.0552328
\(773\) −22.6674 −0.815289 −0.407644 0.913141i \(-0.633650\pi\)
−0.407644 + 0.913141i \(0.633650\pi\)
\(774\) 5.37579 0.193229
\(775\) −26.4497 −0.950103
\(776\) 14.1692 0.508646
\(777\) −2.84523 −0.102072
\(778\) −35.3771 −1.26833
\(779\) 67.1024 2.40419
\(780\) 2.69751 0.0965864
\(781\) −13.6487 −0.488389
\(782\) 4.11540 0.147166
\(783\) 1.00000 0.0357371
\(784\) −6.87717 −0.245613
\(785\) −26.5171 −0.946436
\(786\) −8.53005 −0.304257
\(787\) 13.5643 0.483514 0.241757 0.970337i \(-0.422276\pi\)
0.241757 + 0.970337i \(0.422276\pi\)
\(788\) −6.17610 −0.220014
\(789\) 15.0908 0.537246
\(790\) −14.0184 −0.498751
\(791\) −5.60721 −0.199369
\(792\) −2.98960 −0.106231
\(793\) 11.9555 0.424551
\(794\) −7.82589 −0.277731
\(795\) 1.87423 0.0664721
\(796\) 17.1526 0.607956
\(797\) −12.6901 −0.449508 −0.224754 0.974416i \(-0.572158\pi\)
−0.224754 + 0.974416i \(0.572158\pi\)
\(798\) 2.93177 0.103784
\(799\) 5.86559 0.207510
\(800\) −3.73257 −0.131966
\(801\) −7.49934 −0.264976
\(802\) −21.9564 −0.775309
\(803\) −49.4274 −1.74425
\(804\) −13.7129 −0.483615
\(805\) −0.394564 −0.0139066
\(806\) 16.9791 0.598063
\(807\) 6.06664 0.213556
\(808\) 1.79712 0.0632226
\(809\) −55.1732 −1.93979 −0.969893 0.243532i \(-0.921694\pi\)
−0.969893 + 0.243532i \(0.921694\pi\)
\(810\) −1.12580 −0.0395566
\(811\) −20.0491 −0.704018 −0.352009 0.935997i \(-0.614501\pi\)
−0.352009 + 0.935997i \(0.614501\pi\)
\(812\) 0.350474 0.0122992
\(813\) 14.0182 0.491639
\(814\) 24.2703 0.850673
\(815\) 0.0209127 0.000732540 0
\(816\) 4.11540 0.144068
\(817\) 44.9694 1.57328
\(818\) −31.0578 −1.08591
\(819\) −0.839764 −0.0293437
\(820\) −9.03078 −0.315368
\(821\) 4.98902 0.174118 0.0870590 0.996203i \(-0.472253\pi\)
0.0870590 + 0.996203i \(0.472253\pi\)
\(822\) −14.4519 −0.504067
\(823\) −1.30163 −0.0453720 −0.0226860 0.999743i \(-0.507222\pi\)
−0.0226860 + 0.999743i \(0.507222\pi\)
\(824\) 0.657566 0.0229074
\(825\) −11.1589 −0.388502
\(826\) 4.20948 0.146466
\(827\) 27.2286 0.946832 0.473416 0.880839i \(-0.343021\pi\)
0.473416 + 0.880839i \(0.343021\pi\)
\(828\) −1.00000 −0.0347524
\(829\) 7.29576 0.253392 0.126696 0.991942i \(-0.459563\pi\)
0.126696 + 0.991942i \(0.459563\pi\)
\(830\) −1.97041 −0.0683939
\(831\) −20.7988 −0.721503
\(832\) 2.39608 0.0830691
\(833\) 28.3023 0.980616
\(834\) 21.4164 0.741591
\(835\) 1.05388 0.0364709
\(836\) −25.0085 −0.864936
\(837\) −7.08620 −0.244935
\(838\) 17.5352 0.605743
\(839\) −33.0457 −1.14087 −0.570433 0.821344i \(-0.693224\pi\)
−0.570433 + 0.821344i \(0.693224\pi\)
\(840\) −0.394564 −0.0136138
\(841\) 1.00000 0.0344828
\(842\) 16.1908 0.557972
\(843\) −9.21258 −0.317298
\(844\) 13.9524 0.480262
\(845\) 8.17197 0.281124
\(846\) −1.42528 −0.0490021
\(847\) 0.722789 0.0248353
\(848\) 1.66480 0.0571694
\(849\) 21.7252 0.745606
\(850\) 15.3610 0.526878
\(851\) 8.11825 0.278290
\(852\) −4.56540 −0.156408
