Properties

Label 4002.2.a.bj.1.8
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 26x^{6} + 4x^{5} + 209x^{4} + 113x^{3} - 436x^{2} - 360x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(4.15688\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +4.15688 q^{5} -1.00000 q^{6} +0.461913 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +4.15688 q^{5} -1.00000 q^{6} +0.461913 q^{7} +1.00000 q^{8} +1.00000 q^{9} +4.15688 q^{10} +2.29353 q^{11} -1.00000 q^{12} -2.16373 q^{13} +0.461913 q^{14} -4.15688 q^{15} +1.00000 q^{16} +3.68899 q^{17} +1.00000 q^{18} +0.461913 q^{19} +4.15688 q^{20} -0.461913 q^{21} +2.29353 q^{22} +1.00000 q^{23} -1.00000 q^{24} +12.2797 q^{25} -2.16373 q^{26} -1.00000 q^{27} +0.461913 q^{28} +1.00000 q^{29} -4.15688 q^{30} -2.61314 q^{31} +1.00000 q^{32} -2.29353 q^{33} +3.68899 q^{34} +1.92012 q^{35} +1.00000 q^{36} -7.35359 q^{37} +0.461913 q^{38} +2.16373 q^{39} +4.15688 q^{40} +1.98532 q^{41} -0.461913 q^{42} -4.73656 q^{43} +2.29353 q^{44} +4.15688 q^{45} +1.00000 q^{46} +12.4440 q^{47} -1.00000 q^{48} -6.78664 q^{49} +12.2797 q^{50} -3.68899 q^{51} -2.16373 q^{52} -7.91682 q^{53} -1.00000 q^{54} +9.53392 q^{55} +0.461913 q^{56} -0.461913 q^{57} +1.00000 q^{58} +13.9439 q^{59} -4.15688 q^{60} +7.56872 q^{61} -2.61314 q^{62} +0.461913 q^{63} +1.00000 q^{64} -8.99437 q^{65} -2.29353 q^{66} -1.07490 q^{67} +3.68899 q^{68} -1.00000 q^{69} +1.92012 q^{70} -7.96922 q^{71} +1.00000 q^{72} +14.6021 q^{73} -7.35359 q^{74} -12.2797 q^{75} +0.461913 q^{76} +1.05941 q^{77} +2.16373 q^{78} -16.1867 q^{79} +4.15688 q^{80} +1.00000 q^{81} +1.98532 q^{82} +1.22708 q^{83} -0.461913 q^{84} +15.3347 q^{85} -4.73656 q^{86} -1.00000 q^{87} +2.29353 q^{88} +1.14905 q^{89} +4.15688 q^{90} -0.999454 q^{91} +1.00000 q^{92} +2.61314 q^{93} +12.4440 q^{94} +1.92012 q^{95} -1.00000 q^{96} -13.6303 q^{97} -6.78664 q^{98} +2.29353 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9} + q^{10} + 3 q^{11} - 8 q^{12} + 9 q^{13} - q^{15} + 8 q^{16} + 8 q^{17} + 8 q^{18} + q^{20} + 3 q^{22} + 8 q^{23} - 8 q^{24} + 13 q^{25} + 9 q^{26} - 8 q^{27} + 8 q^{29} - q^{30} - 9 q^{31} + 8 q^{32} - 3 q^{33} + 8 q^{34} - 2 q^{35} + 8 q^{36} + 7 q^{37} - 9 q^{39} + q^{40} + 3 q^{41} + 16 q^{43} + 3 q^{44} + q^{45} + 8 q^{46} + 24 q^{47} - 8 q^{48} + 6 q^{49} + 13 q^{50} - 8 q^{51} + 9 q^{52} + 8 q^{53} - 8 q^{54} + 13 q^{55} + 8 q^{58} - 3 q^{59} - q^{60} + 31 q^{61} - 9 q^{62} + 8 q^{64} + 13 q^{65} - 3 q^{66} - 11 q^{67} + 8 q^{68} - 8 q^{69} - 2 q^{70} + 7 q^{71} + 8 q^{72} + 14 q^{73} + 7 q^{74} - 13 q^{75} + 10 q^{77} - 9 q^{78} + 12 q^{79} + q^{80} + 8 q^{81} + 3 q^{82} - 8 q^{83} + 22 q^{85} + 16 q^{86} - 8 q^{87} + 3 q^{88} - 12 q^{89} + q^{90} + 28 q^{91} + 8 q^{92} + 9 q^{93} + 24 q^{94} - 2 q^{95} - 8 q^{96} + 16 q^{97} + 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 4.15688 1.85901 0.929507 0.368804i \(-0.120233\pi\)
0.929507 + 0.368804i \(0.120233\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0.461913 0.174587 0.0872933 0.996183i \(-0.472178\pi\)
0.0872933 + 0.996183i \(0.472178\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 4.15688 1.31452
\(11\) 2.29353 0.691524 0.345762 0.938322i \(-0.387620\pi\)
0.345762 + 0.938322i \(0.387620\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.16373 −0.600110 −0.300055 0.953922i \(-0.597005\pi\)
−0.300055 + 0.953922i \(0.597005\pi\)
\(14\) 0.461913 0.123451
\(15\) −4.15688 −1.07330
\(16\) 1.00000 0.250000
\(17\) 3.68899 0.894713 0.447356 0.894356i \(-0.352366\pi\)
0.447356 + 0.894356i \(0.352366\pi\)
\(18\) 1.00000 0.235702
\(19\) 0.461913 0.105970 0.0529850 0.998595i \(-0.483126\pi\)
0.0529850 + 0.998595i \(0.483126\pi\)
\(20\) 4.15688 0.929507
\(21\) −0.461913 −0.100798
\(22\) 2.29353 0.488982
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) 12.2797 2.45594
\(26\) −2.16373 −0.424342
\(27\) −1.00000 −0.192450
\(28\) 0.461913 0.0872933
\(29\) 1.00000 0.185695
\(30\) −4.15688 −0.758940
\(31\) −2.61314 −0.469334 −0.234667 0.972076i \(-0.575400\pi\)
−0.234667 + 0.972076i \(0.575400\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.29353 −0.399252
\(34\) 3.68899 0.632657
\(35\) 1.92012 0.324559
\(36\) 1.00000 0.166667
\(37\) −7.35359 −1.20892 −0.604462 0.796634i \(-0.706612\pi\)
−0.604462 + 0.796634i \(0.706612\pi\)
\(38\) 0.461913 0.0749322
\(39\) 2.16373 0.346474
\(40\) 4.15688 0.657261
\(41\) 1.98532 0.310056 0.155028 0.987910i \(-0.450453\pi\)
0.155028 + 0.987910i \(0.450453\pi\)
\(42\) −0.461913 −0.0712747
\(43\) −4.73656 −0.722319 −0.361160 0.932504i \(-0.617619\pi\)
−0.361160 + 0.932504i \(0.617619\pi\)
\(44\) 2.29353 0.345762
\(45\) 4.15688 0.619672
\(46\) 1.00000 0.147442
\(47\) 12.4440 1.81514 0.907568 0.419904i \(-0.137936\pi\)
0.907568 + 0.419904i \(0.137936\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.78664 −0.969520
\(50\) 12.2797 1.73661
\(51\) −3.68899 −0.516563
\(52\) −2.16373 −0.300055
\(53\) −7.91682 −1.08746 −0.543730 0.839260i \(-0.682988\pi\)
−0.543730 + 0.839260i \(0.682988\pi\)
\(54\) −1.00000 −0.136083
\(55\) 9.53392 1.28555
\(56\) 0.461913 0.0617257
\(57\) −0.461913 −0.0611819
\(58\) 1.00000 0.131306
\(59\) 13.9439 1.81534 0.907671 0.419682i \(-0.137858\pi\)
