Properties

Label 4002.2.a.bj.1.7
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 26x^{6} + 4x^{5} + 209x^{4} + 113x^{3} - 436x^{2} - 360x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(3.49512\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +3.49512 q^{5} -1.00000 q^{6} -1.05589 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +3.49512 q^{5} -1.00000 q^{6} -1.05589 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.49512 q^{10} +4.23999 q^{11} -1.00000 q^{12} +5.43785 q^{13} -1.05589 q^{14} -3.49512 q^{15} +1.00000 q^{16} -3.65785 q^{17} +1.00000 q^{18} -1.05589 q^{19} +3.49512 q^{20} +1.05589 q^{21} +4.23999 q^{22} +1.00000 q^{23} -1.00000 q^{24} +7.21586 q^{25} +5.43785 q^{26} -1.00000 q^{27} -1.05589 q^{28} +1.00000 q^{29} -3.49512 q^{30} -4.03347 q^{31} +1.00000 q^{32} -4.23999 q^{33} -3.65785 q^{34} -3.69045 q^{35} +1.00000 q^{36} +7.11494 q^{37} -1.05589 q^{38} -5.43785 q^{39} +3.49512 q^{40} +4.28297 q^{41} +1.05589 q^{42} +8.48558 q^{43} +4.23999 q^{44} +3.49512 q^{45} +1.00000 q^{46} -4.96374 q^{47} -1.00000 q^{48} -5.88511 q^{49} +7.21586 q^{50} +3.65785 q^{51} +5.43785 q^{52} +9.06888 q^{53} -1.00000 q^{54} +14.8193 q^{55} -1.05589 q^{56} +1.05589 q^{57} +1.00000 q^{58} -13.2516 q^{59} -3.49512 q^{60} -6.93145 q^{61} -4.03347 q^{62} -1.05589 q^{63} +1.00000 q^{64} +19.0060 q^{65} -4.23999 q^{66} -12.9486 q^{67} -3.65785 q^{68} -1.00000 q^{69} -3.69045 q^{70} +9.18374 q^{71} +1.00000 q^{72} -12.3054 q^{73} +7.11494 q^{74} -7.21586 q^{75} -1.05589 q^{76} -4.47695 q^{77} -5.43785 q^{78} +4.66957 q^{79} +3.49512 q^{80} +1.00000 q^{81} +4.28297 q^{82} -4.60197 q^{83} +1.05589 q^{84} -12.7846 q^{85} +8.48558 q^{86} -1.00000 q^{87} +4.23999 q^{88} -13.8513 q^{89} +3.49512 q^{90} -5.74175 q^{91} +1.00000 q^{92} +4.03347 q^{93} -4.96374 q^{94} -3.69045 q^{95} -1.00000 q^{96} +4.83622 q^{97} -5.88511 q^{98} +4.23999 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9} + q^{10} + 3 q^{11} - 8 q^{12} + 9 q^{13} - q^{15} + 8 q^{16} + 8 q^{17} + 8 q^{18} + q^{20} + 3 q^{22} + 8 q^{23} - 8 q^{24} + 13 q^{25} + 9 q^{26} - 8 q^{27} + 8 q^{29} - q^{30} - 9 q^{31} + 8 q^{32} - 3 q^{33} + 8 q^{34} - 2 q^{35} + 8 q^{36} + 7 q^{37} - 9 q^{39} + q^{40} + 3 q^{41} + 16 q^{43} + 3 q^{44} + q^{45} + 8 q^{46} + 24 q^{47} - 8 q^{48} + 6 q^{49} + 13 q^{50} - 8 q^{51} + 9 q^{52} + 8 q^{53} - 8 q^{54} + 13 q^{55} + 8 q^{58} - 3 q^{59} - q^{60} + 31 q^{61} - 9 q^{62} + 8 q^{64} + 13 q^{65} - 3 q^{66} - 11 q^{67} + 8 q^{68} - 8 q^{69} - 2 q^{70} + 7 q^{71} + 8 q^{72} + 14 q^{73} + 7 q^{74} - 13 q^{75} + 10 q^{77} - 9 q^{78} + 12 q^{79} + q^{80} + 8 q^{81} + 3 q^{82} - 8 q^{83} + 22 q^{85} + 16 q^{86} - 8 q^{87} + 3 q^{88} - 12 q^{89} + q^{90} + 28 q^{91} + 8 q^{92} + 9 q^{93} + 24 q^{94} - 2 q^{95} - 8 q^{96} + 16 q^{97} + 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 3.49512 1.56307 0.781533 0.623864i \(-0.214438\pi\)
