Properties

Label 4002.2.a.bk.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 30x^{6} + 52x^{5} + 267x^{4} - 352x^{3} - 632x^{2} + 240x + 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.78725\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.78725 q^{5} -1.00000 q^{6} +3.57193 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.78725 q^{5} -1.00000 q^{6} +3.57193 q^{7} +1.00000 q^{8} +1.00000 q^{9} -3.78725 q^{10} +2.34220 q^{11} -1.00000 q^{12} +4.66679 q^{13} +3.57193 q^{14} +3.78725 q^{15} +1.00000 q^{16} -1.44505 q^{17} +1.00000 q^{18} -1.40051 q^{19} -3.78725 q^{20} -3.57193 q^{21} +2.34220 q^{22} -1.00000 q^{23} -1.00000 q^{24} +9.34325 q^{25} +4.66679 q^{26} -1.00000 q^{27} +3.57193 q^{28} -1.00000 q^{29} +3.78725 q^{30} +1.30550 q^{31} +1.00000 q^{32} -2.34220 q^{33} -1.44505 q^{34} -13.5278 q^{35} +1.00000 q^{36} +8.01866 q^{37} -1.40051 q^{38} -4.66679 q^{39} -3.78725 q^{40} -7.66636 q^{41} -3.57193 q^{42} -5.48760 q^{43} +2.34220 q^{44} -3.78725 q^{45} -1.00000 q^{46} -6.80634 q^{47} -1.00000 q^{48} +5.75866 q^{49} +9.34325 q^{50} +1.44505 q^{51} +4.66679 q^{52} +0.554378 q^{53} -1.00000 q^{54} -8.87050 q^{55} +3.57193 q^{56} +1.40051 q^{57} -1.00000 q^{58} +3.88380 q^{59} +3.78725 q^{60} -0.342202 q^{61} +1.30550 q^{62} +3.57193 q^{63} +1.00000 q^{64} -17.6743 q^{65} -2.34220 q^{66} +11.2917 q^{67} -1.44505 q^{68} +1.00000 q^{69} -13.5278 q^{70} +15.1708 q^{71} +1.00000 q^{72} +0.445478 q^{73} +8.01866 q^{74} -9.34325 q^{75} -1.40051 q^{76} +8.36617 q^{77} -4.66679 q^{78} -5.56500 q^{79} -3.78725 q^{80} +1.00000 q^{81} -7.66636 q^{82} +8.84556 q^{83} -3.57193 q^{84} +5.47275 q^{85} -5.48760 q^{86} +1.00000 q^{87} +2.34220 q^{88} +7.99564 q^{89} -3.78725 q^{90} +16.6694 q^{91} -1.00000 q^{92} -1.30550 q^{93} -6.80634 q^{94} +5.30409 q^{95} -1.00000 q^{96} -8.60968 q^{97} +5.75866 q^{98} +2.34220 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + 2 q^{5} - 8 q^{6} + 5 q^{7} + 8 q^{8} + 8 q^{9} + 2 q^{10} + 3 q^{11} - 8 q^{12} + 13 q^{13} + 5 q^{14} - 2 q^{15} + 8 q^{16} + 5 q^{17} + 8 q^{18} + 7 q^{19} + 2 q^{20} - 5 q^{21} + 3 q^{22} - 8 q^{23} - 8 q^{24} + 24 q^{25} + 13 q^{26} - 8 q^{27} + 5 q^{28} - 8 q^{29} - 2 q^{30} + 15 q^{31} + 8 q^{32} - 3 q^{33} + 5 q^{34} + 9 q^{35} + 8 q^{36} + 22 q^{37} + 7 q^{38} - 13 q^{39} + 2 q^{40} - 8 q^{41} - 5 q^{42} - q^{43} + 3 q^{44} + 2 q^{45} - 8 q^{46} - 9 q^{47} - 8 q^{48} + 33 q^{49} + 24 q^{50} - 5 q^{51} + 13 q^{52} + 14 q^{53} - 8 q^{54} - 17 q^{55} + 5 q^{56} - 7 q^{57} - 8 q^{58} - 4 q^{59} - 2 q^{60} + 13 q^{61} + 15 q^{62} + 5 q^{63} + 8 q^{64} + 21 q^{65} - 3 q^{66} - 3 q^{67} + 5 q^{68} + 8 q^{69} + 9 q^{70} + 7 q^{71} + 8 q^{72} + 16 q^{73} + 22 q^{74} - 24 q^{75} + 7 q^{76} - 13 q^{78} + 14 q^{79} + 2 q^{80} + 8 q^{81} - 8 q^{82} + 36 q^{83} - 5 q^{84} + 47 q^{85} - q^{86} + 8 q^{87} + 3 q^{88} - 12 q^{89} + 2 q^{90} + 20 q^{91} - 8 q^{92} - 15 q^{93} - 9 q^{94} + 7 q^{95} - 8 q^{96} + 10 q^{97} + 33 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.78725 −1.69371 −0.846855 0.531825i \(-0.821507\pi\)
−0.846855 + 0.531825i \(0.821507\pi\)
\(6\) −1.00000 −0.408248
\(7\) 3.57193 1.35006 0.675031 0.737790i \(-0.264130\pi\)
0.675031 + 0.737790i \(0.264130\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −3.78725 −1.19763
\(11\) 2.34220 0.706200 0.353100 0.935585i \(-0.385127\pi\)
0.353100 + 0.935585i \(0.385127\pi\)
\(12\) −1.00000 −0.288675
\(13\) 4.66679 1.29434 0.647168 0.762347i \(-0.275953\pi\)
0.647168 + 0.762347i \(0.275953\pi\)
\(14\) 3.57193 0.954638
\(15\) 3.78725 0.977863
\(16\) 1.00000 0.250000
\(17\) −1.44505 −0.350475 −0.175238 0.984526i \(-0.556069\pi\)
−0.175238 + 0.984526i \(0.556069\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.40051 −0.321300 −0.160650 0.987011i \(-0.551359\pi\)
−0.160650 + 0.987011i \(0.551359\pi\)
\(20\) −3.78725 −0.846855
\(21\) −3.57193 −0.779458
\(22\) 2.34220 0.499359
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 9.34325 1.86865
\(26\) 4.66679 0.915234
\(27\) −1.00000 −0.192450
\(28\) 3.57193 0.675031
\(29\) −1.00000 −0.185695
\(30\) 3.78725 0.691454
\(31\) 1.30550 0.234475 0.117238 0.993104i \(-0.462596\pi\)
0.117238 + 0.993104i \(0.462596\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.34220 −0.407725
\(34\) −1.44505 −0.247823
\(35\) −13.5278 −2.28661
\(36\) 1.00000 0.166667
\(37\) 8.01866 1.31826 0.659130 0.752029i \(-0.270925\pi\)
0.659130 + 0.752029i \(0.270925\pi\)
\(38\) −1.40051 −0.227193
\(39\) −4.66679 −0.747285
\(40\) −3.78725 −0.598817
\(41\) −7.66636 −1.19728 −0.598642 0.801016i \(-0.704293\pi\)
−0.598642 + 0.801016i \(0.704293\pi\)
\(42\) −3.57193 −0.551160
\(43\) −5.48760 −0.836851 −0.418425 0.908251i \(-0.637418\pi\)
−0.418425 + 0.908251i \(0.637418\pi\)
\(44\) 2.34220 0.353100
\(45\) −3.78725 −0.564570
\(46\) −1.00000 −0.147442
\(47\) −6.80634 −0.992807 −0.496403 0.868092i \(-0.665346\pi\)
−0.496403 + 0.868092i \(0.665346\pi\)
\(48\) −1.00000 −0.144338
\(49\) 5.75866 0.822666
\(50\) 9.34325 1.32134
\(51\) 1.44505 0.202347
\(52\) 4.66679 0.647168
\(53\) 0.554378 0.0761497 0.0380748 0.999275i \(-0.487877\pi\)
0.0380748 + 0.999275i \(0.487877\pi\)
\(54\) −1.00000 −0.136083