0.907671 + 0.419682i \(0.137858\pi\)
\(60\) −4.15688 −0.536651
\(61\) 7.56872 0.969076 0.484538 0.874770i \(-0.338988\pi\)
0.484538 + 0.874770i \(0.338988\pi\)
\(62\) −2.61314 −0.331870
\(63\) 0.461913 0.0581955
\(64\) 1.00000 0.125000
\(65\) −8.99437 −1.11561
\(66\) −2.29353 −0.282314
\(67\) −1.07490 −0.131320 −0.0656600 0.997842i \(-0.520915\pi\)
−0.0656600 + 0.997842i \(0.520915\pi\)
\(68\) 3.68899 0.447356
\(69\) −1.00000 −0.120386
\(70\) 1.92012 0.229498
\(71\) −7.96922 −0.945772 −0.472886 0.881124i \(-0.656788\pi\)
−0.472886 + 0.881124i \(0.656788\pi\)
\(72\) 1.00000 0.117851
\(73\) 14.6021 1.70905 0.854524 0.519412i \(-0.173849\pi\)
0.854524 + 0.519412i \(0.173849\pi\)
\(74\) −7.35359 −0.854838
\(75\) −12.2797 −1.41793
\(76\) 0.461913 0.0529850
\(77\) 1.05941 0.120731
\(78\) 2.16373 0.244994
\(79\) −16.1867 −1.82114 −0.910571 0.413353i \(-0.864357\pi\)
−0.910571 + 0.413353i \(0.864357\pi\)
\(80\) 4.15688 0.464754
\(81\) 1.00000 0.111111
\(82\) 1.98532 0.219242
\(83\) 1.22708 0.134690 0.0673448 0.997730i \(-0.478547\pi\)
0.0673448 + 0.997730i \(0.478547\pi\)
\(84\) −0.461913 −0.0503988
\(85\) 15.3347 1.66328
\(86\) −4.73656 −0.510757
\(87\) −1.00000 −0.107211
\(88\) 2.29353 0.244491
\(89\) 1.14905 0.121799 0.0608997 0.998144i \(-0.480603\pi\)
0.0608997 + 0.998144i \(0.480603\pi\)
\(90\) 4.15688 0.438174
\(91\) −0.999454 −0.104771
\(92\) 1.00000 0.104257
\(93\) 2.61314 0.270970
\(94\) 12.4440 1.28350
\(95\) 1.92012 0.197000
\(96\) −1.00000 −0.102062
\(97\) −13.6303 −1.38394 −0.691972 0.721924i \(-0.743258\pi\)
−0.691972 + 0.721924i \(0.743258\pi\)
\(98\) −6.78664 −0.685554
\(99\) 2.29353 0.230508
\(100\) 12.2797 1.22797
\(101\) 7.27014 0.723406 0.361703 0.932293i \(-0.382195\pi\)
0.361703 + 0.932293i \(0.382195\pi\)
\(102\) −3.68899 −0.365265
\(103\) −9.69167 −0.954949 −0.477475 0.878646i \(-0.658448\pi\)
−0.477475 + 0.878646i \(0.658448\pi\)
\(104\) −2.16373 −0.212171
\(105\) −1.92012 −0.187384
\(106\) −7.91682 −0.768950
\(107\) 0.728742 0.0704502 0.0352251 0.999379i \(-0.488785\pi\)
0.0352251 + 0.999379i \(0.488785\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 4.33632 0.415344 0.207672 0.978199i \(-0.433411\pi\)
0.207672 + 0.978199i \(0.433411\pi\)
\(110\) 9.53392 0.909024
\(111\) 7.35359 0.697972
\(112\) 0.461913 0.0436467
\(113\) 10.0087 0.941535 0.470768 0.882257i \(-0.343977\pi\)
0.470768 + 0.882257i \(0.343977\pi\)
\(114\) −0.461913 −0.0432621
\(115\) 4.15688 0.387631
\(116\) 1.00000 0.0928477
\(117\) −2.16373 −0.200037
\(118\) 13.9439 1.28364
\(119\) 1.70399 0.156205
\(120\) −4.15688 −0.379470
\(121\) −5.73974 −0.521794
\(122\) 7.56872 0.685240
\(123\) −1.98532 −0.179011
\(124\) −2.61314 −0.234667
\(125\) 30.2608 2.70661
\(126\) 0.461913 0.0411505
\(127\) −13.1060 −1.16297 −0.581486 0.813557i \(-0.697528\pi\)
−0.581486 + 0.813557i \(0.697528\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.73656 0.417031
\(130\) −8.99437 −0.788858
\(131\) −19.0985 −1.66865 −0.834323 0.551275i \(-0.814141\pi\)
−0.834323 + 0.551275i \(0.814141\pi\)
\(132\) −2.29353 −0.199626
\(133\) 0.213363 0.0185010
\(134\) −1.07490 −0.0928573
\(135\) −4.15688 −0.357768
\(136\) 3.68899 0.316329
\(137\) 20.0123 1.70977 0.854883 0.518821i \(-0.173629\pi\)
0.854883 + 0.518821i \(0.173629\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −21.7534 −1.84510 −0.922550 0.385876i \(-0.873899\pi\)
−0.922550 + 0.385876i \(0.873899\pi\)
\(140\) 1.92012 0.162280
\(141\) −12.4440 −1.04797
\(142\) −7.96922 −0.668762
\(143\) −4.96257 −0.414991
\(144\) 1.00000 0.0833333
\(145\) 4.15688 0.345210
\(146\) 14.6021 1.20848
\(147\) 6.78664 0.559752
\(148\) −7.35359 −0.604462
\(149\) −1.08290 −0.0887144 −0.0443572 0.999016i \(-0.514124\pi\)
−0.0443572 + 0.999016i \(0.514124\pi\)
\(150\) −12.2797 −1.00263
\(151\) −9.66170 −0.786258 −0.393129 0.919483i \(-0.628607\pi\)
−0.393129 + 0.919483i \(0.628607\pi\)
\(152\) 0.461913 0.0374661
\(153\) 3.68899 0.298238
\(154\) 1.05941 0.0853696
\(155\) −10.8625 −0.872500
\(156\) 2.16373 0.173237
\(157\) 2.14945 0.171545 0.0857726 0.996315i \(-0.472664\pi\)
0.0857726 + 0.996315i \(0.472664\pi\)
\(158\) −16.1867 −1.28774
\(159\) 7.91682 0.627845
\(160\) 4.15688 0.328630
\(161\) 0.461913 0.0364038
\(162\) 1.00000 0.0785674
\(163\) 4.33739 0.339730 0.169865 0.985467i \(-0.445667\pi\)
0.169865 + 0.985467i \(0.445667\pi\)
\(164\) 1.98532 0.155028
\(165\) −9.53392 −0.742215
\(166\) 1.22708 0.0952400
\(167\) −17.8394 −1.38045 −0.690226 0.723594i \(-0.742489\pi\)
−0.690226 + 0.723594i \(0.742489\pi\)
\(168\) −0.461913 −0.0356374
\(169\) −8.31828 −0.639867
\(170\) 15.3347 1.17612
\(171\) 0.461913 0.0353234
\(172\) −4.73656 −0.361160
\(173\) 19.1513 1.45604 0.728021 0.685554i \(-0.240440\pi\)
0.728021 + 0.685554i \(0.240440\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 5.67214 0.428774
\(176\) 2.29353 0.172881
\(177\) −13.9439 −1.04809
\(178\) 1.14905 0.0861252
\(179\) 18.1871 1.35936 0.679682 0.733507i \(-0.262118\pi\)
0.679682 + 0.733507i \(0.262118\pi\)
\(180\) 4.15688 0.309836
\(181\) 6.09503 0.453040 0.226520 0.974007i \(-0.427265\pi\)
0.226520 + 0.974007i \(0.427265\pi\)
\(182\) −0.999454 −0.0740845
\(183\) −7.56872 −0.559496
\(184\) 1.00000 0.0737210