0.781533 + 0.623864i \(0.214438\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.05589 −0.399087 −0.199544 0.979889i \(-0.563946\pi\)
−0.199544 + 0.979889i \(0.563946\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 3.49512 1.10525
\(11\) 4.23999 1.27841 0.639203 0.769038i \(-0.279264\pi\)
0.639203 + 0.769038i \(0.279264\pi\)
\(12\) −1.00000 −0.288675
\(13\) 5.43785 1.50819 0.754095 0.656766i \(-0.228076\pi\)
0.754095 + 0.656766i \(0.228076\pi\)
\(14\) −1.05589 −0.282197
\(15\) −3.49512 −0.902436
\(16\) 1.00000 0.250000
\(17\) −3.65785 −0.887159 −0.443580 0.896235i \(-0.646292\pi\)
−0.443580 + 0.896235i \(0.646292\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.05589 −0.242237 −0.121118 0.992638i \(-0.538648\pi\)
−0.121118 + 0.992638i \(0.538648\pi\)
\(20\) 3.49512 0.781533
\(21\) 1.05589 0.230413
\(22\) 4.23999 0.903970
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) 7.21586 1.44317
\(26\) 5.43785 1.06645
\(27\) −1.00000 −0.192450
\(28\) −1.05589 −0.199544
\(29\) 1.00000 0.185695
\(30\) −3.49512 −0.638119
\(31\) −4.03347 −0.724432 −0.362216 0.932094i \(-0.617980\pi\)
−0.362216 + 0.932094i \(0.617980\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.23999 −0.738088
\(34\) −3.65785 −0.627316
\(35\) −3.69045 −0.623799
\(36\) 1.00000 0.166667
\(37\) 7.11494 1.16969 0.584844 0.811145i \(-0.301156\pi\)
0.584844 + 0.811145i \(0.301156\pi\)
\(38\) −1.05589 −0.171287
\(39\) −5.43785 −0.870754
\(40\) 3.49512 0.552627
\(41\) 4.28297 0.668887 0.334443 0.942416i \(-0.391452\pi\)
0.334443 + 0.942416i \(0.391452\pi\)
\(42\) 1.05589 0.162927
\(43\) 8.48558 1.29404 0.647019 0.762474i \(-0.276015\pi\)
0.647019 + 0.762474i \(0.276015\pi\)
\(44\) 4.23999 0.639203
\(45\) 3.49512 0.521022
\(46\) 1.00000 0.147442
\(47\) −4.96374 −0.724036 −0.362018 0.932171i \(-0.617912\pi\)
−0.362018 + 0.932171i \(0.617912\pi\)
\(48\) −1.00000 −0.144338
\(49\) −5.88511 −0.840729
\(50\) 7.21586 1.02048
\(51\) 3.65785 0.512202
\(52\) 5.43785 0.754095
\(53\) 9.06888 1.24571 0.622853 0.782339i \(-0.285974\pi\)
0.622853 + 0.782339i \(0.285974\pi\)
\(54\) −1.00000 −0.136083
\(55\) 14.8193 1.99823
\(56\) −1.05589 −0.141099
\(57\) 1.05589 0.139855
\(58\) 1.00000 0.131306
\(59\) −13.2516 −1.72521 −0.862606 0.505877i \(-0.831169\pi\)
−0.862606 + 0.505877i \(0.831169\pi\)
\(60\) −3.49512 −0.451218
\(61\) −6.93145 −0.887481 −0.443741 0.896155i \(-0.646349\pi\)
−0.443741 + 0.896155i \(0.646349\pi\)
\(62\) −4.03347 −0.512251
\(63\) −1.05589 −0.133029
\(64\) 1.00000 0.125000
\(65\) 19.0060 2.35740
\(66\) −4.23999 −0.521907
\(67\) −12.9486 −1.58192 −0.790959 0.611870i \(-0.790418\pi\)
−0.790959 + 0.611870i \(0.790418\pi\)
\(68\) −3.65785 −0.443580
\(69\) −1.00000 −0.120386
\(70\) −3.69045 −0.441093
\(71\) 9.18374 1.08991 0.544955 0.838466i \(-0.316547\pi\)
0.544955 + 0.838466i \(0.316547\pi\)
\(72\) 1.00000 0.117851
\(73\) −12.3054 −1.44024 −0.720119 0.693850i \(-0.755913\pi\)
−0.720119 + 0.693850i \(0.755913\pi\)
\(74\) 7.11494 0.827095
\(75\) −7.21586 −0.833216
\(76\) −1.05589 −0.121118