\(55\) −8.87050 −1.19610
\(56\) 3.57193 0.477319
\(57\) 1.40051 0.185503
\(58\) −1.00000 −0.131306
\(59\) 3.88380 0.505628 0.252814 0.967515i \(-0.418644\pi\)
0.252814 + 0.967515i \(0.418644\pi\)
\(60\) 3.78725 0.488932
\(61\) −0.342202 −0.0438145 −0.0219072 0.999760i \(-0.506974\pi\)
−0.0219072 + 0.999760i \(0.506974\pi\)
\(62\) 1.30550 0.165799
\(63\) 3.57193 0.450020
\(64\) 1.00000 0.125000
\(65\) −17.6743 −2.19223
\(66\) −2.34220 −0.288305
\(67\) 11.2917 1.37950 0.689749 0.724049i \(-0.257721\pi\)
0.689749 + 0.724049i \(0.257721\pi\)
\(68\) −1.44505 −0.175238
\(69\) 1.00000 0.120386
\(70\) −13.5278 −1.61688
\(71\) 15.1708 1.80044 0.900221 0.435434i \(-0.143405\pi\)
0.900221 + 0.435434i \(0.143405\pi\)
\(72\) 1.00000 0.117851
\(73\) 0.445478 0.0521393 0.0260696 0.999660i \(-0.491701\pi\)
0.0260696 + 0.999660i \(0.491701\pi\)
\(74\) 8.01866 0.932150
\(75\) −9.34325 −1.07887
\(76\) −1.40051 −0.160650
\(77\) 8.36617 0.953414
\(78\) −4.66679 −0.528410
\(79\) −5.56500 −0.626111 −0.313056 0.949735i \(-0.601353\pi\)
−0.313056 + 0.949735i \(0.601353\pi\)
\(80\) −3.78725 −0.423427
\(81\) 1.00000 0.111111
\(82\) −7.66636 −0.846608
\(83\) 8.84556 0.970926 0.485463 0.874257i \(-0.338651\pi\)
0.485463 + 0.874257i \(0.338651\pi\)
\(84\) −3.57193 −0.389729
\(85\) 5.47275 0.593603
\(86\) −5.48760 −0.591743
\(87\) 1.00000 0.107211
\(88\) 2.34220 0.249680
\(89\) 7.99564 0.847537 0.423768 0.905771i \(-0.360707\pi\)
0.423768 + 0.905771i \(0.360707\pi\)
\(90\) −3.78725 −0.399211
\(91\) 16.6694 1.74743
\(92\) −1.00000 −0.104257
\(93\) −1.30550 −0.135374
\(94\) −6.80634 −0.702020
\(95\) 5.30409 0.544188
\(96\) −1.00000 −0.102062
\(97\) −8.60968 −0.874180 −0.437090 0.899418i \(-0.643991\pi\)
−0.437090 + 0.899418i \(0.643991\pi\)
\(98\) 5.75866 0.581713
\(99\) 2.34220 0.235400
\(100\) 9.34325 0.934325
\(101\) −1.37139 −0.136458 −0.0682291 0.997670i \(-0.521735\pi\)
−0.0682291 + 0.997670i \(0.521735\pi\)
\(102\) 1.44505 0.143081
\(103\) 16.0535 1.58180 0.790898 0.611948i \(-0.209614\pi\)
0.790898 + 0.611948i \(0.209614\pi\)
\(104\) 4.66679 0.457617
\(105\) 13.5278 1.32018
\(106\) 0.554378 0.0538459
\(107\) 0.933549 0.0902496 0.0451248 0.998981i \(-0.485631\pi\)
0.0451248 + 0.998981i \(0.485631\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 16.4318 1.57388 0.786938 0.617031i \(-0.211665\pi\)
0.786938 + 0.617031i \(0.211665\pi\)
\(110\) −8.87050 −0.845769
\(111\) −8.01866 −0.761097
\(112\) 3.57193 0.337515
\(113\) 5.68368 0.534676 0.267338 0.963603i \(-0.413856\pi\)
0.267338 + 0.963603i \(0.413856\pi\)
\(114\) 1.40051 0.131170
\(115\) 3.78725 0.353163
\(116\) −1.00000 −0.0928477
\(117\) 4.66679 0.431445
\(118\) 3.88380 0.357533
\(119\) −5.16160 −0.473163
\(120\) 3.78725 0.345727
\(121\) −5.51409 −0.501281
\(122\) −0.342202 −0.0309815
\(123\) 7.66636 0.691253
\(124\) 1.30550 0.117238
\(125\) −16.4490 −1.47124
\(126\) 3.57193 0.318213
\(127\) −11.7171 −1.03972 −0.519860 0.854251i \(-0.674016\pi\)
−0.519860 + 0.854251i \(0.674016\pi\)
\(128\) 1.00000 0.0883883
\(129\) 5.48760 0.483156
\(130\) −17.6743 −1.55014
\(131\) 12.3385 1.07802 0.539009 0.842300i \(-0.318799\pi\)
0.539009 + 0.842300i \(0.318799\pi\)
\(132\) −2.34220 −0.203863
\(133\) −5.00253 −0.433774
\(134\) 11.2917 0.975452
\(135\) 3.78725 0.325954
\(136\) −1.44505 −0.123912
\(137\) −3.56500 −0.304578 −0.152289 0.988336i \(-0.548665\pi\)
−0.152289 + 0.988336i \(0.548665\pi\)
\(138\) 1.00000 0.0851257
\(139\) 3.62041 0.307079 0.153539 0.988143i \(-0.450933\pi\)
0.153539 + 0.988143i \(0.450933\pi\)
\(140\) −13.5278 −1.14331
\(141\) 6.80634 0.573197
\(142\) 15.1708 1.27310
\(143\) 10.9306 0.914061
\(144\) 1.00000 0.0833333
\(145\) 3.78725 0.314514
\(146\) 0.445478 0.0368680
\(147\) −5.75866 −0.474966
\(148\) 8.01866 0.659130
\(149\) −9.41698 −0.771469 −0.385735 0.922610i \(-0.626052\pi\)
−0.385735 + 0.922610i \(0.626052\pi\)
\(150\) −9.34325 −0.762873
\(151\) 4.85524 0.395114 0.197557 0.980291i \(-0.436699\pi\)
0.197557 + 0.980291i \(0.436699\pi\)
\(152\) −1.40051 −0.113597
\(153\) −1.44505 −0.116825
\(154\) 8.36617 0.674166
\(155\) −4.94426 −0.397132
\(156\) −4.66679 −0.373643
\(157\) 5.30967 0.423758 0.211879 0.977296i \(-0.432042\pi\)
0.211879 + 0.977296i \(0.432042\pi\)
\(158\) −5.56500 −0.442728
\(159\) −0.554378 −0.0439650
\(160\) −3.78725 −0.299408
\(161\) −3.57193 −0.281507
\(162\) 1.00000 0.0785674
\(163\) −4.22663 −0.331055 −0.165528 0.986205i \(-0.552933\pi\)
−0.165528 + 0.986205i \(0.552933\pi\)
\(164\) −7.66636 −0.598642
\(165\) 8.87050 0.690568
\(166\) 8.84556 0.686549
\(167\) −17.4722 −1.35204 −0.676021 0.736882i \(-0.736297\pi\)
−0.676021 + 0.736882i \(0.736297\pi\)
\(168\) −3.57193 −0.275580
\(169\) 8.77897 0.675305
\(170\) 5.47275 0.419741
\(171\) −1.40051 −0.107100
\(172\) −5.48760 −0.418425
\(173\) 6.23022 0.473675 0.236837 0.971549i \(-0.423889\pi\)
0.236837 + 0.971549i \(0.423889\pi\)
\(174\) 1.00000 0.0758098
\(175\) 33.3734 2.52279
\(176\) 2.34220 0.176550
\(177\) −3.88380 −0.291924
\(178\) 7.99564 0.599299
\(179\) 16.0519 1.19978 0.599889 0.800083i \(-0.295211\pi\)
0.599889 + 0.800083i \(0.295211\pi\)
\(180\) −3.78725 −0.282285
\(181\) 2.16116 0.160637 0.0803187 0.996769i \(-0.474406\pi\)