\(185\) −30.5680 −2.24741
\(186\) 2.61314 0.191605
\(187\) 8.46081 0.618715
\(188\) 12.4440 0.907568
\(189\) −0.461913 −0.0335992
\(190\) 1.92012 0.139300
\(191\) −20.6701 −1.49564 −0.747818 0.663904i \(-0.768898\pi\)
−0.747818 + 0.663904i \(0.768898\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 23.3525 1.68095 0.840474 0.541852i \(-0.182277\pi\)
0.840474 + 0.541852i \(0.182277\pi\)
\(194\) −13.6303 −0.978596
\(195\) 8.99437 0.644100
\(196\) −6.78664 −0.484760
\(197\) −15.5939 −1.11102 −0.555508 0.831511i \(-0.687476\pi\)
−0.555508 + 0.831511i \(0.687476\pi\)
\(198\) 2.29353 0.162994
\(199\) 2.44620 0.173406 0.0867032 0.996234i \(-0.472367\pi\)
0.0867032 + 0.996234i \(0.472367\pi\)
\(200\) 12.2797 0.868304
\(201\) 1.07490 0.0758177
\(202\) 7.27014 0.511525
\(203\) 0.461913 0.0324199
\(204\) −3.68899 −0.258281
\(205\) 8.25276 0.576398
\(206\) −9.69167 −0.675251
\(207\) 1.00000 0.0695048
\(208\) −2.16373 −0.150028
\(209\) 1.05941 0.0732809
\(210\) −1.92012 −0.132501
\(211\) −17.3972 −1.19767 −0.598835 0.800872i \(-0.704370\pi\)
−0.598835 + 0.800872i \(0.704370\pi\)
\(212\) −7.91682 −0.543730
\(213\) 7.96922 0.546042
\(214\) 0.728742 0.0498158
\(215\) −19.6893 −1.34280
\(216\) −1.00000 −0.0680414
\(217\) −1.20704 −0.0819395
\(218\) 4.33632 0.293692
\(219\) −14.6021 −0.986719
\(220\) 9.53392 0.642777
\(221\) −7.98198 −0.536926
\(222\) 7.35359 0.493541
\(223\) −26.5315 −1.77668 −0.888342 0.459183i \(-0.848142\pi\)
−0.888342 + 0.459183i \(0.848142\pi\)
\(224\) 0.461913 0.0308629
\(225\) 12.2797 0.818645
\(226\) 10.0087 0.665766
\(227\) 15.5943 1.03503 0.517515 0.855674i \(-0.326857\pi\)
0.517515 + 0.855674i \(0.326857\pi\)
\(228\) −0.461913 −0.0305909
\(229\) 24.3201 1.60712 0.803558 0.595226i \(-0.202937\pi\)
0.803558 + 0.595226i \(0.202937\pi\)
\(230\) 4.15688 0.274097
\(231\) −1.05941 −0.0697040
\(232\) 1.00000 0.0656532
\(233\) 24.3411 1.59464 0.797318 0.603559i \(-0.206251\pi\)
0.797318 + 0.603559i \(0.206251\pi\)
\(234\) −2.16373 −0.141447
\(235\) 51.7281 3.37437
\(236\) 13.9439 0.907671
\(237\) 16.1867 1.05144
\(238\) 1.70399 0.110454
\(239\) 22.5843 1.46086 0.730430 0.682988i \(-0.239320\pi\)
0.730430 + 0.682988i \(0.239320\pi\)
\(240\) −4.15688 −0.268326
\(241\) 29.1961 1.88068 0.940342 0.340232i \(-0.110506\pi\)
0.940342 + 0.340232i \(0.110506\pi\)
\(242\) −5.73974 −0.368964
\(243\) −1.00000 −0.0641500
\(244\) 7.56872 0.484538
\(245\) −28.2113 −1.80235
\(246\) −1.98532 −0.126580
\(247\) −0.999454 −0.0635938
\(248\) −2.61314 −0.165935
\(249\) −1.22708 −0.0777631
\(250\) 30.2608 1.91386
\(251\) −15.7167 −0.992027 −0.496014 0.868315i \(-0.665203\pi\)
−0.496014 + 0.868315i \(0.665203\pi\)
\(252\) 0.461913 0.0290978
\(253\) 2.29353 0.144193
\(254\) −13.1060 −0.822345
\(255\) −15.3347 −0.960297
\(256\) 1.00000 0.0625000
\(257\) 16.1079 1.00478 0.502391 0.864640i \(-0.332454\pi\)
0.502391 + 0.864640i \(0.332454\pi\)
\(258\) 4.73656 0.294886
\(259\) −3.39672 −0.211062
\(260\) −8.99437 −0.557807
\(261\) 1.00000 0.0618984
\(262\) −19.0985 −1.17991
\(263\) 20.2205 1.24685 0.623424 0.781884i \(-0.285741\pi\)
0.623424 + 0.781884i \(0.285741\pi\)
\(264\) −2.29353 −0.141157
\(265\) −32.9093 −2.02160
\(266\) 0.213363 0.0130822
\(267\) −1.14905 −0.0703209
\(268\) −1.07490 −0.0656600
\(269\) 7.47540 0.455783 0.227891 0.973687i \(-0.426817\pi\)
0.227891 + 0.973687i \(0.426817\pi\)
\(270\) −4.15688 −0.252980
\(271\) −12.5168 −0.760339 −0.380169 0.924917i \(-0.624134\pi\)
−0.380169 + 0.924917i \(0.624134\pi\)
\(272\) 3.68899 0.223678
\(273\) 0.999454 0.0604897
\(274\) 20.0123 1.20899
\(275\) 28.1638 1.69834
\(276\) −1.00000 −0.0601929
\(277\) −7.21591 −0.433562 −0.216781 0.976220i \(-0.569556\pi\)
−0.216781 + 0.976220i \(0.569556\pi\)
\(278\) −21.7534 −1.30468
\(279\) −2.61314 −0.156445
\(280\) 1.92012 0.114749
\(281\) 12.3483 0.736636 0.368318 0.929700i \(-0.379934\pi\)
0.368318 + 0.929700i \(0.379934\pi\)
\(282\) −12.4440 −0.741027
\(283\) 12.3915 0.736599 0.368300 0.929707i \(-0.379940\pi\)
0.368300 + 0.929707i \(0.379940\pi\)
\(284\) −7.96922 −0.472886
\(285\) −1.92012 −0.113738
\(286\) −4.96257 −0.293443
\(287\) 0.917047 0.0541316
\(288\) 1.00000 0.0589256
\(289\) −3.39132 −0.199490
\(290\) 4.15688 0.244101
\(291\) 13.6303 0.799020
\(292\) 14.6021 0.854524
\(293\) −26.6792 −1.55862 −0.779309 0.626640i \(-0.784430\pi\)
−0.779309 + 0.626640i \(0.784430\pi\)
\(294\) 6.78664 0.395805
\(295\) 57.9632 3.37475
\(296\) −7.35359 −0.427419
\(297\) −2.29353 −0.133084
\(298\) −1.08290 −0.0627305
\(299\) −2.16373 −0.125132
\(300\) −12.2797 −0.708967
\(301\) −2.18788 −0.126107
\(302\) −9.66170 −0.555968
\(303\) −7.27014 −0.417659
\(304\) 0.461913 0.0264925
\(305\) 31.4623 1.80153
\(306\) 3.68899 0.210886
\(307\) 18.2765 1.04310 0.521548 0.853222i \(-0.325355\pi\)
0.521548 + 0.853222i \(0.325355\pi\)
\(308\) 1.05941 0.0603655
\(309\) 9.69167 0.551340
\(310\) −10.8625 −0.616950
\(311\) −5.47998 −0.310741 −0.155371 0.987856i \(-0.549657\pi\)
−0.155371 + 0.987856i \(0.549657\pi\)
\(312\) 2.16373 0.122497
\(313\) 9.94247 0.561982 0.280991 0.959710i \(-0.409337\pi\)
0.280991 + 0.959710i \(0.409337\pi\)
\(314\) 2.14945 0.121301
\(315\) 1.92012 0.108186
\(316\) −16.1867 −0.910571