\(77\) −4.47695 −0.510195
\(78\) −5.43785 −0.615716
\(79\) 4.66957 0.525368 0.262684 0.964882i \(-0.415392\pi\)
0.262684 + 0.964882i \(0.415392\pi\)
\(80\) 3.49512 0.390766
\(81\) 1.00000 0.111111
\(82\) 4.28297 0.472974
\(83\) −4.60197 −0.505131 −0.252566 0.967580i \(-0.581274\pi\)
−0.252566 + 0.967580i \(0.581274\pi\)
\(84\) 1.05589 0.115207
\(85\) −12.7846 −1.38669
\(86\) 8.48558 0.915023
\(87\) −1.00000 −0.107211
\(88\) 4.23999 0.451985
\(89\) −13.8513 −1.46823 −0.734115 0.679025i \(-0.762403\pi\)
−0.734115 + 0.679025i \(0.762403\pi\)
\(90\) 3.49512 0.368418
\(91\) −5.74175 −0.601899
\(92\) 1.00000 0.104257
\(93\) 4.03347 0.418251
\(94\) −4.96374 −0.511971
\(95\) −3.69045 −0.378632
\(96\) −1.00000 −0.102062
\(97\) 4.83622 0.491044 0.245522 0.969391i \(-0.421041\pi\)
0.245522 + 0.969391i \(0.421041\pi\)
\(98\) −5.88511 −0.594485
\(99\) 4.23999 0.426135
\(100\) 7.21586 0.721586
\(101\) 19.1308 1.90359 0.951793 0.306741i \(-0.0992385\pi\)
0.951793 + 0.306741i \(0.0992385\pi\)
\(102\) 3.65785 0.362181
\(103\) 0.827424 0.0815285 0.0407643 0.999169i \(-0.487021\pi\)
0.0407643 + 0.999169i \(0.487021\pi\)
\(104\) 5.43785 0.533225
\(105\) 3.69045 0.360151
\(106\) 9.06888 0.880847
\(107\) −14.2650 −1.37905 −0.689524 0.724262i \(-0.742180\pi\)
−0.689524 + 0.724262i \(0.742180\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 9.21892 0.883012 0.441506 0.897258i \(-0.354444\pi\)
0.441506 + 0.897258i \(0.354444\pi\)
\(110\) 14.8193 1.41296
\(111\) −7.11494 −0.675320
\(112\) −1.05589 −0.0997718
\(113\) 15.0393 1.41478 0.707388 0.706825i \(-0.249873\pi\)
0.707388 + 0.706825i \(0.249873\pi\)
\(114\) 1.05589 0.0988927
\(115\) 3.49512 0.325922
\(116\) 1.00000 0.0928477
\(117\) 5.43785 0.502730
\(118\) −13.2516 −1.21991
\(119\) 3.86227 0.354054
\(120\) −3.49512 −0.319059
\(121\) 6.97755 0.634322
\(122\) −6.93145 −0.627544
\(123\) −4.28297 −0.386182
\(124\) −4.03347 −0.362216
\(125\) 7.74471 0.692708
\(126\) −1.05589 −0.0940657
\(127\) 2.73857 0.243009 0.121504 0.992591i \(-0.461228\pi\)
0.121504 + 0.992591i \(0.461228\pi\)
\(128\) 1.00000 0.0883883
\(129\) −8.48558 −0.747114
\(130\) 19.0060 1.66693
\(131\) 21.1991 1.85217 0.926085 0.377315i \(-0.123152\pi\)
0.926085 + 0.377315i \(0.123152\pi\)
\(132\) −4.23999 −0.369044
\(133\) 1.11489 0.0966736
\(134\) −12.9486 −1.11858
\(135\) −3.49512 −0.300812
\(136\) −3.65785 −0.313658
\(137\) −5.58255 −0.476950 −0.238475 0.971149i \(-0.576647\pi\)
−0.238475 + 0.971149i \(0.576647\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −20.7073 −1.75637 −0.878185 0.478321i \(-0.841245\pi\)
−0.878185 + 0.478321i \(0.841245\pi\)
\(140\) −3.69045 −0.311900
\(141\) 4.96374 0.418022
\(142\) 9.18374 0.770682
\(143\) 23.0565 1.92808
\(144\) 1.00000 0.0833333
\(145\) 3.49512 0.290254
\(146\) −12.3054 −1.01840
\(147\) 5.88511 0.485395
\(148\) 7.11494 0.584844
\(149\) 1.18480 0.0970629 0.0485315 0.998822i \(-0.484546\pi\)
0.0485315 + 0.998822i \(0.484546\pi\)
\(150\) −7.21586 −0.589173