0.0803187 + 0.996769i \(0.474406\pi\)
\(182\) 16.6694 1.23562
\(183\) 0.342202 0.0252963
\(184\) −1.00000 −0.0737210
\(185\) −30.3687 −2.23275
\(186\) −1.30550 −0.0957240
\(187\) −3.38459 −0.247506
\(188\) −6.80634 −0.496403
\(189\) −3.57193 −0.259819
\(190\) 5.30409 0.384799
\(191\) 25.9760 1.87956 0.939779 0.341782i \(-0.111031\pi\)
0.939779 + 0.341782i \(0.111031\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 21.7463 1.56533 0.782667 0.622441i \(-0.213859\pi\)
0.782667 + 0.622441i \(0.213859\pi\)
\(194\) −8.60968 −0.618139
\(195\) 17.6743 1.26568
\(196\) 5.75866 0.411333
\(197\) 2.10710 0.150125 0.0750624 0.997179i \(-0.476084\pi\)
0.0750624 + 0.997179i \(0.476084\pi\)
\(198\) 2.34220 0.166453
\(199\) 25.3300 1.79560 0.897798 0.440408i \(-0.145166\pi\)
0.897798 + 0.440408i \(0.145166\pi\)
\(200\) 9.34325 0.660668
\(201\) −11.2917 −0.796453
\(202\) −1.37139 −0.0964905
\(203\) −3.57193 −0.250700
\(204\) 1.44505 0.101173
\(205\) 29.0344 2.02785
\(206\) 16.0535 1.11850
\(207\) −1.00000 −0.0695048
\(208\) 4.66679 0.323584
\(209\) −3.28029 −0.226902
\(210\) 13.5278 0.933505
\(211\) −8.16289 −0.561957 −0.280978 0.959714i \(-0.590659\pi\)
−0.280978 + 0.959714i \(0.590659\pi\)
\(212\) 0.554378 0.0380748
\(213\) −15.1708 −1.03949
\(214\) 0.933549 0.0638161
\(215\) 20.7829 1.41738
\(216\) −1.00000 −0.0680414
\(217\) 4.66316 0.316556
\(218\) 16.4318 1.11290
\(219\) −0.445478 −0.0301026
\(220\) −8.87050 −0.598049
\(221\) −6.74374 −0.453633
\(222\) −8.01866 −0.538177
\(223\) 18.1626 1.21626 0.608128 0.793839i \(-0.291921\pi\)
0.608128 + 0.793839i \(0.291921\pi\)
\(224\) 3.57193 0.238659
\(225\) 9.34325 0.622883
\(226\) 5.68368 0.378073
\(227\) 13.8314 0.918024 0.459012 0.888430i \(-0.348204\pi\)
0.459012 + 0.888430i \(0.348204\pi\)
\(228\) 1.40051 0.0927513
\(229\) −14.2401 −0.941010 −0.470505 0.882397i \(-0.655928\pi\)
−0.470505 + 0.882397i \(0.655928\pi\)
\(230\) 3.78725 0.249724
\(231\) −8.36617 −0.550454
\(232\) −1.00000 −0.0656532
\(233\) −20.5518 −1.34639 −0.673196 0.739464i \(-0.735079\pi\)
−0.673196 + 0.739464i \(0.735079\pi\)
\(234\) 4.66679 0.305078
\(235\) 25.7773 1.68153
\(236\) 3.88380 0.252814
\(237\) 5.56500 0.361486
\(238\) −5.16160 −0.334577
\(239\) −0.852557 −0.0551474 −0.0275737 0.999620i \(-0.508778\pi\)
−0.0275737 + 0.999620i \(0.508778\pi\)
\(240\) 3.78725 0.244466
\(241\) −17.9577 −1.15675 −0.578377 0.815769i \(-0.696314\pi\)
−0.578377 + 0.815769i \(0.696314\pi\)
\(242\) −5.51409 −0.354459
\(243\) −1.00000 −0.0641500
\(244\) −0.342202 −0.0219072
\(245\) −21.8095 −1.39336
\(246\) 7.66636 0.488789
\(247\) −6.53591 −0.415870
\(248\) 1.30550 0.0828994
\(249\) −8.84556 −0.560565
\(250\) −16.4490 −1.04032
\(251\) 5.79440 0.365739 0.182870 0.983137i \(-0.441461\pi\)
0.182870 + 0.983137i \(0.441461\pi\)
\(252\) 3.57193 0.225010
\(253\) −2.34220 −0.147253
\(254\) −11.7171 −0.735194
\(255\) −5.47275 −0.342717
\(256\) 1.00000 0.0625000
\(257\) 3.15754 0.196962 0.0984809 0.995139i \(-0.468602\pi\)
0.0984809 + 0.995139i \(0.468602\pi\)
\(258\) 5.48760 0.341643
\(259\) 28.6421 1.77973
\(260\) −17.6743 −1.09611
\(261\) −1.00000 −0.0618984
\(262\) 12.3385 0.762273
\(263\) −2.09401 −0.129122 −0.0645611 0.997914i \(-0.520565\pi\)
−0.0645611 + 0.997914i \(0.520565\pi\)
\(264\) −2.34220 −0.144153
\(265\) −2.09957 −0.128975
\(266\) −5.00253 −0.306725
\(267\) −7.99564 −0.489325
\(268\) 11.2917 0.689749
\(269\) 14.0144 0.854470 0.427235 0.904141i \(-0.359488\pi\)
0.427235 + 0.904141i \(0.359488\pi\)
\(270\) 3.78725 0.230485
\(271\) −26.2382 −1.59386 −0.796929 0.604073i \(-0.793543\pi\)
−0.796929 + 0.604073i \(0.793543\pi\)
\(272\) −1.44505 −0.0876188
\(273\) −16.6694 −1.00888
\(274\) −3.56500 −0.215370
\(275\) 21.8838 1.31964
\(276\) 1.00000 0.0601929
\(277\) 19.0265 1.14319 0.571595 0.820536i \(-0.306325\pi\)
0.571595 + 0.820536i \(0.306325\pi\)
\(278\) 3.62041 0.217138
\(279\) 1.30550 0.0781583
\(280\) −13.5278 −0.808439
\(281\) 13.7926 0.822800 0.411400 0.911455i \(-0.365040\pi\)
0.411400 + 0.911455i \(0.365040\pi\)
\(282\) 6.80634 0.405312
\(283\) −19.6024 −1.16524 −0.582622 0.812743i \(-0.697973\pi\)
−0.582622 + 0.812743i \(0.697973\pi\)
\(284\) 15.1708 0.900221
\(285\) −5.30409 −0.314187
\(286\) 10.9306 0.646338
\(287\) −27.3837 −1.61641
\(288\) 1.00000 0.0589256
\(289\) −14.9118 −0.877167
\(290\) 3.78725 0.222395
\(291\) 8.60968 0.504708
\(292\) 0.445478 0.0260696
\(293\) −29.3911 −1.71704 −0.858522 0.512776i \(-0.828617\pi\)
−0.858522 + 0.512776i \(0.828617\pi\)
\(294\) −5.75866 −0.335852
\(295\) −14.7089 −0.856387
\(296\) 8.01866 0.466075
\(297\) −2.34220 −0.135908
\(298\) −9.41698 −0.545511
\(299\) −4.66679 −0.269888
\(300\) −9.34325 −0.539433
\(301\) −19.6013 −1.12980
\(302\) 4.85524 0.279388
\(303\) 1.37139 0.0787841
\(304\) −1.40051 −0.0803249
\(305\) 1.29600 0.0742090
\(306\) −1.44505 −0.0826078
\(307\) −21.9547 −1.25302 −0.626512 0.779412i \(-0.715518\pi\)
−0.626512 + 0.779412i \(0.715518\pi\)
\(308\) 8.36617 0.476707
\(309\) −16.0535 −0.913251
\(310\) −4.94426 −0.280815
\(311\) −24.9590 −1.41530 −0.707649 0.706564i \(-0.750244\pi\)
−0.707649 + 0.706564i \(0.750244\pi\)
\(312\) −4.66679 −0.264205
\(313\) 15.0472 0.850521 0.425260 0.905071i \(-0.360183\pi\)