\(317\) −0.528602 −0.0296893 −0.0148446 0.999890i \(-0.504725\pi\)
−0.0148446 + 0.999890i \(0.504725\pi\)
\(318\) 7.91682 0.443953
\(319\) 2.29353 0.128413
\(320\) 4.15688 0.232377
\(321\) −0.728742 −0.0406744
\(322\) 0.461913 0.0257414
\(323\) 1.70399 0.0948128
\(324\) 1.00000 0.0555556
\(325\) −26.5699 −1.47383
\(326\) 4.33739 0.240226
\(327\) −4.33632 −0.239799
\(328\) 1.98532 0.109621
\(329\) 5.74802 0.316899
\(330\) −9.53392 −0.524825
\(331\) 18.7648 1.03140 0.515702 0.856768i \(-0.327531\pi\)
0.515702 + 0.856768i \(0.327531\pi\)
\(332\) 1.22708 0.0673448
\(333\) −7.35359 −0.402974
\(334\) −17.8394 −0.976127
\(335\) −4.46824 −0.244126
\(336\) −0.461913 −0.0251994
\(337\) −14.8937 −0.811313 −0.405657 0.914025i \(-0.632957\pi\)
−0.405657 + 0.914025i \(0.632957\pi\)
\(338\) −8.31828 −0.452455
\(339\) −10.0087 −0.543596
\(340\) 15.3347 0.831642
\(341\) −5.99331 −0.324556
\(342\) 0.461913 0.0249774
\(343\) −6.36822 −0.343852
\(344\) −4.73656 −0.255378
\(345\) −4.15688 −0.223799
\(346\) 19.1513 1.02958
\(347\) 26.8489 1.44132 0.720662 0.693287i \(-0.243838\pi\)
0.720662 + 0.693287i \(0.243838\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −1.95595 −0.104699 −0.0523497 0.998629i \(-0.516671\pi\)
−0.0523497 + 0.998629i \(0.516671\pi\)
\(350\) 5.67214 0.303189
\(351\) 2.16373 0.115491
\(352\) 2.29353 0.122245
\(353\) −16.3310 −0.869210 −0.434605 0.900621i \(-0.643112\pi\)
−0.434605 + 0.900621i \(0.643112\pi\)
\(354\) −13.9439 −0.741110
\(355\) −33.1271 −1.75820
\(356\) 1.14905 0.0608997
\(357\) −1.70399 −0.0901849
\(358\) 18.1871 0.961216
\(359\) −6.59012 −0.347813 −0.173907 0.984762i \(-0.555639\pi\)
−0.173907 + 0.984762i \(0.555639\pi\)
\(360\) 4.15688 0.219087
\(361\) −18.7866 −0.988770
\(362\) 6.09503 0.320347
\(363\) 5.73974 0.301258
\(364\) −0.999454 −0.0523856
\(365\) 60.6993 3.17714
\(366\) −7.56872 −0.395623
\(367\) 18.8635 0.984668 0.492334 0.870406i \(-0.336144\pi\)
0.492334 + 0.870406i \(0.336144\pi\)
\(368\) 1.00000 0.0521286
\(369\) 1.98532 0.103352
\(370\) −30.5680 −1.58916
\(371\) −3.65688 −0.189856
\(372\) 2.61314 0.135485
\(373\) 2.94634 0.152555 0.0762777 0.997087i \(-0.475696\pi\)
0.0762777 + 0.997087i \(0.475696\pi\)
\(374\) 8.46081 0.437498
\(375\) −30.2608 −1.56266
\(376\) 12.4440 0.641748
\(377\) −2.16373 −0.111438
\(378\) −0.461913 −0.0237582
\(379\) 29.8372 1.53264 0.766318 0.642461i \(-0.222087\pi\)
0.766318 + 0.642461i \(0.222087\pi\)
\(380\) 1.92012 0.0985000
\(381\) 13.1060 0.671442
\(382\) −20.6701 −1.05757
\(383\) −31.8983 −1.62993 −0.814964 0.579511i \(-0.803243\pi\)
−0.814964 + 0.579511i \(0.803243\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 4.40384 0.224441
\(386\) 23.3525 1.18861
\(387\) −4.73656 −0.240773
\(388\) −13.6303 −0.691972
\(389\) 1.87244 0.0949367 0.0474684 0.998873i \(-0.484885\pi\)
0.0474684 + 0.998873i \(0.484885\pi\)
\(390\) 8.99437 0.455448
\(391\) 3.68899 0.186560
\(392\) −6.78664 −0.342777
\(393\) 19.0985 0.963394
\(394\) −15.5939 −0.785607
\(395\) −67.2861 −3.38553
\(396\) 2.29353 0.115254
\(397\) −31.7326 −1.59262 −0.796308 0.604892i \(-0.793216\pi\)
−0.796308 + 0.604892i \(0.793216\pi\)
\(398\) 2.44620 0.122617
\(399\) −0.213363 −0.0106815
\(400\) 12.2797 0.613984
\(401\) −25.1940 −1.25813 −0.629063 0.777354i \(-0.716561\pi\)
−0.629063 + 0.777354i \(0.716561\pi\)
\(402\) 1.07490 0.0536112
\(403\) 5.65413 0.281653
\(404\) 7.27014 0.361703
\(405\) 4.15688 0.206557
\(406\) 0.461913 0.0229243
\(407\) −16.8657 −0.836000
\(408\) −3.68899 −0.182632
\(409\) −36.3432 −1.79705 −0.898527 0.438918i \(-0.855362\pi\)
−0.898527 + 0.438918i \(0.855362\pi\)
\(410\) 8.25276 0.407575
\(411\) −20.0123 −0.987134
\(412\) −9.69167 −0.477475
\(413\) 6.44087 0.316935
\(414\) 1.00000 0.0491473
\(415\) 5.10083 0.250390
\(416\) −2.16373 −0.106086
\(417\) 21.7534 1.06527
\(418\) 1.05941 0.0518174
\(419\) −23.5521 −1.15060 −0.575298 0.817944i \(-0.695114\pi\)
−0.575298 + 0.817944i \(0.695114\pi\)
\(420\) −1.92012 −0.0936922
\(421\) −27.8590 −1.35777 −0.678883 0.734246i \(-0.737536\pi\)
−0.678883 + 0.734246i \(0.737536\pi\)
\(422\) −17.3972 −0.846881
\(423\) 12.4440 0.605046
\(424\) −7.91682 −0.384475
\(425\) 45.2997 2.19736
\(426\) 7.96922 0.386110
\(427\) 3.49609 0.169188
\(428\) 0.728742 0.0352251
\(429\) 4.96257 0.239595
\(430\) −19.6893 −0.949504
\(431\) −18.7957 −0.905355 −0.452678 0.891674i \(-0.649531\pi\)
−0.452678 + 0.891674i \(0.649531\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 5.89718 0.283400 0.141700 0.989910i \(-0.454743\pi\)
0.141700 + 0.989910i \(0.454743\pi\)
\(434\) −1.20704 −0.0579400
\(435\) −4.15688 −0.199307
\(436\) 4.33632 0.207672
\(437\) 0.461913 0.0220963
\(438\) −14.6021 −0.697716
\(439\) −1.21719 −0.0580931 −0.0290466 0.999578i \(-0.509247\pi\)
−0.0290466 + 0.999578i \(0.509247\pi\)
\(440\) 9.53392 0.454512
\(441\) −6.78664 −0.323173
\(442\) −7.98198 −0.379664
\(443\) −0.190584 −0.00905492 −0.00452746 0.999990i \(-0.501441\pi\)
−0.00452746 + 0.999990i \(0.501441\pi\)
\(444\) 7.35359 0.348986
\(445\) 4.77648 0.226427
\(446\) −26.5315 −1.25630
\(447\) 1.08290 0.0512193
\(448\) 0.461913 0.0218233
\(449\) 20.2172 0.954110 0.477055 0.878874i \(-0.341704\pi\)
0.477055 + 0.878874i \(0.341704\pi\)