\(151\) −4.28192 −0.348458 −0.174229 0.984705i \(-0.555743\pi\)
−0.174229 + 0.984705i \(0.555743\pi\)
\(152\) −1.05589 −0.0856436
\(153\) −3.65785 −0.295720
\(154\) −4.47695 −0.360763
\(155\) −14.0974 −1.13233
\(156\) −5.43785 −0.435377
\(157\) 12.8331 1.02420 0.512098 0.858927i \(-0.328868\pi\)
0.512098 + 0.858927i \(0.328868\pi\)
\(158\) 4.66957 0.371491
\(159\) −9.06888 −0.719209
\(160\) 3.49512 0.276313
\(161\) −1.05589 −0.0832154
\(162\) 1.00000 0.0785674
\(163\) 7.51658 0.588744 0.294372 0.955691i \(-0.404890\pi\)
0.294372 + 0.955691i \(0.404890\pi\)
\(164\) 4.28297 0.334443
\(165\) −14.8193 −1.15368
\(166\) −4.60197 −0.357182
\(167\) −9.25414 −0.716107 −0.358054 0.933701i \(-0.616559\pi\)
−0.358054 + 0.933701i \(0.616559\pi\)
\(168\) 1.05589 0.0814633
\(169\) 16.5703 1.27464
\(170\) −12.7846 −0.980536
\(171\) −1.05589 −0.0807456
\(172\) 8.48558 0.647019
\(173\) −9.51083 −0.723095 −0.361548 0.932354i \(-0.617751\pi\)
−0.361548 + 0.932354i \(0.617751\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −7.61912 −0.575952
\(176\) 4.23999 0.319602
\(177\) 13.2516 0.996051
\(178\) −13.8513 −1.03820
\(179\) 13.3185 0.995469 0.497734 0.867330i \(-0.334165\pi\)
0.497734 + 0.867330i \(0.334165\pi\)
\(180\) 3.49512 0.260511
\(181\) −21.7224 −1.61461 −0.807306 0.590133i \(-0.799075\pi\)
−0.807306 + 0.590133i \(0.799075\pi\)
\(182\) −5.74175 −0.425607
\(183\) 6.93145 0.512388
\(184\) 1.00000 0.0737210
\(185\) 24.8676 1.82830
\(186\) 4.03347 0.295748
\(187\) −15.5093 −1.13415
\(188\) −4.96374 −0.362018
\(189\) 1.05589 0.0768044
\(190\) −3.69045 −0.267733
\(191\) 10.9414 0.791692 0.395846 0.918317i \(-0.370451\pi\)
0.395846 + 0.918317i \(0.370451\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −3.93212 −0.283040 −0.141520 0.989935i \(-0.545199\pi\)
−0.141520 + 0.989935i \(0.545199\pi\)
\(194\) 4.83622 0.347220
\(195\) −19.0060 −1.36104
\(196\) −5.88511 −0.420365
\(197\) −5.87495 −0.418573 −0.209286 0.977854i \(-0.567114\pi\)
−0.209286 + 0.977854i \(0.567114\pi\)
\(198\) 4.23999 0.301323
\(199\) −5.40515 −0.383161 −0.191580 0.981477i \(-0.561361\pi\)
−0.191580 + 0.981477i \(0.561361\pi\)
\(200\) 7.21586 0.510239
\(201\) 12.9486 0.913320
\(202\) 19.1308 1.34604
\(203\) −1.05589 −0.0741086
\(204\) 3.65785 0.256101
\(205\) 14.9695 1.04551
\(206\) 0.827424 0.0576494
\(207\) 1.00000 0.0695048
\(208\) 5.43785 0.377047
\(209\) −4.47695 −0.309677
\(210\) 3.69045 0.254665
\(211\) −2.39162 −0.164646 −0.0823230 0.996606i \(-0.526234\pi\)
−0.0823230 + 0.996606i \(0.526234\pi\)
\(212\) 9.06888 0.622853
\(213\) −9.18374 −0.629259
\(214\) −14.2650 −0.975135
\(215\) 29.6581 2.02267
\(216\) −1.00000 −0.0680414
\(217\) 4.25888 0.289112
\(218\) 9.21892 0.624384
\(219\) 12.3054 0.831522
\(220\) 14.8193 0.999116
\(221\) −19.8909 −1.33800
\(222\) −7.11494 −0.477524
\(223\) 1.17667 0.0787957 0.0393979 0.999224i \(-0.487456\pi\)
0.0393979 + 0.999224i \(0.487456\pi\)
\(224\) −1.05589 −0.0705493
\(225\) 7.21586 0.481058