\(853\) −40.2058 −1.37662 −0.688310 0.725417i \(-0.741647\pi\)
−0.688310 + 0.725417i \(0.741647\pi\)
\(854\) −1.74872 −0.0598401
\(855\) −9.41752 −0.322072
\(856\) 1.62485 0.0555363
\(857\) 6.91411 0.236181 0.118091 0.993003i \(-0.462323\pi\)
0.118091 + 0.993003i \(0.462323\pi\)
\(858\) 7.16331 0.244551
\(859\) −0.0440757 −0.00150384 −0.000751922 1.00000i \(-0.500239\pi\)
−0.000751922 1.00000i \(0.500239\pi\)
\(860\) −6.05208 −0.206374
\(861\) 2.81138 0.0958115
\(862\) −32.9913 −1.12369
\(863\) 40.7084 1.38573 0.692866 0.721067i \(-0.256348\pi\)
0.692866 + 0.721067i \(0.256348\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −20.5645 −0.699214
\(866\) −11.1102 −0.377539
\(867\) 0.0635084 0.00215686
\(868\) −2.48353 −0.0842964
\(869\) −37.2261 −1.26281
\(870\) −1.12580 −0.0381682
\(871\) 32.8571 1.11332
\(872\) −0.828964 −0.0280723
\(873\) 14.1692 0.479556
\(874\) −8.36517 −0.282956
\(875\) −3.44556 −0.116481
\(876\) −16.5331 −0.558602
\(877\) 8.41308 0.284090 0.142045 0.989860i \(-0.454632\pi\)
0.142045 + 0.989860i \(0.454632\pi\)
\(878\) 19.6712 0.663870
\(879\) −13.1872 −0.444794
\(880\) 3.36569 0.113457
\(881\) 12.4581 0.419723 0.209862 0.977731i \(-0.432699\pi\)
0.209862 + 0.977731i \(0.432699\pi\)
\(882\) −6.87717 −0.231566
\(883\) 13.7322 0.462127 0.231063 0.972939i \(-0.425779\pi\)
0.231063 + 0.972939i \(0.425779\pi\)
\(884\) −9.86082 −0.331655
\(885\) −13.5218 −0.454530
\(886\) −5.05453 −0.169810
\(887\) 5.91013 0.198443 0.0992214 0.995065i \(-0.468365\pi\)
0.0992214 + 0.995065i \(0.468365\pi\)
\(888\) 8.11825 0.272431
\(889\) 4.92792 0.165277
\(890\) 8.44276 0.283002
\(891\) −2.98960 −0.100155
\(892\) −20.6482 −0.691352
\(893\) −11.9227 −0.398978
\(894\) −12.6490 −0.423046
\(895\) 1.86566 0.0623622
\(896\) −0.350474 −0.0117085
\(897\) 2.39608 0.0800028
\(898\) −21.3222 −0.711532
\(899\) −7.08620 −0.236338
\(900\) −3.73257 −0.124419
\(901\) −6.85130 −0.228250
\(902\) −23.9815 −0.798496
\(903\) 1.88408 0.0626981
\(904\) 15.9989 0.532116
\(905\) −6.45019 −0.214411
\(906\) −3.81570 −0.126768
\(907\) 10.7702 0.357619 0.178809 0.983884i \(-0.442775\pi\)
0.178809 + 0.983884i \(0.442775\pi\)
\(908\) −4.64032 −0.153995
\(909\) 1.79712 0.0596068
\(910\) 0.945407 0.0313399
\(911\) 0.159611 0.00528814 0.00264407 0.999997i \(-0.499158\pi\)
0.00264407 + 0.999997i \(0.499158\pi\)
\(912\) −8.36517 −0.276998
\(913\) −5.23247 −0.173170
\(914\) 28.3969 0.939286
\(915\) 5.61729 0.185702
\(916\) −7.32879 −0.242150
\(917\) −2.98956 −0.0987240
\(918\) 4.11540 0.135828
\(919\) −12.0752 −0.398325 −0.199162 0.979967i \(-0.563822\pi\)
−0.199162 + 0.979967i \(0.563822\pi\)
\(920\) 1.12580 0.0371166
\(921\) 23.6286 0.778588
\(922\) −26.2260 −0.863707
\(923\) 10.9391 0.360064
\(924\) −1.04778 −0.0344693
\(925\) 30.3019 0.996322
\(926\) 13.1757 0.432979
\(927\) 0.657566 0.0215973
\(928\) −1.00000 −0.0328266