\(450\) 12.2797 0.578870
\(451\) 4.55339 0.214411
\(452\) 10.0087 0.470768
\(453\) 9.66170 0.453946
\(454\) 15.5943 0.731877
\(455\) −4.15461 −0.194771
\(456\) −0.461913 −0.0216311
\(457\) −15.9356 −0.745436 −0.372718 0.927945i \(-0.621574\pi\)
−0.372718 + 0.927945i \(0.621574\pi\)
\(458\) 24.3201 1.13640
\(459\) −3.68899 −0.172188
\(460\) 4.15688 0.193816
\(461\) −25.9025 −1.20640 −0.603200 0.797590i \(-0.706108\pi\)
−0.603200 + 0.797590i \(0.706108\pi\)
\(462\) −1.05941 −0.0492882
\(463\) 9.65635 0.448768 0.224384 0.974501i \(-0.427963\pi\)
0.224384 + 0.974501i \(0.427963\pi\)
\(464\) 1.00000 0.0464238
\(465\) 10.8625 0.503738
\(466\) 24.3411 1.12758
\(467\) 6.92345 0.320379 0.160189 0.987086i \(-0.448789\pi\)
0.160189 + 0.987086i \(0.448789\pi\)
\(468\) −2.16373 −0.100018
\(469\) −0.496511 −0.0229267
\(470\) 51.7281 2.38604
\(471\) −2.14945 −0.0990417
\(472\) 13.9439 0.641820
\(473\) −10.8634 −0.499501
\(474\) 16.1867 0.743478
\(475\) 5.67214 0.260256
\(476\) 1.70399 0.0781024
\(477\) −7.91682 −0.362486
\(478\) 22.5843 1.03298
\(479\) −1.79876 −0.0821872 −0.0410936 0.999155i \(-0.513084\pi\)
−0.0410936 + 0.999155i \(0.513084\pi\)
\(480\) −4.15688 −0.189735
\(481\) 15.9112 0.725488
\(482\) 29.1961 1.32984
\(483\) −0.461913 −0.0210178
\(484\) −5.73974 −0.260897
\(485\) −56.6594 −2.57277
\(486\) −1.00000 −0.0453609
\(487\) −34.3279 −1.55554 −0.777772 0.628546i \(-0.783650\pi\)
−0.777772 + 0.628546i \(0.783650\pi\)
\(488\) 7.56872 0.342620
\(489\) −4.33739 −0.196143
\(490\) −28.2113 −1.27445
\(491\) 15.8749 0.716422 0.358211 0.933641i \(-0.383387\pi\)
0.358211 + 0.933641i \(0.383387\pi\)
\(492\) −1.98532 −0.0895053
\(493\) 3.68899 0.166144
\(494\) −0.999454 −0.0449676
\(495\) 9.53392 0.428518
\(496\) −2.61314 −0.117334
\(497\) −3.68108 −0.165119
\(498\) −1.22708 −0.0549868
\(499\) 8.06965 0.361247 0.180624 0.983552i \(-0.442188\pi\)
0.180624 + 0.983552i \(0.442188\pi\)
\(500\) 30.2608 1.35330
\(501\) 17.8394 0.797004
\(502\) −15.7167 −0.701469
\(503\) 8.91440 0.397473 0.198737 0.980053i \(-0.436316\pi\)
0.198737 + 0.980053i \(0.436316\pi\)
\(504\) 0.461913 0.0205752
\(505\) 30.2211 1.34482
\(506\) 2.29353 0.101960
\(507\) 8.31828 0.369428
\(508\) −13.1060 −0.581486
\(509\) −12.0368 −0.533523 −0.266762 0.963763i \(-0.585954\pi\)
−0.266762 + 0.963763i \(0.585954\pi\)
\(510\) −15.3347 −0.679033
\(511\) 6.74490 0.298377
\(512\) 1.00000 0.0441942
\(513\) −0.461913 −0.0203940
\(514\) 16.1079 0.710488
\(515\) −40.2872 −1.77526
\(516\) 4.73656 0.208516
\(517\) 28.5405 1.25521
\(518\) −3.39672 −0.149243
\(519\) −19.1513 −0.840647
\(520\) −8.99437 −0.394429
\(521\) −33.7157 −1.47711 −0.738556 0.674193i \(-0.764492\pi\)
−0.738556 + 0.674193i \(0.764492\pi\)
\(522\) 1.00000 0.0437688
\(523\) −19.1624 −0.837915 −0.418958 0.908006i \(-0.637604\pi\)
−0.418958 + 0.908006i \(0.637604\pi\)
\(524\) −19.0985 −0.834323
\(525\) −5.67214 −0.247553
\(526\) 20.2205 0.881655
\(527\) −9.63987 −0.419919
\(528\) −2.29353 −0.0998129
\(529\) 1.00000 0.0434783
\(530\) −32.9093 −1.42949
\(531\) 13.9439 0.605114
\(532\) 0.213363 0.00925048
\(533\) −4.29570 −0.186068
\(534\) −1.14905 −0.0497244
\(535\) 3.02930 0.130968
\(536\) −1.07490 −0.0464286
\(537\) −18.1871 −0.784830
\(538\) 7.47540 0.322287
\(539\) −15.5653 −0.670446
\(540\) −4.15688 −0.178884
\(541\) 39.0286 1.67797 0.838984 0.544156i \(-0.183150\pi\)
0.838984 + 0.544156i \(0.183150\pi\)
\(542\) −12.5168 −0.537641
\(543\) −6.09503 −0.261563
\(544\) 3.68899 0.158164
\(545\) 18.0256 0.772130
\(546\) 0.999454 0.0427727
\(547\) 3.89417 0.166503 0.0832514 0.996529i \(-0.473470\pi\)
0.0832514 + 0.996529i \(0.473470\pi\)
\(548\) 20.0123 0.854883
\(549\) 7.56872 0.323025
\(550\) 28.1638 1.20091
\(551\) 0.461913 0.0196781
\(552\) −1.00000 −0.0425628
\(553\) −7.47683 −0.317947
\(554\) −7.21591 −0.306575
\(555\) 30.5680 1.29754
\(556\) −21.7534 −0.922550
\(557\) −28.5076 −1.20791 −0.603953 0.797020i \(-0.706408\pi\)
−0.603953 + 0.797020i \(0.706408\pi\)
\(558\) −2.61314 −0.110623
\(559\) 10.2486 0.433471
\(560\) 1.92012 0.0811398
\(561\) −8.46081 −0.357216
\(562\) 12.3483 0.520881
\(563\) −14.2653 −0.601213 −0.300606 0.953748i \(-0.597189\pi\)
−0.300606 + 0.953748i \(0.597189\pi\)
\(564\) −12.4440 −0.523985
\(565\) 41.6048 1.75033
\(566\) 12.3915 0.520854
\(567\) 0.461913 0.0193985
\(568\) −7.96922 −0.334381
\(569\) −1.33127 −0.0558097 −0.0279049 0.999611i \(-0.508884\pi\)
−0.0279049 + 0.999611i \(0.508884\pi\)
\(570\) −1.92012 −0.0804249
\(571\) −41.8433 −1.75109 −0.875544 0.483138i \(-0.839497\pi\)
−0.875544 + 0.483138i \(0.839497\pi\)
\(572\) −4.96257 −0.207495
\(573\) 20.6701 0.863506
\(574\) 0.917047 0.0382768
\(575\) 12.2797 0.512098
\(576\) 1.00000 0.0416667
\(577\) 32.1496 1.33840 0.669202 0.743080i \(-0.266636\pi\)
0.669202 + 0.743080i \(0.266636\pi\)
\(578\) −3.39132 −0.141060
\(579\) −23.3525 −0.970496
\(580\) 4.15688 0.172605
\(581\) 0.566805 0.0235150
\(582\) 13.6303 0.564993
\(583\) −18.1574 −0.752004
\(584\) 14.6021 0.604240
\(585\) −8.99437 −0.371871
\(586\) −26.6792 −1.10211
\(587\) −41.3320 −1.70595 −0.852976 0.521949i \(-0.825205\pi\)
−0.852976 + 0.521949i \(0.825205\pi\)
\(588\) 6.78664 0.279876
\(589\) −1.20704 −0.0497354