0.425260 + 0.905071i \(0.360183\pi\)
\(314\) 5.30967 0.299642
\(315\) −13.5278 −0.762204
\(316\) −5.56500 −0.313056
\(317\) 32.8887 1.84721 0.923606 0.383344i \(-0.125227\pi\)
0.923606 + 0.383344i \(0.125227\pi\)
\(318\) −0.554378 −0.0310880
\(319\) −2.34220 −0.131138
\(320\) −3.78725 −0.211714
\(321\) −0.933549 −0.0521056
\(322\) −3.57193 −0.199056
\(323\) 2.02381 0.112608
\(324\) 1.00000 0.0555556
\(325\) 43.6030 2.41866
\(326\) −4.22663 −0.234091
\(327\) −16.4318 −0.908678
\(328\) −7.66636 −0.423304
\(329\) −24.3117 −1.34035
\(330\) 8.87050 0.488305
\(331\) 22.2324 1.22201 0.611003 0.791628i \(-0.290766\pi\)
0.611003 + 0.791628i \(0.290766\pi\)
\(332\) 8.84556 0.485463
\(333\) 8.01866 0.439420
\(334\) −17.4722 −0.956038
\(335\) −42.7644 −2.33647
\(336\) −3.57193 −0.194865
\(337\) 7.92729 0.431827 0.215913 0.976413i \(-0.430727\pi\)
0.215913 + 0.976413i \(0.430727\pi\)
\(338\) 8.77897 0.477513
\(339\) −5.68368 −0.308695
\(340\) 5.47275 0.296802
\(341\) 3.05775 0.165586
\(342\) −1.40051 −0.0757311
\(343\) −4.43397 −0.239412
\(344\) −5.48760 −0.295871
\(345\) −3.78725 −0.203899
\(346\) 6.23022 0.334939
\(347\) −22.8001 −1.22397 −0.611987 0.790868i \(-0.709630\pi\)
−0.611987 + 0.790868i \(0.709630\pi\)
\(348\) 1.00000 0.0536056
\(349\) 11.4172 0.611149 0.305574 0.952168i \(-0.401151\pi\)
0.305574 + 0.952168i \(0.401151\pi\)
\(350\) 33.3734 1.78388
\(351\) −4.66679 −0.249095
\(352\) 2.34220 0.124840
\(353\) −33.5445 −1.78540 −0.892698 0.450656i \(-0.851190\pi\)
−0.892698 + 0.450656i \(0.851190\pi\)
\(354\) −3.88380 −0.206422
\(355\) −57.4556 −3.04942
\(356\) 7.99564 0.423768
\(357\) 5.16160 0.273181
\(358\) 16.0519 0.848371
\(359\) 5.08140 0.268186 0.134093 0.990969i \(-0.457188\pi\)
0.134093 + 0.990969i \(0.457188\pi\)
\(360\) −3.78725 −0.199606
\(361\) −17.0386 −0.896766
\(362\) 2.16116 0.113588
\(363\) 5.51409 0.289415
\(364\) 16.6694 0.873716
\(365\) −1.68714 −0.0883088
\(366\) 0.342202 0.0178872
\(367\) 25.4876 1.33044 0.665220 0.746647i \(-0.268338\pi\)
0.665220 + 0.746647i \(0.268338\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −7.66636 −0.399095
\(370\) −30.3687 −1.57879
\(371\) 1.98020 0.102807
\(372\) −1.30550 −0.0676871
\(373\) 25.6742 1.32936 0.664680 0.747128i \(-0.268568\pi\)
0.664680 + 0.747128i \(0.268568\pi\)
\(374\) −3.38459 −0.175013
\(375\) 16.4490 0.849421
\(376\) −6.80634 −0.351010
\(377\) −4.66679 −0.240352
\(378\) −3.57193 −0.183720
\(379\) 33.6985 1.73098 0.865488 0.500930i \(-0.167009\pi\)
0.865488 + 0.500930i \(0.167009\pi\)
\(380\) 5.30409 0.272094
\(381\) 11.7171 0.600283
\(382\) 25.9760 1.32905
\(383\) −18.9508 −0.968339 −0.484169 0.874974i \(-0.660878\pi\)
−0.484169 + 0.874974i \(0.660878\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −31.6848 −1.61481
\(386\) 21.7463 1.10686
\(387\) −5.48760 −0.278950
\(388\) −8.60968 −0.437090
\(389\) −4.03989 −0.204831 −0.102415 0.994742i \(-0.532657\pi\)
−0.102415 + 0.994742i \(0.532657\pi\)
\(390\) 17.6743 0.894974
\(391\) 1.44505 0.0730791
\(392\) 5.75866 0.290856
\(393\) −12.3385 −0.622393
\(394\) 2.10710 0.106154
\(395\) 21.0760 1.06045
\(396\) 2.34220 0.117700
\(397\) 14.1022 0.707769 0.353885 0.935289i \(-0.384861\pi\)
0.353885 + 0.935289i \(0.384861\pi\)
\(398\) 25.3300 1.26968
\(399\) 5.00253 0.250440
\(400\) 9.34325 0.467163
\(401\) 27.6506 1.38081 0.690403 0.723425i \(-0.257433\pi\)
0.690403 + 0.723425i \(0.257433\pi\)
\(402\) −11.2917 −0.563178
\(403\) 6.09251 0.303489
\(404\) −1.37139 −0.0682291
\(405\) −3.78725 −0.188190
\(406\) −3.57193 −0.177272
\(407\) 18.7813 0.930955
\(408\) 1.44505 0.0715405
\(409\) −18.5570 −0.917587 −0.458793 0.888543i \(-0.651718\pi\)
−0.458793 + 0.888543i \(0.651718\pi\)
\(410\) 29.0344 1.43391
\(411\) 3.56500 0.175848
\(412\) 16.0535 0.790898
\(413\) 13.8727 0.682629
\(414\) −1.00000 −0.0491473
\(415\) −33.5003 −1.64447
\(416\) 4.66679 0.228808
\(417\) −3.62041 −0.177292
\(418\) −3.28029 −0.160444
\(419\) 30.4264 1.48642 0.743212 0.669056i \(-0.233301\pi\)
0.743212 + 0.669056i \(0.233301\pi\)
\(420\) 13.5278 0.660088
\(421\) −20.9140 −1.01928 −0.509642 0.860386i \(-0.670222\pi\)
−0.509642 + 0.860386i \(0.670222\pi\)
\(422\) −8.16289 −0.397363
\(423\) −6.80634 −0.330936
\(424\) 0.554378 0.0269230
\(425\) −13.5014 −0.654916
\(426\) −15.1708 −0.735027
\(427\) −1.22232 −0.0591522
\(428\) 0.933549 0.0451248
\(429\) −10.9306 −0.527733
\(430\) 20.7829 1.00224
\(431\) 6.74285 0.324792 0.162396 0.986726i \(-0.448078\pi\)
0.162396 + 0.986726i \(0.448078\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −21.7300 −1.04428 −0.522138 0.852861i \(-0.674865\pi\)
−0.522138 + 0.852861i \(0.674865\pi\)
\(434\) 4.66316 0.223839
\(435\) −3.78725 −0.181585
\(436\) 16.4318 0.786938
\(437\) 1.40051 0.0669956
\(438\) −0.445478 −0.0212858
\(439\) −32.7473 −1.56294 −0.781472 0.623941i \(-0.785531\pi\)
−0.781472 + 0.623941i \(0.785531\pi\)
\(440\) −8.87050 −0.422885
\(441\) 5.75866 0.274222
\(442\) −6.74374 −0.320767
\(443\) 14.8655 0.706283 0.353142 0.935570i \(-0.385113\pi\)
0.353142 + 0.935570i \(0.385113\pi\)
\(444\) −8.01866 −0.380549
\(445\) −30.2815 −1.43548
\(446\) 18.1626 0.860023
\(447\) 9.41698 0.445408
\(448\) 3.57193 0.168758