\(226\) 15.0393 1.00040
\(227\) −5.93573 −0.393968 −0.196984 0.980407i \(-0.563115\pi\)
−0.196984 + 0.980407i \(0.563115\pi\)
\(228\) 1.05589 0.0699277
\(229\) 1.70563 0.112711 0.0563555 0.998411i \(-0.482052\pi\)
0.0563555 + 0.998411i \(0.482052\pi\)
\(230\) 3.49512 0.230461
\(231\) 4.47695 0.294562
\(232\) 1.00000 0.0656532
\(233\) 6.92781 0.453856 0.226928 0.973912i \(-0.427132\pi\)
0.226928 + 0.973912i \(0.427132\pi\)
\(234\) 5.43785 0.355484
\(235\) −17.3489 −1.13172
\(236\) −13.2516 −0.862606
\(237\) −4.66957 −0.303321
\(238\) 3.86227 0.250354
\(239\) 10.6965 0.691899 0.345950 0.938253i \(-0.387557\pi\)
0.345950 + 0.938253i \(0.387557\pi\)
\(240\) −3.49512 −0.225609
\(241\) 12.1453 0.782346 0.391173 0.920317i \(-0.372069\pi\)
0.391173 + 0.920317i \(0.372069\pi\)
\(242\) 6.97755 0.448534
\(243\) −1.00000 −0.0641500
\(244\) −6.93145 −0.443741
\(245\) −20.5692 −1.31411
\(246\) −4.28297 −0.273072
\(247\) −5.74175 −0.365339
\(248\) −4.03347 −0.256125
\(249\) 4.60197 0.291638
\(250\) 7.74471 0.489818
\(251\) 14.0329 0.885750 0.442875 0.896583i \(-0.353959\pi\)
0.442875 + 0.896583i \(0.353959\pi\)
\(252\) −1.05589 −0.0665145
\(253\) 4.23999 0.266566
\(254\) 2.73857 0.171833
\(255\) 12.7846 0.800604
\(256\) 1.00000 0.0625000
\(257\) −0.413438 −0.0257895 −0.0128948 0.999917i \(-0.504105\pi\)
−0.0128948 + 0.999917i \(0.504105\pi\)
\(258\) −8.48558 −0.528289
\(259\) −7.51256 −0.466808
\(260\) 19.0060 1.17870
\(261\) 1.00000 0.0618984
\(262\) 21.1991 1.30968
\(263\) 12.9642 0.799406 0.399703 0.916645i \(-0.369113\pi\)
0.399703 + 0.916645i \(0.369113\pi\)
\(264\) −4.23999 −0.260954
\(265\) 31.6968 1.94712
\(266\) 1.11489 0.0683585
\(267\) 13.8513 0.847683
\(268\) −12.9486 −0.790959
\(269\) 16.6963 1.01799 0.508995 0.860770i \(-0.330017\pi\)
0.508995 + 0.860770i \(0.330017\pi\)
\(270\) −3.49512 −0.212706
\(271\) 27.1117 1.64692 0.823460 0.567375i \(-0.192041\pi\)
0.823460 + 0.567375i \(0.192041\pi\)
\(272\) −3.65785 −0.221790
\(273\) 5.74175 0.347507
\(274\) −5.58255 −0.337254
\(275\) 30.5952 1.84496
\(276\) −1.00000 −0.0601929
\(277\) 18.4920 1.11108 0.555540 0.831490i \(-0.312512\pi\)
0.555540 + 0.831490i \(0.312512\pi\)
\(278\) −20.7073 −1.24194
\(279\) −4.03347 −0.241477
\(280\) −3.69045 −0.220546
\(281\) −11.5054 −0.686355 −0.343178 0.939271i \(-0.611503\pi\)
−0.343178 + 0.939271i \(0.611503\pi\)
\(282\) 4.96374 0.295587
\(283\) −21.2173 −1.26124 −0.630619 0.776092i \(-0.717199\pi\)
−0.630619 + 0.776092i \(0.717199\pi\)
\(284\) 9.18374 0.544955
\(285\) 3.69045 0.218603
\(286\) 23.0565 1.36336
\(287\) −4.52232 −0.266944
\(288\) 1.00000 0.0589256
\(289\) −3.62013 −0.212949
\(290\) 3.49512 0.205241
\(291\) −4.83622 −0.283504
\(292\) −12.3054 −0.720119
\(293\) −8.00326 −0.467555 −0.233778 0.972290i \(-0.575109\pi\)
−0.233778 + 0.972290i \(0.575109\pi\)
\(294\) 5.88511 0.343226
\(295\) −46.3159 −2.69662
\(296\) 7.11494 0.413547
\(297\) −4.23999 −0.246029
\(298\) 1.18480 0.0686339
\(299\) 5.43785 0.314479