\(590\) 57.9632 2.38631
\(591\) 15.5939 0.641446
\(592\) −7.35359 −0.302231
\(593\) −16.6122 −0.682181 −0.341090 0.940031i \(-0.610796\pi\)
−0.341090 + 0.940031i \(0.610796\pi\)
\(594\) −2.29353 −0.0941045
\(595\) 7.08330 0.290387
\(596\) −1.08290 −0.0443572
\(597\) −2.44620 −0.100116
\(598\) −2.16373 −0.0884815
\(599\) −30.4205 −1.24295 −0.621474 0.783435i \(-0.713466\pi\)
−0.621474 + 0.783435i \(0.713466\pi\)
\(600\) −12.2797 −0.501316
\(601\) −22.4176 −0.914433 −0.457216 0.889355i \(-0.651154\pi\)
−0.457216 + 0.889355i \(0.651154\pi\)
\(602\) −2.18788 −0.0891713
\(603\) −1.07490 −0.0437733
\(604\) −9.66170 −0.393129
\(605\) −23.8594 −0.970023
\(606\) −7.27014 −0.295329
\(607\) 27.9891 1.13604 0.568021 0.823014i \(-0.307709\pi\)
0.568021 + 0.823014i \(0.307709\pi\)
\(608\) 0.461913 0.0187330
\(609\) −0.461913 −0.0187177
\(610\) 31.4623 1.27387
\(611\) −26.9253 −1.08928
\(612\) 3.68899 0.149119
\(613\) −9.67901 −0.390931 −0.195466 0.980711i \(-0.562622\pi\)
−0.195466 + 0.980711i \(0.562622\pi\)
\(614\) 18.2765 0.737581
\(615\) −8.25276 −0.332783
\(616\) 1.05941 0.0426848
\(617\) −3.72668 −0.150031 −0.0750153 0.997182i \(-0.523901\pi\)
−0.0750153 + 0.997182i \(0.523901\pi\)
\(618\) 9.69167 0.389856
\(619\) 13.7364 0.552112 0.276056 0.961142i \(-0.410972\pi\)
0.276056 + 0.961142i \(0.410972\pi\)
\(620\) −10.8625 −0.436250
\(621\) −1.00000 −0.0401286
\(622\) −5.47998 −0.219727
\(623\) 0.530762 0.0212645
\(624\) 2.16373 0.0866185
\(625\) 64.3921 2.57568
\(626\) 9.94247 0.397381
\(627\) −1.05941 −0.0423087
\(628\) 2.14945 0.0857726
\(629\) −27.1274 −1.08164
\(630\) 1.92012 0.0764993
\(631\) 7.66355 0.305081 0.152541 0.988297i \(-0.451255\pi\)
0.152541 + 0.988297i \(0.451255\pi\)
\(632\) −16.1867 −0.643871
\(633\) 17.3972 0.691475
\(634\) −0.528602 −0.0209935
\(635\) −54.4802 −2.16198
\(636\) 7.91682 0.313922
\(637\) 14.6844 0.581819
\(638\) 2.29353 0.0908016
\(639\) −7.96922 −0.315257
\(640\) 4.15688 0.164315
\(641\) 43.4274 1.71528 0.857639 0.514252i \(-0.171930\pi\)
0.857639 + 0.514252i \(0.171930\pi\)
\(642\) −0.728742 −0.0287612
\(643\) −42.1097 −1.66064 −0.830322 0.557284i \(-0.811843\pi\)
−0.830322 + 0.557284i \(0.811843\pi\)
\(644\) 0.461913 0.0182019
\(645\) 19.6893 0.775267
\(646\) 1.70399 0.0670427
\(647\) 10.4651 0.411426 0.205713 0.978612i \(-0.434049\pi\)
0.205713 + 0.978612i \(0.434049\pi\)
\(648\) 1.00000 0.0392837
\(649\) 31.9807 1.25535
\(650\) −26.5699 −1.04216
\(651\) 1.20704 0.0473078
\(652\) 4.33739 0.169865
\(653\) 24.0670 0.941814 0.470907 0.882183i \(-0.343927\pi\)
0.470907 + 0.882183i \(0.343927\pi\)
\(654\) −4.33632 −0.169563
\(655\) −79.3904 −3.10204
\(656\) 1.98532 0.0775139
\(657\) 14.6021 0.569683
\(658\) 5.74802 0.224081
\(659\) 3.90566 0.152143 0.0760715 0.997102i \(-0.475762\pi\)
0.0760715 + 0.997102i \(0.475762\pi\)
\(660\) −9.53392 −0.371107
\(661\) 26.2025 1.01916 0.509580 0.860423i \(-0.329801\pi\)
0.509580 + 0.860423i \(0.329801\pi\)
\(662\) 18.7648 0.729313
\(663\) 7.98198 0.309995
\(664\) 1.22708 0.0476200
\(665\) 0.886927 0.0343936
\(666\) −7.35359 −0.284946
\(667\) 1.00000 0.0387202
\(668\) −17.8394 −0.690226
\(669\) 26.5315 1.02577
\(670\) −4.46824 −0.172623
\(671\) 17.3591 0.670139
\(672\) −0.461913 −0.0178187
\(673\) −22.0573 −0.850245 −0.425122 0.905136i \(-0.639769\pi\)
−0.425122 + 0.905136i \(0.639769\pi\)
\(674\) −14.8937 −0.573685
\(675\) −12.2797 −0.472645
\(676\) −8.31828 −0.319934
\(677\) −10.2724 −0.394800 −0.197400 0.980323i \(-0.563250\pi\)
−0.197400 + 0.980323i \(0.563250\pi\)
\(678\) −10.0087 −0.384380
\(679\) −6.29600 −0.241618
\(680\) 15.3347 0.588060
\(681\) −15.5943 −0.597575
\(682\) −5.99331 −0.229496
\(683\) −5.59566 −0.214112 −0.107056 0.994253i \(-0.534142\pi\)
−0.107056 + 0.994253i \(0.534142\pi\)
\(684\) 0.461913 0.0176617
\(685\) 83.1888 3.17848
\(686\) −6.36822 −0.243140
\(687\) −24.3201 −0.927869
\(688\) −4.73656 −0.180580
\(689\) 17.1299 0.652596
\(690\) −4.15688 −0.158250
\(691\) 4.46860 0.169994 0.0849968 0.996381i \(-0.472912\pi\)
0.0849968 + 0.996381i \(0.472912\pi\)
\(692\) 19.1513 0.728021
\(693\) 1.05941 0.0402436
\(694\) 26.8489 1.01917
\(695\) −90.4264 −3.43007
\(696\) −1.00000 −0.0379049
\(697\) 7.32385 0.277411
\(698\) −1.95595 −0.0740337
\(699\) −24.3411 −0.920664
\(700\) 5.67214 0.214387
\(701\) −14.5795 −0.550661 −0.275331 0.961350i \(-0.588787\pi\)
−0.275331 + 0.961350i \(0.588787\pi\)
\(702\) 2.16373 0.0816647
\(703\) −3.39672 −0.128110
\(704\) 2.29353 0.0864405
\(705\) −51.7281 −1.94819
\(706\) −16.3310 −0.614624
\(707\) 3.35817 0.126297
\(708\) −13.9439 −0.524044
\(709\) −44.2346 −1.66127 −0.830633 0.556820i \(-0.812021\pi\)
−0.830633 + 0.556820i \(0.812021\pi\)
\(710\) −33.1271 −1.24324
\(711\) −16.1867 −0.607047
\(712\) 1.14905 0.0430626
\(713\) −2.61314 −0.0978630
\(714\) −1.70399 −0.0637704
\(715\) −20.6288 −0.771474
\(716\) 18.1871 0.679682
\(717\) −22.5843 −0.843428
\(718\) −6.59012 −0.245941
\(719\) −19.0329 −0.709808 −0.354904 0.934903i \(-0.615486\pi\)
−0.354904 + 0.934903i \(0.615486\pi\)
\(720\) 4.15688 0.154918
\(721\) −4.47671 −0.166721
\(722\) −18.7866 −0.699166
\(723\) −29.1961 −1.08581
\(724\) 6.09503 0.226520
\(725\) 12.2797 0.456056
\(726\) 5.73974 0.213022