\(449\) 14.4939 0.684008 0.342004 0.939698i \(-0.388894\pi\)
0.342004 + 0.939698i \(0.388894\pi\)
\(450\) 9.34325 0.440445
\(451\) −17.9562 −0.845523
\(452\) 5.68368 0.267338
\(453\) −4.85524 −0.228119
\(454\) 13.8314 0.649141
\(455\) −63.1313 −2.95964
\(456\) 1.40051 0.0655850
\(457\) −0.319638 −0.0149520 −0.00747602 0.999972i \(-0.502380\pi\)
−0.00747602 + 0.999972i \(0.502380\pi\)
\(458\) −14.2401 −0.665395
\(459\) 1.44505 0.0674490
\(460\) 3.78725 0.176581
\(461\) −4.02268 −0.187355 −0.0936773 0.995603i \(-0.529862\pi\)
−0.0936773 + 0.995603i \(0.529862\pi\)
\(462\) −8.36617 −0.389230
\(463\) −16.9775 −0.789010 −0.394505 0.918894i \(-0.629084\pi\)
−0.394505 + 0.918894i \(0.629084\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 4.94426 0.229285
\(466\) −20.5518 −0.952043
\(467\) −18.8441 −0.872001 −0.436000 0.899947i \(-0.643605\pi\)
−0.436000 + 0.899947i \(0.643605\pi\)
\(468\) 4.66679 0.215723
\(469\) 40.3330 1.86241
\(470\) 25.7773 1.18902
\(471\) −5.30967 −0.244657
\(472\) 3.88380 0.178766
\(473\) −12.8531 −0.590984
\(474\) 5.56500 0.255609
\(475\) −13.0853 −0.600397
\(476\) −5.16160 −0.236582
\(477\) 0.554378 0.0253832
\(478\) −0.852557 −0.0389951
\(479\) 4.12593 0.188518 0.0942592 0.995548i \(-0.469952\pi\)
0.0942592 + 0.995548i \(0.469952\pi\)
\(480\) 3.78725 0.172863
\(481\) 37.4214 1.70627
\(482\) −17.9577 −0.817949
\(483\) 3.57193 0.162528
\(484\) −5.51409 −0.250640
\(485\) 32.6070 1.48061
\(486\) −1.00000 −0.0453609
\(487\) −35.2878 −1.59904 −0.799521 0.600638i \(-0.794913\pi\)
−0.799521 + 0.600638i \(0.794913\pi\)
\(488\) −0.342202 −0.0154908
\(489\) 4.22663 0.191135
\(490\) −21.8095 −0.985252
\(491\) −36.5347 −1.64879 −0.824394 0.566017i \(-0.808484\pi\)
−0.824394 + 0.566017i \(0.808484\pi\)
\(492\) 7.66636 0.345626
\(493\) 1.44505 0.0650816
\(494\) −6.53591 −0.294064
\(495\) −8.87050 −0.398699
\(496\) 1.30550 0.0586188
\(497\) 54.1889 2.43071
\(498\) −8.84556 −0.396379
\(499\) −23.8310 −1.06682 −0.533412 0.845856i \(-0.679090\pi\)
−0.533412 + 0.845856i \(0.679090\pi\)
\(500\) −16.4490 −0.735620
\(501\) 17.4722 0.780602
\(502\) 5.79440 0.258617
\(503\) 1.61618 0.0720621 0.0360311 0.999351i \(-0.488528\pi\)
0.0360311 + 0.999351i \(0.488528\pi\)
\(504\) 3.57193 0.159106
\(505\) 5.19378 0.231120
\(506\) −2.34220 −0.104124
\(507\) −8.77897 −0.389888
\(508\) −11.7171 −0.519860
\(509\) 8.39347 0.372034 0.186017 0.982547i \(-0.440442\pi\)
0.186017 + 0.982547i \(0.440442\pi\)
\(510\) −5.47275 −0.242337
\(511\) 1.59122 0.0703912
\(512\) 1.00000 0.0441942
\(513\) 1.40051 0.0618342
\(514\) 3.15754 0.139273
\(515\) −60.7985 −2.67910
\(516\) 5.48760 0.241578
\(517\) −15.9418 −0.701121
\(518\) 28.6421 1.25846
\(519\) −6.23022 −0.273476
\(520\) −17.6743 −0.775070
\(521\) 9.58673 0.420002 0.210001 0.977701i \(-0.432653\pi\)
0.210001 + 0.977701i \(0.432653\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 6.46947 0.282890 0.141445 0.989946i \(-0.454825\pi\)
0.141445 + 0.989946i \(0.454825\pi\)
\(524\) 12.3385 0.539009
\(525\) −33.3734 −1.45654
\(526\) −2.09401 −0.0913032
\(527\) −1.88651 −0.0821777
\(528\) −2.34220 −0.101931
\(529\) 1.00000 0.0434783
\(530\) −2.09957 −0.0911994
\(531\) 3.88380 0.168543
\(532\) −5.00253 −0.216887
\(533\) −35.7773 −1.54969
\(534\) −7.99564 −0.346005
\(535\) −3.53558 −0.152857
\(536\) 11.2917 0.487726
\(537\) −16.0519 −0.692692
\(538\) 14.0144 0.604202
\(539\) 13.4879 0.580967
\(540\) 3.78725 0.162977
\(541\) 10.3414 0.444611 0.222305 0.974977i \(-0.428642\pi\)
0.222305 + 0.974977i \(0.428642\pi\)
\(542\) −26.2382 −1.12703
\(543\) −2.16116 −0.0927441
\(544\) −1.44505 −0.0619559
\(545\) −62.2312 −2.66569
\(546\) −16.6694 −0.713387
\(547\) 14.7461 0.630496 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(548\) −3.56500 −0.152289
\(549\) −0.342202 −0.0146048
\(550\) 21.8838 0.933128
\(551\) 1.40051 0.0596639
\(552\) 1.00000 0.0425628
\(553\) −19.8778 −0.845289
\(554\) 19.0265 0.808357
\(555\) 30.3687 1.28908
\(556\) 3.62041 0.153539
\(557\) 6.32137 0.267845 0.133923 0.990992i \(-0.457243\pi\)
0.133923 + 0.990992i \(0.457243\pi\)
\(558\) 1.30550 0.0552663
\(559\) −25.6095 −1.08317
\(560\) −13.5278 −0.571653
\(561\) 3.38459 0.142898
\(562\) 13.7926 0.581808
\(563\) −5.33019 −0.224641 −0.112320 0.993672i \(-0.535828\pi\)
−0.112320 + 0.993672i \(0.535828\pi\)
\(564\) 6.80634 0.286599
\(565\) −21.5255 −0.905586
\(566\) −19.6024 −0.823952
\(567\) 3.57193 0.150007
\(568\) 15.1708 0.636552
\(569\) 14.1213 0.591994 0.295997 0.955189i \(-0.404348\pi\)
0.295997 + 0.955189i \(0.404348\pi\)
\(570\) −5.30409 −0.222164
\(571\) −31.8561 −1.33314 −0.666569 0.745443i \(-0.732238\pi\)
−0.666569 + 0.745443i \(0.732238\pi\)
\(572\) 10.9306 0.457030
\(573\) −25.9760 −1.08516
\(574\) −27.3837 −1.14297
\(575\) −9.34325 −0.389641
\(576\) 1.00000 0.0416667
\(577\) −19.5054 −0.812021 −0.406010 0.913868i \(-0.633080\pi\)
−0.406010 + 0.913868i \(0.633080\pi\)
\(578\) −14.9118 −0.620251
\(579\) −21.7463 −0.903746
\(580\) 3.78725 0.157257
\(581\) 31.5957 1.31081
\(582\) 8.60968 0.356883
\(583\) 1.29847 0.0537769
\(584\) 0.445478 0.0184340
\(585\) −17.6743 −0.730743
\(586\) −29.3911 −1.21413
\(587\) −1.66385 −0.0686745 −0.0343372 0.999410i \(-0.510932\pi\)