\(300\) −7.21586 −0.416608
\(301\) −8.95980 −0.516434
\(302\) −4.28192 −0.246397
\(303\) −19.1308 −1.09904
\(304\) −1.05589 −0.0605592
\(305\) −24.2262 −1.38719
\(306\) −3.65785 −0.209105
\(307\) −18.8924 −1.07824 −0.539122 0.842228i \(-0.681244\pi\)
−0.539122 + 0.842228i \(0.681244\pi\)
\(308\) −4.47695 −0.255098
\(309\) −0.827424 −0.0470705
\(310\) −14.0974 −0.800681
\(311\) −0.789316 −0.0447580 −0.0223790 0.999750i \(-0.507124\pi\)
−0.0223790 + 0.999750i \(0.507124\pi\)
\(312\) −5.43785 −0.307858
\(313\) 6.14077 0.347097 0.173548 0.984825i \(-0.444477\pi\)
0.173548 + 0.984825i \(0.444477\pi\)
\(314\) 12.8331 0.724216
\(315\) −3.69045 −0.207933
\(316\) 4.66957 0.262684
\(317\) −1.88403 −0.105818 −0.0529089 0.998599i \(-0.516849\pi\)
−0.0529089 + 0.998599i \(0.516849\pi\)
\(318\) −9.06888 −0.508557
\(319\) 4.23999 0.237394
\(320\) 3.49512 0.195383
\(321\) 14.2650 0.796194
\(322\) −1.05589 −0.0588422
\(323\) 3.86227 0.214903
\(324\) 1.00000 0.0555556
\(325\) 39.2388 2.17658
\(326\) 7.51658 0.416305
\(327\) −9.21892 −0.509807
\(328\) 4.28297 0.236487
\(329\) 5.24114 0.288954
\(330\) −14.8193 −0.815775
\(331\) −1.53412 −0.0843227 −0.0421613 0.999111i \(-0.513424\pi\)
−0.0421613 + 0.999111i \(0.513424\pi\)
\(332\) −4.60197 −0.252566
\(333\) 7.11494 0.389896
\(334\) −9.25414 −0.506364
\(335\) −45.2567 −2.47264
\(336\) 1.05589 0.0576033
\(337\) 0.685212 0.0373259 0.0186629 0.999826i \(-0.494059\pi\)
0.0186629 + 0.999826i \(0.494059\pi\)
\(338\) 16.5703 0.901303
\(339\) −15.0393 −0.816822
\(340\) −12.7846 −0.693344
\(341\) −17.1019 −0.926118
\(342\) −1.05589 −0.0570957
\(343\) 13.6052 0.734611
\(344\) 8.48558 0.457512
\(345\) −3.49512 −0.188171
\(346\) −9.51083 −0.511305
\(347\) −33.4817 −1.79739 −0.898695 0.438575i \(-0.855483\pi\)
−0.898695 + 0.438575i \(0.855483\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −1.04546 −0.0559622 −0.0279811 0.999608i \(-0.508908\pi\)
−0.0279811 + 0.999608i \(0.508908\pi\)
\(350\) −7.61912 −0.407259
\(351\) −5.43785 −0.290251
\(352\) 4.23999 0.225992
\(353\) −21.5087 −1.14479 −0.572395 0.819978i \(-0.693986\pi\)
−0.572395 + 0.819978i \(0.693986\pi\)
\(354\) 13.2516 0.704315
\(355\) 32.0983 1.70360
\(356\) −13.8513 −0.734115
\(357\) −3.86227 −0.204413
\(358\) 13.3185 0.703903
\(359\) −35.5193 −1.87464 −0.937318 0.348476i \(-0.886699\pi\)
−0.937318 + 0.348476i \(0.886699\pi\)
\(360\) 3.49512 0.184209
\(361\) −17.8851 −0.941321
\(362\) −21.7224 −1.14170
\(363\) −6.97755 −0.366226
\(364\) −5.74175 −0.300950
\(365\) −43.0089 −2.25119
\(366\) 6.93145 0.362313
\(367\) 14.9554 0.780667 0.390333 0.920674i \(-0.372360\pi\)
0.390333 + 0.920674i \(0.372360\pi\)
\(368\) 1.00000 0.0521286
\(369\) 4.28297 0.222962
\(370\) 24.8676 1.29280
\(371\) −9.57569 −0.497145
\(372\) 4.03347 0.209125
\(373\) 22.6229 1.17137 0.585685 0.810539i \(-0.300826\pi\)
0.585685 + 0.810539i \(0.300826\pi\)
\(374\) −15.5093 −0.801965
\(375\) −7.74471 −0.399935
\(376\) −4.96374 −0.255985