\(929\) 4.33661 0.142279 0.0711397 0.997466i \(-0.477336\pi\)
0.0711397 + 0.997466i \(0.477336\pi\)
\(930\) 7.97765 0.261597
\(931\) −57.5287 −1.88543
\(932\) 21.9859 0.720173
\(933\) 21.8984 0.716923
\(934\) 39.2223 1.28339
\(935\) −13.8512 −0.452981
\(936\) 2.39608 0.0783183
\(937\) −57.9298 −1.89248 −0.946242 0.323460i \(-0.895154\pi\)
−0.946242 + 0.323460i \(0.895154\pi\)
\(938\) −4.80600 −0.156921
\(939\) −8.88472 −0.289942
\(940\) 1.60458 0.0523357
\(941\) 10.1336 0.330345 0.165173 0.986265i \(-0.447182\pi\)
0.165173 + 0.986265i \(0.447182\pi\)
\(942\) −23.5540 −0.767430
\(943\) −8.02165 −0.261221
\(944\) −12.0108 −0.390919
\(945\) −0.394564 −0.0128352
\(946\) −16.0714 −0.522528
\(947\) 2.99423 0.0972995 0.0486497 0.998816i \(-0.484508\pi\)
0.0486497 + 0.998816i \(0.484508\pi\)
\(948\) −12.4519 −0.404419
\(949\) 39.6147 1.28595
\(950\) −31.2236 −1.01303
\(951\) −13.6485 −0.442584
\(952\) 1.44234 0.0467465
\(953\) 2.85277 0.0924102 0.0462051 0.998932i \(-0.485287\pi\)
0.0462051 + 0.998932i \(0.485287\pi\)
\(954\) 1.66480 0.0538998
\(955\) 19.2355 0.622445
\(956\) 7.54702 0.244088
\(957\) −2.98960 −0.0966399
\(958\) −32.1503 −1.03873
\(959\) −5.06501 −0.163558
\(960\) 1.12580 0.0363351
\(961\) 19.2142 0.619813
\(962\) −19.4520 −0.627157
\(963\) 1.62485 0.0523602
\(964\) −2.82443 −0.0909686
\(965\) −1.72770 −0.0556166
\(966\) −0.350474 −0.0112763
\(967\) −33.4656 −1.07618 −0.538090 0.842887i \(-0.680854\pi\)
−0.538090 + 0.842887i \(0.680854\pi\)
\(968\) −2.06232 −0.0662854
\(969\) 34.4260 1.10592
\(970\) −15.9518 −0.512180
\(971\) −16.7581 −0.537793 −0.268896 0.963169i \(-0.586659\pi\)
−0.268896 + 0.963169i \(0.586659\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 7.50591 0.240628
\(974\) −22.2810 −0.713930
\(975\) 8.94354 0.286423
\(976\) 4.98960 0.159713
\(977\) 34.0443 1.08917 0.544586 0.838705i \(-0.316687\pi\)
0.544586 + 0.838705i \(0.316687\pi\)
\(978\) 0.0185758 0.000593990 0
\(979\) 22.4200 0.716546
\(980\) 7.74232 0.247319
\(981\) −0.828964 −0.0264668
\(982\) −14.0078 −0.447007
\(983\) −30.6621 −0.977968 −0.488984 0.872293i \(-0.662632\pi\)
−0.488984 + 0.872293i \(0.662632\pi\)
\(984\) −8.02165 −0.255721
\(985\) 6.95306 0.221543
\(986\) 4.11540 0.131061
\(987\) −0.499524 −0.0159000
\(988\) 20.0436 0.637672
\(989\) −5.37579 −0.170940
\(990\) 3.36569 0.106969
\(991\) 54.7946 1.74061 0.870304 0.492516i \(-0.163923\pi\)
0.870304 + 0.492516i \(0.163923\pi\)
\(992\) 7.08620 0.224987
\(993\) 25.9849 0.824605
\(994\) −1.60006 −0.0507507
\(995\) −19.3104 −0.612180
\(996\) −1.75023 −0.0554581
\(997\) −38.9758 −1.23438 −0.617189 0.786815i \(-0.711729\pi\)
−0.617189 + 0.786815i \(0.711729\pi\)
\(998\) −12.9964 −0.411395
\(999\) 8.11825 0.256850
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bk.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bk.1.3 8 1.1 even 1 trivial