−0.0343372 + 0.999410i \(0.510932\pi\)
\(588\) −5.75866 −0.237483
\(589\) −1.82837 −0.0753368
\(590\) −14.7089 −0.605557
\(591\) −2.10710 −0.0866745
\(592\) 8.01866 0.329565
\(593\) 26.7886 1.10008 0.550038 0.835140i \(-0.314613\pi\)
0.550038 + 0.835140i \(0.314613\pi\)
\(594\) −2.34220 −0.0961017
\(595\) 19.5483 0.801401
\(596\) −9.41698 −0.385735
\(597\) −25.3300 −1.03669
\(598\) −4.66679 −0.190839
\(599\) −8.79682 −0.359428 −0.179714 0.983719i \(-0.557517\pi\)
−0.179714 + 0.983719i \(0.557517\pi\)
\(600\) −9.34325 −0.381437
\(601\) −8.63645 −0.352288 −0.176144 0.984364i \(-0.556362\pi\)
−0.176144 + 0.984364i \(0.556362\pi\)
\(602\) −19.6013 −0.798889
\(603\) 11.2917 0.459833
\(604\) 4.85524 0.197557
\(605\) 20.8832 0.849024
\(606\) 1.37139 0.0557088
\(607\) 33.1161 1.34414 0.672070 0.740488i \(-0.265406\pi\)
0.672070 + 0.740488i \(0.265406\pi\)
\(608\) −1.40051 −0.0567983
\(609\) 3.57193 0.144742
\(610\) 1.29600 0.0524737
\(611\) −31.7638 −1.28503
\(612\) −1.44505 −0.0584125
\(613\) 0.623316 0.0251755 0.0125878 0.999921i \(-0.495993\pi\)
0.0125878 + 0.999921i \(0.495993\pi\)
\(614\) −21.9547 −0.886021
\(615\) −29.0344 −1.17078
\(616\) 8.36617 0.337083
\(617\) −37.3965 −1.50553 −0.752763 0.658292i \(-0.771279\pi\)
−0.752763 + 0.658292i \(0.771279\pi\)
\(618\) −16.0535 −0.645766
\(619\) −8.70425 −0.349853 −0.174927 0.984581i \(-0.555969\pi\)
−0.174927 + 0.984581i \(0.555969\pi\)
\(620\) −4.94426 −0.198566
\(621\) 1.00000 0.0401286
\(622\) −24.9590 −1.00077
\(623\) 28.5599 1.14423
\(624\) −4.66679 −0.186821
\(625\) 15.5801 0.623204
\(626\) 15.0472 0.601409
\(627\) 3.28029 0.131002
\(628\) 5.30967 0.211879
\(629\) −11.5873 −0.462017
\(630\) −13.5278 −0.538959
\(631\) −39.7002 −1.58044 −0.790220 0.612823i \(-0.790034\pi\)
−0.790220 + 0.612823i \(0.790034\pi\)
\(632\) −5.56500 −0.221364
\(633\) 8.16289 0.324446
\(634\) 32.8887 1.30618
\(635\) 44.3754 1.76098
\(636\) −0.554378 −0.0219825
\(637\) 26.8745 1.06481
\(638\) −2.34220 −0.0927287
\(639\) 15.1708 0.600147
\(640\) −3.78725 −0.149704
\(641\) −13.3533 −0.527422 −0.263711 0.964602i \(-0.584946\pi\)
−0.263711 + 0.964602i \(0.584946\pi\)
\(642\) −0.933549 −0.0368442
\(643\) 28.8141 1.13632 0.568158 0.822920i \(-0.307656\pi\)
0.568158 + 0.822920i \(0.307656\pi\)
\(644\) −3.57193 −0.140754
\(645\) −20.7829 −0.818326
\(646\) 2.02381 0.0796256
\(647\) −16.3657 −0.643401 −0.321701 0.946841i \(-0.604254\pi\)
−0.321701 + 0.946841i \(0.604254\pi\)
\(648\) 1.00000 0.0392837
\(649\) 9.09665 0.357075
\(650\) 43.6030 1.71025
\(651\) −4.66316 −0.182763
\(652\) −4.22663 −0.165528
\(653\) 1.63973 0.0641678 0.0320839 0.999485i \(-0.489786\pi\)
0.0320839 + 0.999485i \(0.489786\pi\)
\(654\) −16.4318 −0.642533
\(655\) −46.7289 −1.82585
\(656\) −7.66636 −0.299321
\(657\) 0.445478 0.0173798
\(658\) −24.3117 −0.947771
\(659\) 29.7986 1.16079 0.580395 0.814335i \(-0.302898\pi\)
0.580395 + 0.814335i \(0.302898\pi\)
\(660\) 8.87050 0.345284
\(661\) −26.7407 −1.04009 −0.520046 0.854138i \(-0.674085\pi\)
−0.520046 + 0.854138i \(0.674085\pi\)
\(662\) 22.2324 0.864088
\(663\) 6.74374 0.261905
\(664\) 8.84556 0.343274
\(665\) 18.9458 0.734688
\(666\) 8.01866 0.310717
\(667\) 1.00000 0.0387202
\(668\) −17.4722 −0.676021
\(669\) −18.1626 −0.702206
\(670\) −42.7644 −1.65213
\(671\) −0.801506 −0.0309418
\(672\) −3.57193 −0.137790
\(673\) 35.6902 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(674\) 7.92729 0.305348
\(675\) −9.34325 −0.359622
\(676\) 8.77897 0.337653
\(677\) 5.16173 0.198381 0.0991907 0.995068i \(-0.468375\pi\)
0.0991907 + 0.995068i \(0.468375\pi\)
\(678\) −5.68368 −0.218281
\(679\) −30.7531 −1.18020
\(680\) 5.47275 0.209870
\(681\) −13.8314 −0.530021
\(682\) 3.05775 0.117087
\(683\) −4.90914 −0.187843 −0.0939216 0.995580i \(-0.529940\pi\)
−0.0939216 + 0.995580i \(0.529940\pi\)
\(684\) −1.40051 −0.0535500
\(685\) 13.5015 0.515867
\(686\) −4.43397 −0.169290
\(687\) 14.2401 0.543293
\(688\) −5.48760 −0.209213
\(689\) 2.58717 0.0985633
\(690\) −3.78725 −0.144178
\(691\) −14.1463 −0.538151 −0.269076 0.963119i \(-0.586718\pi\)
−0.269076 + 0.963119i \(0.586718\pi\)
\(692\) 6.23022 0.236837
\(693\) 8.36617 0.317805
\(694\) −22.8001 −0.865481
\(695\) −13.7114 −0.520102
\(696\) 1.00000 0.0379049
\(697\) 11.0783 0.419619
\(698\) 11.4172 0.432148
\(699\) 20.5518 0.777340
\(700\) 33.3734 1.26140
\(701\) 22.2077 0.838773 0.419386 0.907808i \(-0.362245\pi\)
0.419386 + 0.907808i \(0.362245\pi\)
\(702\) −4.66679 −0.176137
\(703\) −11.2302 −0.423556
\(704\) 2.34220 0.0882751
\(705\) −25.7773 −0.970829
\(706\) −33.5445 −1.26247
\(707\) −4.89849 −0.184227
\(708\) −3.88380 −0.145962
\(709\) −6.65174 −0.249812 −0.124906 0.992169i \(-0.539863\pi\)
−0.124906 + 0.992169i \(0.539863\pi\)
\(710\) −57.4556 −2.15627
\(711\) −5.56500 −0.208704
\(712\) 7.99564 0.299649
\(713\) −1.30550 −0.0488914
\(714\) 5.16160 0.193168
\(715\) −41.3968 −1.54815
\(716\) 16.0519 0.599889
\(717\) 0.852557 0.0318393
\(718\) 5.08140 0.189636
\(719\) 3.65677 0.136374 0.0681872 0.997673i \(-0.478278\pi\)
0.0681872 + 0.997673i \(0.478278\pi\)
\(720\) −3.78725 −0.141142
\(721\) 57.3419 2.13552
\(722\) −17.0386 −0.634110
\(723\) 17.9577 0.667853
\(724\) 2.16116 0.0803187