\(377\) 5.43785 0.280064
\(378\) 1.05589 0.0543089
\(379\) 2.96130 0.152112 0.0760559 0.997104i \(-0.475767\pi\)
0.0760559 + 0.997104i \(0.475767\pi\)
\(380\) −3.69045 −0.189316
\(381\) −2.73857 −0.140301
\(382\) 10.9414 0.559811
\(383\) 8.51598 0.435146 0.217573 0.976044i \(-0.430186\pi\)
0.217573 + 0.976044i \(0.430186\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −15.6475 −0.797469
\(386\) −3.93212 −0.200139
\(387\) 8.48558 0.431346
\(388\) 4.83622 0.245522
\(389\) −36.8685 −1.86931 −0.934654 0.355558i \(-0.884291\pi\)
−0.934654 + 0.355558i \(0.884291\pi\)
\(390\) −19.0060 −0.962404
\(391\) −3.65785 −0.184985
\(392\) −5.88511 −0.297243
\(393\) −21.1991 −1.06935
\(394\) −5.87495 −0.295976
\(395\) 16.3207 0.821185
\(396\) 4.23999 0.213068
\(397\) 19.9790 1.00272 0.501358 0.865240i \(-0.332834\pi\)
0.501358 + 0.865240i \(0.332834\pi\)
\(398\) −5.40515 −0.270936
\(399\) −1.11489 −0.0558145
\(400\) 7.21586 0.360793
\(401\) 29.8040 1.48834 0.744170 0.667990i \(-0.232845\pi\)
0.744170 + 0.667990i \(0.232845\pi\)
\(402\) 12.9486 0.645815
\(403\) −21.9334 −1.09258
\(404\) 19.1308 0.951793
\(405\) 3.49512 0.173674
\(406\) −1.05589 −0.0524027
\(407\) 30.1673 1.49534
\(408\) 3.65785 0.181091
\(409\) 24.0039 1.18691 0.593457 0.804866i \(-0.297763\pi\)
0.593457 + 0.804866i \(0.297763\pi\)
\(410\) 14.9695 0.739290
\(411\) 5.58255 0.275367
\(412\) 0.827424 0.0407643
\(413\) 13.9922 0.688510
\(414\) 1.00000 0.0491473
\(415\) −16.0844 −0.789553
\(416\) 5.43785 0.266613
\(417\) 20.7073 1.01404
\(418\) −4.47695 −0.218975
\(419\) −38.8474 −1.89782 −0.948911 0.315544i \(-0.897813\pi\)
−0.948911 + 0.315544i \(0.897813\pi\)
\(420\) 3.69045 0.180075
\(421\) 14.0747 0.685960 0.342980 0.939343i \(-0.388564\pi\)
0.342980 + 0.939343i \(0.388564\pi\)
\(422\) −2.39162 −0.116422
\(423\) −4.96374 −0.241345
\(424\) 9.06888 0.440424
\(425\) −26.3945 −1.28032
\(426\) −9.18374 −0.444954
\(427\) 7.31882 0.354182
\(428\) −14.2650 −0.689524
\(429\) −23.0565 −1.11318
\(430\) 29.6581 1.43024
\(431\) −4.04478 −0.194830 −0.0974152 0.995244i \(-0.531057\pi\)
−0.0974152 + 0.995244i \(0.531057\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 16.8889 0.811628 0.405814 0.913956i \(-0.366988\pi\)
0.405814 + 0.913956i \(0.366988\pi\)
\(434\) 4.25888 0.204433
\(435\) −3.49512 −0.167578
\(436\) 9.21892 0.441506
\(437\) −1.05589 −0.0505098
\(438\) 12.3054 0.587975
\(439\) −18.9116 −0.902601 −0.451300 0.892372i \(-0.649040\pi\)
−0.451300 + 0.892372i \(0.649040\pi\)
\(440\) 14.8193 0.706482
\(441\) −5.88511 −0.280243
\(442\) −19.8909 −0.946112
\(443\) −38.5977 −1.83383 −0.916916 0.399080i \(-0.869329\pi\)
−0.916916 + 0.399080i \(0.869329\pi\)
\(444\) −7.11494 −0.337660
\(445\) −48.4118 −2.29494
\(446\) 1.17667 0.0557170
\(447\) −1.18480 −0.0560393
\(448\) −1.05589 −0.0498859
\(449\) 27.5904 1.30207 0.651036 0.759047i \(-0.274335\pi\)
0.651036 + 0.759047i \(0.274335\pi\)
\(450\) 7.21586 0.340159
\(451\) 18.1597 0.855109
\(452\) 15.0393 0.707388