\(727\) −0.437151 −0.0162130 −0.00810652 0.999967i \(-0.502580\pi\)
−0.00810652 + 0.999967i \(0.502580\pi\)
\(728\) −0.999454 −0.0370422
\(729\) 1.00000 0.0370370
\(730\) 60.6993 2.24658
\(731\) −17.4732 −0.646268
\(732\) −7.56872 −0.279748
\(733\) −23.9362 −0.884104 −0.442052 0.896989i \(-0.645749\pi\)
−0.442052 + 0.896989i \(0.645749\pi\)
\(734\) 18.8635 0.696265
\(735\) 28.2113 1.04059
\(736\) 1.00000 0.0368605
\(737\) −2.46531 −0.0908110
\(738\) 1.98532 0.0730808
\(739\) 32.8844 1.20967 0.604836 0.796350i \(-0.293239\pi\)
0.604836 + 0.796350i \(0.293239\pi\)
\(740\) −30.5680 −1.12370
\(741\) 0.999454 0.0367159
\(742\) −3.65688 −0.134248
\(743\) 51.0078 1.87129 0.935647 0.352937i \(-0.114817\pi\)
0.935647 + 0.352937i \(0.114817\pi\)
\(744\) 2.61314 0.0958025
\(745\) −4.50148 −0.164921
\(746\) 2.94634 0.107873
\(747\) 1.22708 0.0448966
\(748\) 8.46081 0.309358
\(749\) 0.336615 0.0122997
\(750\) −30.2608 −1.10497
\(751\) −0.271820 −0.00991884 −0.00495942 0.999988i \(-0.501579\pi\)
−0.00495942 + 0.999988i \(0.501579\pi\)
\(752\) 12.4440 0.453784
\(753\) 15.7167 0.572747
\(754\) −2.16373 −0.0787984
\(755\) −40.1625 −1.46166
\(756\) −0.461913 −0.0167996
\(757\) −13.8906 −0.504863 −0.252431 0.967615i \(-0.581230\pi\)
−0.252431 + 0.967615i \(0.581230\pi\)
\(758\) 29.8372 1.08374
\(759\) −2.29353 −0.0832497
\(760\) 1.92012 0.0696500
\(761\) 49.1271 1.78086 0.890428 0.455123i \(-0.150405\pi\)
0.890428 + 0.455123i \(0.150405\pi\)
\(762\) 13.1060 0.474781
\(763\) 2.00300 0.0725135
\(764\) −20.6701 −0.747818
\(765\) 15.3347 0.554428
\(766\) −31.8983 −1.15253
\(767\) −30.1708 −1.08941
\(768\) −1.00000 −0.0360844
\(769\) −5.52476 −0.199228 −0.0996140 0.995026i \(-0.531761\pi\)
−0.0996140 + 0.995026i \(0.531761\pi\)
\(770\) 4.40384 0.158703
\(771\) −16.1079 −0.580111
\(772\) 23.3525 0.840474
\(773\) −26.0924 −0.938479 −0.469240 0.883071i \(-0.655472\pi\)
−0.469240 + 0.883071i \(0.655472\pi\)
\(774\) −4.73656 −0.170252
\(775\) −32.0886 −1.15266
\(776\) −13.6303 −0.489298
\(777\) 3.39672 0.121857
\(778\) 1.87244 0.0671304
\(779\) 0.917047 0.0328566
\(780\) 8.99437 0.322050
\(781\) −18.2776 −0.654024
\(782\) 3.68899 0.131918
\(783\) −1.00000 −0.0357371
\(784\) −6.78664 −0.242380
\(785\) 8.93503 0.318905
\(786\) 19.0985 0.681222
\(787\) 23.4089 0.834438 0.417219 0.908806i \(-0.363005\pi\)
0.417219 + 0.908806i \(0.363005\pi\)
\(788\) −15.5939 −0.555508
\(789\) −20.2205 −0.719868
\(790\) −67.2861 −2.39393
\(791\) 4.62313 0.164379
\(792\) 2.29353 0.0814969
\(793\) −16.3767 −0.581552
\(794\) −31.7326 −1.12615
\(795\) 32.9093 1.16717
\(796\) 2.44620 0.0867032
\(797\) −10.2260 −0.362223 −0.181111 0.983463i \(-0.557969\pi\)
−0.181111 + 0.983463i \(0.557969\pi\)
\(798\) −0.213363 −0.00755299
\(799\) 45.9057 1.62403
\(800\) 12.2797 0.434152
\(801\) 1.14905 0.0405998
\(802\) −25.1940 −0.889629
\(803\) 33.4903 1.18185
\(804\) 1.07490 0.0379088
\(805\) 1.92012 0.0676753
\(806\) 5.65413 0.199158
\(807\) −7.47540 −0.263146
\(808\) 7.27014 0.255763
\(809\) 2.71618 0.0954957 0.0477478 0.998859i \(-0.484796\pi\)
0.0477478 + 0.998859i \(0.484796\pi\)
\(810\) 4.15688 0.146058
\(811\) −5.21689 −0.183190 −0.0915950 0.995796i \(-0.529197\pi\)
−0.0915950 + 0.995796i \(0.529197\pi\)
\(812\) 0.461913 0.0162100
\(813\) 12.5168 0.438982
\(814\) −16.8657 −0.591141
\(815\) 18.0300 0.631564
\(816\) −3.68899 −0.129141
\(817\) −2.18788 −0.0765442
\(818\) −36.3432 −1.27071
\(819\) −0.999454 −0.0349238
\(820\) 8.25276 0.288199
\(821\) −29.5785 −1.03230 −0.516148 0.856500i \(-0.672634\pi\)
−0.516148 + 0.856500i \(0.672634\pi\)
\(822\) −20.0123 −0.698009
\(823\) −48.1796 −1.67943 −0.839717 0.543024i \(-0.817279\pi\)
−0.839717 + 0.543024i \(0.817279\pi\)
\(824\) −9.69167 −0.337625
\(825\) −28.1638 −0.980536
\(826\) 6.44087 0.224107
\(827\) −10.1065 −0.351439 −0.175719 0.984440i \(-0.556225\pi\)
−0.175719 + 0.984440i \(0.556225\pi\)
\(828\) 1.00000 0.0347524
\(829\) −2.23728 −0.0777040 −0.0388520 0.999245i \(-0.512370\pi\)
−0.0388520 + 0.999245i \(0.512370\pi\)
\(830\) 5.10083 0.177053
\(831\) 7.21591 0.250317
\(832\) −2.16373 −0.0750138
\(833\) −25.0359 −0.867441
\(834\) 21.7534 0.753259
\(835\) −74.1562 −2.56628
\(836\) 1.05941 0.0366404
\(837\) 2.61314 0.0903235
\(838\) −23.5521 −0.813594
\(839\) −35.3953 −1.22198 −0.610991 0.791638i \(-0.709229\pi\)
−0.610991 + 0.791638i \(0.709229\pi\)
\(840\) −1.92012 −0.0662504
\(841\) 1.00000 0.0344828
\(842\) −27.8590 −0.960086
\(843\) −12.3483 −0.425297
\(844\) −17.3972 −0.598835
\(845\) −34.5781 −1.18952
\(846\) 12.4440 0.427832
\(847\) −2.65126 −0.0910983
\(848\) −7.91682 −0.271865
\(849\) −12.3915 −0.425276
\(850\) 45.2997 1.55377
\(851\) −7.35359 −0.252078
\(852\) 7.96922 0.273021
\(853\) 22.4439 0.768463 0.384232 0.923237i \(-0.374466\pi\)
0.384232 + 0.923237i \(0.374466\pi\)
\(854\) 3.49609 0.119634
\(855\) 1.92012 0.0656666
\(856\) 0.728742 0.0249079
\(857\) −22.5813 −0.771362 −0.385681 0.922632i \(-0.626034\pi\)
−0.385681 + 0.922632i \(0.626034\pi\)
\(858\) 4.96257 0.169419
\(859\) −32.5018 −1.10895 −0.554473 0.832201i \(-0.687080\pi\)
−0.554473 + 0.832201i \(0.687080\pi\)
\(860\) −19.6893 −0.671401
\(861\) −0.917047 −0.0312529
\(862\) −18.7957 −0.640183