\(725\) −9.34325 −0.347000
\(726\) 5.51409 0.204647
\(727\) −31.7252 −1.17662 −0.588311 0.808635i \(-0.700207\pi\)
−0.588311 + 0.808635i \(0.700207\pi\)
\(728\) 16.6694 0.617811
\(729\) 1.00000 0.0370370
\(730\) −1.68714 −0.0624437
\(731\) 7.92983 0.293295
\(732\) 0.342202 0.0126482
\(733\) −7.63448 −0.281986 −0.140993 0.990011i \(-0.545029\pi\)
−0.140993 + 0.990011i \(0.545029\pi\)
\(734\) 25.4876 0.940764
\(735\) 21.8095 0.804455
\(736\) −1.00000 −0.0368605
\(737\) 26.4474 0.974202
\(738\) −7.66636 −0.282203
\(739\) 5.35462 0.196973 0.0984864 0.995138i \(-0.468600\pi\)
0.0984864 + 0.995138i \(0.468600\pi\)
\(740\) −30.3687 −1.11637
\(741\) 6.53591 0.240103
\(742\) 1.98020 0.0726953
\(743\) 37.1859 1.36422 0.682109 0.731250i \(-0.261063\pi\)
0.682109 + 0.731250i \(0.261063\pi\)
\(744\) −1.30550 −0.0478620
\(745\) 35.6645 1.30664
\(746\) 25.6742 0.940000
\(747\) 8.84556 0.323642
\(748\) −3.38459 −0.123753
\(749\) 3.33457 0.121842
\(750\) 16.4490 0.600632
\(751\) 17.2349 0.628909 0.314454 0.949273i \(-0.398178\pi\)
0.314454 + 0.949273i \(0.398178\pi\)
\(752\) −6.80634 −0.248202
\(753\) −5.79440 −0.211160
\(754\) −4.66679 −0.169955
\(755\) −18.3880 −0.669208
\(756\) −3.57193 −0.129910
\(757\) −24.7280 −0.898755 −0.449377 0.893342i \(-0.648354\pi\)
−0.449377 + 0.893342i \(0.648354\pi\)
\(758\) 33.6985 1.22398
\(759\) 2.34220 0.0850165
\(760\) 5.30409 0.192400
\(761\) 32.5123 1.17857 0.589285 0.807925i \(-0.299410\pi\)
0.589285 + 0.807925i \(0.299410\pi\)
\(762\) 11.7171 0.424464
\(763\) 58.6930 2.12483
\(764\) 25.9760 0.939779
\(765\) 5.47275 0.197868
\(766\) −18.9508 −0.684719
\(767\) 18.1249 0.654452
\(768\) −1.00000 −0.0360844
\(769\) 9.17525 0.330868 0.165434 0.986221i \(-0.447098\pi\)
0.165434 + 0.986221i \(0.447098\pi\)
\(770\) −31.6848 −1.14184
\(771\) −3.15754 −0.113716
\(772\) 21.7463 0.782667
\(773\) 15.0278 0.540513 0.270256 0.962788i \(-0.412892\pi\)
0.270256 + 0.962788i \(0.412892\pi\)
\(774\) −5.48760 −0.197248
\(775\) 12.1976 0.438152
\(776\) −8.60968 −0.309069
\(777\) −28.6421 −1.02753
\(778\) −4.03989 −0.144837
\(779\) 10.7368 0.384687
\(780\) 17.6743 0.632842
\(781\) 35.5331 1.27147
\(782\) 1.44505 0.0516748
\(783\) 1.00000 0.0357371
\(784\) 5.75866 0.205666
\(785\) −20.1090 −0.717722
\(786\) −12.3385 −0.440099
\(787\) −12.4048 −0.442185 −0.221092 0.975253i \(-0.570962\pi\)
−0.221092 + 0.975253i \(0.570962\pi\)
\(788\) 2.10710 0.0750624
\(789\) 2.09401 0.0745488
\(790\) 21.0760 0.749852
\(791\) 20.3017 0.721846
\(792\) 2.34220 0.0832265
\(793\) −1.59699 −0.0567107
\(794\) 14.1022 0.500469
\(795\) 2.09957 0.0744640
\(796\) 25.3300 0.897798
\(797\) −30.0605 −1.06480 −0.532399 0.846494i \(-0.678709\pi\)
−0.532399 + 0.846494i \(0.678709\pi\)
\(798\) 5.00253 0.177088
\(799\) 9.83548 0.347954
\(800\) 9.34325 0.330334
\(801\) 7.99564 0.282512
\(802\) 27.6506 0.976378
\(803\) 1.04340 0.0368208
\(804\) −11.2917 −0.398227
\(805\) 13.5278 0.476791
\(806\) 6.09251 0.214599
\(807\) −14.0144 −0.493329
\(808\) −1.37139 −0.0482452
\(809\) 34.2036 1.20253 0.601267 0.799048i \(-0.294663\pi\)
0.601267 + 0.799048i \(0.294663\pi\)
\(810\) −3.78725 −0.133070
\(811\) −21.5193 −0.755645 −0.377823 0.925878i \(-0.623327\pi\)
−0.377823 + 0.925878i \(0.623327\pi\)
\(812\) −3.57193 −0.125350
\(813\) 26.2382 0.920214
\(814\) 18.7813 0.658285
\(815\) 16.0073 0.560711
\(816\) 1.44505 0.0505867
\(817\) 7.68545 0.268880
\(818\) −18.5570 −0.648832
\(819\) 16.6694 0.582478
\(820\) 29.0344 1.01393
\(821\) −31.6614 −1.10499 −0.552496 0.833516i \(-0.686324\pi\)
−0.552496 + 0.833516i \(0.686324\pi\)
\(822\) 3.56500 0.124344
\(823\) −31.0191 −1.08126 −0.540628 0.841261i \(-0.681813\pi\)
−0.540628 + 0.841261i \(0.681813\pi\)
\(824\) 16.0535 0.559250
\(825\) −21.8838 −0.761896
\(826\) 13.8727 0.482691
\(827\) 21.5883 0.750700 0.375350 0.926883i \(-0.377522\pi\)
0.375350 + 0.926883i \(0.377522\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −9.74644 −0.338508 −0.169254 0.985572i \(-0.554136\pi\)
−0.169254 + 0.985572i \(0.554136\pi\)
\(830\) −33.5003 −1.16281
\(831\) −19.0265 −0.660021
\(832\) 4.66679 0.161792
\(833\) −8.32153 −0.288324
\(834\) −3.62041 −0.125364
\(835\) 66.1717 2.28997
\(836\) −3.28029 −0.113451
\(837\) −1.30550 −0.0451247
\(838\) 30.4264 1.05106
\(839\) −21.5434 −0.743760 −0.371880 0.928281i \(-0.621287\pi\)
−0.371880 + 0.928281i \(0.621287\pi\)
\(840\) 13.5278 0.466753
\(841\) 1.00000 0.0344828
\(842\) −20.9140 −0.720743
\(843\) −13.7926 −0.475044
\(844\) −8.16289 −0.280978
\(845\) −33.2481 −1.14377
\(846\) −6.80634 −0.234007
\(847\) −19.6959 −0.676760
\(848\) 0.554378 0.0190374
\(849\) 19.6024 0.672754
\(850\) −13.5014 −0.463095
\(851\) −8.01866 −0.274876
\(852\) −15.1708 −0.519743
\(853\) 30.6327 1.04885 0.524423 0.851458i \(-0.324281\pi\)
0.524423 + 0.851458i \(0.324281\pi\)
\(854\) −1.22232 −0.0418270
\(855\) 5.30409 0.181396
\(856\) 0.933549 0.0319080
\(857\) 19.0855 0.651948 0.325974 0.945379i \(-0.394308\pi\)
0.325974 + 0.945379i \(0.394308\pi\)
\(858\) −10.9306 −0.373164
\(859\) 53.8779 1.83829 0.919145 0.393918i \(-0.128881\pi\)
0.919145 + 0.393918i \(0.128881\pi\)
\(860\) 20.7829 0.708691
\(861\) 27.3837 0.933234
\(862\) 6.74285 0.229662
\(863\) −15.9030 −0.541344 −0.270672 0.962672i \(-0.587246\pi\)
−0.270672 + 0.962672i \(0.587246\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −23.5954 −0.802267
\(866\) −21.7300 −0.738414
\(867\) 14.9118 0.506433
\(868\) 4.66316 0.158278
\(869\) −13.0344 −0.442160
\(870\) −3.78725 −0.128400
\(871\) 52.6959 1.78553
\(872\) 16.4318 0.556450
\(873\) −8.60968 −0.291393
\(874\) 1.40051 0.0473731
\(875\) −58.7545 −1.98627
\(876\) −0.445478 −0.0150513
\(877\) 52.5752 1.77534 0.887668 0.460483i \(-0.152324\pi\)
0.887668 + 0.460483i \(0.152324\pi\)
\(878\) −32.7473 −1.10517
\(879\) 29.3911 0.991336
\(880\) −8.87050 −0.299025
\(881\) 10.3143 0.347498 0.173749 0.984790i \(-0.444412\pi\)
0.173749 + 0.984790i \(0.444412\pi\)
\(882\) 5.75866 0.193904
\(883\) 29.2224 0.983412 0.491706 0.870761i \(-0.336373\pi\)
0.491706 + 0.870761i \(0.336373\pi\)
\(884\) −6.74374 −0.226816
\(885\) 14.7089 0.494435
\(886\) 14.8655 0.499418
\(887\) −39.7584 −1.33495 −0.667477 0.744630i \(-0.732626\pi\)
−0.667477 + 0.744630i \(0.732626\pi\)
\(888\) −8.01866 −0.269089
\(889\) −41.8525 −1.40369
\(890\) −30.2815 −1.01504
\(891\) 2.34220 0.0784667
\(892\) 18.1626 0.608128
\(893\) 9.53237 0.318989
\(894\) 9.41698 0.314951
\(895\) −60.7927 −2.03208
\(896\) 3.57193 0.119330
\(897\) 4.66679 0.155820
\(898\) 14.4939 0.483667
\(899\) −1.30550 −0.0435409
\(900\) 9.34325 0.311442
\(901\) −0.801102 −0.0266886
\(902\) −17.9562 −0.597875
\(903\) 19.6013 0.652290
\(904\) 5.68368 0.189037
\(905\) −8.18483 −0.272073
\(906\) −4.85524 −0.161305
\(907\) −50.4594 −1.67548 −0.837738 0.546073i \(-0.816122\pi\)
−0.837738 + 0.546073i \(0.816122\pi\)
\(908\) 13.8314 0.459012
\(909\) −1.37139 −0.0454860
\(910\) −63.1313 −2.09278
\(911\) −44.7516 −1.48269 −0.741344 0.671125i \(-0.765811\pi\)
−0.741344 + 0.671125i \(0.765811\pi\)
\(912\) 1.40051 0.0463756
\(913\) 20.7181 0.685669
\(914\) −0.319638 −0.0105727
\(915\) −1.29600 −0.0428446
\(916\) −14.2401 −0.470505
\(917\) 44.0721 1.45539
\(918\) 1.44505 0.0476936
\(919\) −29.9321 −0.987368 −0.493684 0.869641i \(-0.664350\pi\)
−0.493684 + 0.869641i \(0.664350\pi\)
\(920\) 3.78725 0.124862
\(921\) 21.9547 0.723433
\(922\) −4.02268 −0.132480
\(923\) 70.7990 2.33038
\(924\) −8.36617 −0.275227
\(925\) 74.9204 2.46337
\(926\) −16.9775 −0.557914
\(927\) 16.0535 0.527266
\(928\) −1.00000 −0.0328266
\(929\) −22.1434 −0.726501 −0.363251 0.931691i \(-0.618333\pi\)
−0.363251 + 0.931691i \(0.618333\pi\)
\(930\) 4.94426 0.162129
\(931\) −8.06508 −0.264322
\(932\) −20.5518 −0.673196
\(933\) 24.9590 0.817123
\(934\) −18.8441 −0.616598
\(935\) 12.8183 0.419203
\(936\) 4.66679 0.152539
\(937\) −8.47194 −0.276766 −0.138383 0.990379i \(-0.544191\pi\)
−0.138383 + 0.990379i \(0.544191\pi\)
\(938\) 40.3330 1.31692
\(939\) −15.0472 −0.491048
\(940\) 25.7773 0.840763
\(941\) −37.8965 −1.23539 −0.617696 0.786417i \(-0.711934\pi\)
−0.617696 + 0.786417i \(0.711934\pi\)
\(942\) −5.30967 −0.172998
\(943\) 7.66636 0.249651
\(944\) 3.88380 0.126407
\(945\) 13.5278 0.440059
\(946\) −12.8531 −0.417889
\(947\) −37.5575 −1.22045 −0.610227 0.792227i \(-0.708922\pi\)
−0.610227 + 0.792227i \(0.708922\pi\)
\(948\) 5.56500 0.180743
\(949\) 2.07896 0.0674857
\(950\) −13.0853 −0.424545
\(951\) −32.8887 −1.06649
\(952\) −5.16160 −0.167288
\(953\) 31.6997 1.02685 0.513427 0.858133i \(-0.328376\pi\)
0.513427 + 0.858133i \(0.328376\pi\)
\(954\) 0.554378 0.0179486
\(955\) −98.3776 −3.18342
\(956\) −0.852557 −0.0275737
\(957\) 2.34220 0.0757126
\(958\) 4.12593 0.133303
\(959\) −12.7339 −0.411200
\(960\) 3.78725 0.122233
\(961\) −29.2957 −0.945021
\(962\) 37.4214 1.20652
\(963\) 0.933549 0.0300832
\(964\) −17.9577 −0.578377
\(965\) −82.3587 −2.65122
\(966\) 3.57193 0.114925
\(967\) 5.54508 0.178318 0.0891588 0.996017i \(-0.471582\pi\)
0.0891588 + 0.996017i \(0.471582\pi\)
\(968\) −5.51409 −0.177230
\(969\) −2.02381 −0.0650140
\(970\) 32.6070 1.04695
\(971\) −26.5045 −0.850570 −0.425285 0.905060i \(-0.639826\pi\)
−0.425285 + 0.905060i \(0.639826\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 12.9318 0.414575
\(974\) −35.2878 −1.13069
\(975\) −43.6030 −1.39641
\(976\) −0.342202 −0.0109536
\(977\) −44.4577 −1.42233 −0.711165 0.703026i \(-0.751832\pi\)
−0.711165 + 0.703026i \(0.751832\pi\)
\(978\) 4.22663 0.135153
\(979\) 18.7274 0.598531
\(980\) −21.8095 −0.696678
\(981\) 16.4318 0.524626
\(982\) −36.5347 −1.16587
\(983\) 15.1071 0.481842 0.240921 0.970545i \(-0.422551\pi\)
0.240921 + 0.970545i \(0.422551\pi\)
\(984\) 7.66636 0.244395
\(985\) −7.98011 −0.254268
\(986\) 1.44505 0.0460197
\(987\) 24.3117 0.773851
\(988\) −6.53591 −0.207935
\(989\) 5.48760 0.174495
\(990\) −8.87050 −0.281923
\(991\) 1.20588 0.0383062 0.0191531 0.999817i \(-0.493903\pi\)
0.0191531 + 0.999817i \(0.493903\pi\)
\(992\) 1.30550 0.0414497
\(993\) −22.2324 −0.705525
\(994\) 54.1889 1.71877
\(995\) −95.9310 −3.04122
\(996\) −8.84556 −0.280282
\(997\) 30.3431 0.960975 0.480488 0.877002i \(-0.340460\pi\)
0.480488 + 0.877002i \(0.340460\pi\)
\(998\) −23.8310 −0.754358
\(999\) −8.01866 −0.253699
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bk.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bk.1.1 8 1.1 even 1 trivial