\(863\) 24.3498 0.828878 0.414439 0.910077i \(-0.363978\pi\)
0.414439 + 0.910077i \(0.363978\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 79.6095 2.70680
\(866\) 5.89718 0.200394
\(867\) 3.39132 0.115175
\(868\) −1.20704 −0.0409698
\(869\) −37.1245 −1.25936
\(870\) −4.15688 −0.140932
\(871\) 2.32579 0.0788065
\(872\) 4.33632 0.146846
\(873\) −13.6303 −0.461315
\(874\) 0.461913 0.0156244
\(875\) 13.9778 0.472537
\(876\) −14.6021 −0.493360
\(877\) −5.06049 −0.170880 −0.0854402 0.996343i \(-0.527230\pi\)
−0.0854402 + 0.996343i \(0.527230\pi\)
\(878\) −1.21719 −0.0410780
\(879\) 26.6792 0.899869
\(880\) 9.53392 0.321388
\(881\) −34.5655 −1.16454 −0.582270 0.812995i \(-0.697835\pi\)
−0.582270 + 0.812995i \(0.697835\pi\)
\(882\) −6.78664 −0.228518
\(883\) 27.4681 0.924374 0.462187 0.886782i \(-0.347065\pi\)
0.462187 + 0.886782i \(0.347065\pi\)
\(884\) −7.98198 −0.268463
\(885\) −57.9632 −1.94841
\(886\) −0.190584 −0.00640280
\(887\) 4.10201 0.137732 0.0688661 0.997626i \(-0.478062\pi\)
0.0688661 + 0.997626i \(0.478062\pi\)
\(888\) 7.35359 0.246770
\(889\) −6.05384 −0.203039
\(890\) 4.77648 0.160108
\(891\) 2.29353 0.0768360
\(892\) −26.5315 −0.888342
\(893\) 5.74802 0.192350
\(894\) 1.08290 0.0362175
\(895\) 75.6015 2.52708
\(896\) 0.461913 0.0154314
\(897\) 2.16373 0.0722448
\(898\) 20.2172 0.674657
\(899\) −2.61314 −0.0871532
\(900\) 12.2797 0.409323
\(901\) −29.2051 −0.972963
\(902\) 4.55339 0.151611
\(903\) 2.18788 0.0728081
\(904\) 10.0087 0.332883
\(905\) 25.3363 0.842208
\(906\) 9.66170 0.320988
\(907\) 33.4330 1.11012 0.555062 0.831809i \(-0.312695\pi\)
0.555062 + 0.831809i \(0.312695\pi\)
\(908\) 15.5943 0.517515
\(909\) 7.27014 0.241135
\(910\) −4.15461 −0.137724
\(911\) −10.2241 −0.338741 −0.169371 0.985552i \(-0.554173\pi\)
−0.169371 + 0.985552i \(0.554173\pi\)
\(912\) −0.461913 −0.0152955
\(913\) 2.81434 0.0931412
\(914\) −15.9356 −0.527103
\(915\) −31.4623 −1.04011
\(916\) 24.3201 0.803558
\(917\) −8.82186 −0.291323
\(918\) −3.68899 −0.121755
\(919\) 17.2072 0.567615 0.283807 0.958881i \(-0.408402\pi\)
0.283807 + 0.958881i \(0.408402\pi\)
\(920\) 4.15688 0.137048
\(921\) −18.2765 −0.602232
\(922\) −25.9025 −0.853053
\(923\) 17.2432 0.567568
\(924\) −1.05941 −0.0348520
\(925\) −90.2998 −2.96904
\(926\) 9.65635 0.317327
\(927\) −9.69167 −0.318316
\(928\) 1.00000 0.0328266
\(929\) −44.7854 −1.46936 −0.734681 0.678412i \(-0.762668\pi\)
−0.734681 + 0.678412i \(0.762668\pi\)
\(930\) 10.8625 0.356196
\(931\) −3.13483 −0.102740
\(932\) 24.3411 0.797318
\(933\) 5.47998 0.179407
\(934\) 6.92345 0.226542
\(935\) 35.1706 1.15020
\(936\) −2.16373 −0.0707237
\(937\) −55.1344 −1.80116 −0.900581 0.434688i \(-0.856859\pi\)
−0.900581 + 0.434688i \(0.856859\pi\)
\(938\) −0.496511 −0.0162116
\(939\) −9.94247 −0.324460
\(940\) 51.7281 1.68718
\(941\) −40.0574 −1.30583 −0.652917 0.757429i \(-0.726455\pi\)
−0.652917 + 0.757429i \(0.726455\pi\)
\(942\) −2.14945 −0.0700330
\(943\) 1.98532 0.0646510
\(944\) 13.9439 0.453836
\(945\) −1.92012 −0.0624614
\(946\) −10.8634 −0.353201
\(947\) −25.7928 −0.838154 −0.419077 0.907951i \(-0.637646\pi\)
−0.419077 + 0.907951i \(0.637646\pi\)
\(948\) 16.1867 0.525718
\(949\) −31.5950 −1.02562
\(950\) 5.67214 0.184029
\(951\) 0.528602 0.0171411
\(952\) 1.70399 0.0552268
\(953\) 17.1018 0.553983 0.276992 0.960872i \(-0.410663\pi\)
0.276992 + 0.960872i \(0.410663\pi\)
\(954\) −7.91682 −0.256317
\(955\) −85.9232 −2.78041
\(956\) 22.5843 0.730430
\(957\) −2.29353 −0.0741392
\(958\) −1.79876 −0.0581151
\(959\) 9.24394 0.298502
\(960\) −4.15688 −0.134163
\(961\) −24.1715 −0.779725
\(962\) 15.9112 0.512997
\(963\) 0.728742 0.0234834
\(964\) 29.1961 0.940342
\(965\) 97.0735 3.12491
\(966\) −0.461913 −0.0148618
\(967\) −24.8857 −0.800271 −0.400136 0.916456i \(-0.631037\pi\)
−0.400136 + 0.916456i \(0.631037\pi\)
\(968\) −5.73974 −0.184482
\(969\) −1.70399 −0.0547402
\(970\) −56.6594 −1.81922
\(971\) −21.7672 −0.698542 −0.349271 0.937022i \(-0.613571\pi\)
−0.349271 + 0.937022i \(0.613571\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −10.0482 −0.322130
\(974\) −34.3279 −1.09994
\(975\) 26.5699 0.850918
\(976\) 7.56872 0.242269
\(977\) −11.9994 −0.383896 −0.191948 0.981405i \(-0.561481\pi\)
−0.191948 + 0.981405i \(0.561481\pi\)
\(978\) −4.33739 −0.138694
\(979\) 2.63538 0.0842272
\(980\) −28.2113 −0.901175
\(981\) 4.33632 0.138448
\(982\) 15.8749 0.506587
\(983\) 26.3179 0.839412 0.419706 0.907660i \(-0.362133\pi\)
0.419706 + 0.907660i \(0.362133\pi\)
\(984\) −1.98532 −0.0632898
\(985\) −64.8218 −2.06540
\(986\) 3.68899 0.117482
\(987\) −5.74802 −0.182962
\(988\) −0.999454 −0.0317969
\(989\) −4.73656 −0.150614
\(990\) 9.53392 0.303008
\(991\) 41.3491 1.31350 0.656749 0.754110i \(-0.271931\pi\)
0.656749 + 0.754110i \(0.271931\pi\)
\(992\) −2.61314 −0.0829674
\(993\) −18.7648 −0.595482
\(994\) −3.68108 −0.116757
\(995\) 10.1686 0.322365
\(996\) −1.22708 −0.0388816
\(997\) −9.78327 −0.309839 −0.154920 0.987927i \(-0.549512\pi\)
−0.154920 + 0.987927i \(0.549512\pi\)
\(998\) 8.06965 0.255440
\(999\) 7.35359 0.232657
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bj.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bj.1.8 8 1.1 even 1 trivial