\(453\) 4.28192 0.201182
\(454\) −5.93573 −0.278577
\(455\) −20.0681 −0.940807
\(456\) 1.05589 0.0494464
\(457\) 22.5461 1.05466 0.527332 0.849660i \(-0.323193\pi\)
0.527332 + 0.849660i \(0.323193\pi\)
\(458\) 1.70563 0.0796988
\(459\) 3.65785 0.170734
\(460\) 3.49512 0.162961
\(461\) −27.2823 −1.27066 −0.635331 0.772240i \(-0.719137\pi\)
−0.635331 + 0.772240i \(0.719137\pi\)
\(462\) 4.47695 0.208286
\(463\) −4.47035 −0.207755 −0.103877 0.994590i \(-0.533125\pi\)
−0.103877 + 0.994590i \(0.533125\pi\)
\(464\) 1.00000 0.0464238
\(465\) 14.0974 0.653754
\(466\) 6.92781 0.320925
\(467\) −0.457011 −0.0211479 −0.0105740 0.999944i \(-0.503366\pi\)
−0.0105740 + 0.999944i \(0.503366\pi\)
\(468\) 5.43785 0.251365
\(469\) 13.6722 0.631323
\(470\) −17.3489 −0.800244
\(471\) −12.8331 −0.591320
\(472\) −13.2516 −0.609954
\(473\) 35.9788 1.65431
\(474\) −4.66957 −0.214481
\(475\) −7.61912 −0.349589
\(476\) 3.86227 0.177027
\(477\) 9.06888 0.415235
\(478\) 10.6965 0.489247
\(479\) −0.135314 −0.00618266 −0.00309133 0.999995i \(-0.500984\pi\)
−0.00309133 + 0.999995i \(0.500984\pi\)
\(480\) −3.49512 −0.159530
\(481\) 38.6900 1.76411
\(482\) 12.1453 0.553202
\(483\) 1.05589 0.0480444
\(484\) 6.97755 0.317161
\(485\) 16.9032 0.767533
\(486\) −1.00000 −0.0453609
\(487\) 13.4945 0.611494 0.305747 0.952113i \(-0.401094\pi\)
0.305747 + 0.952113i \(0.401094\pi\)
\(488\) −6.93145 −0.313772
\(489\) −7.51658 −0.339911
\(490\) −20.5692 −0.929220
\(491\) 38.8989 1.75548 0.877741 0.479135i \(-0.159050\pi\)
0.877741 + 0.479135i \(0.159050\pi\)
\(492\) −4.28297 −0.193091
\(493\) −3.65785 −0.164741
\(494\) −5.74175 −0.258334
\(495\) 14.8193 0.666077
\(496\) −4.03347 −0.181108
\(497\) −9.69697 −0.434969
\(498\) 4.60197 0.206219
\(499\) −40.7876 −1.82590 −0.912952 0.408068i \(-0.866203\pi\)
−0.912952 + 0.408068i \(0.866203\pi\)
\(500\) 7.74471 0.346354
\(501\) 9.25414 0.413445
\(502\) 14.0329 0.626320
\(503\) 22.4789 1.00228 0.501142 0.865365i \(-0.332913\pi\)
0.501142 + 0.865365i \(0.332913\pi\)
\(504\) −1.05589 −0.0470329
\(505\) 66.8645 2.97543
\(506\) 4.23999 0.188491
\(507\) −16.5703 −0.735911
\(508\) 2.73857 0.121504
\(509\) 6.85472 0.303830 0.151915 0.988394i \(-0.451456\pi\)
0.151915 + 0.988394i \(0.451456\pi\)
\(510\) 12.7846 0.566113
\(511\) 12.9931 0.574781
\(512\) 1.00000 0.0441942
\(513\) 1.05589 0.0466185
\(514\) −0.413438 −0.0182360
\(515\) 2.89195 0.127434
\(516\) −8.48558 −0.373557
\(517\) −21.0462 −0.925612
\(518\) −7.51256 −0.330083
\(519\) 9.51083 0.417479
\(520\) 19.0060 0.833466
\(521\) −36.3360 −1.59191 −0.795955 0.605355i \(-0.793031\pi\)
−0.795955 + 0.605355i \(0.793031\pi\)
\(522\) 1.00000 0.0437688
\(523\) 5.64973 0.247045 0.123523 0.992342i \(-0.460581\pi\)
0.123523 + 0.992342i \(0.460581\pi\)
\(524\) 21.1991 0.926085
\(525\) 7.61912 0.332526
\(526\) 12.9642 0.565266
\(527\) 14.7538 0.642686
\(528\) −4.23999 −0.184522
\(529\) 1.00000 0.0434783
\(530\) 31.6968 1.37682
\(531\) −13.2516 −0.575071
\(532\) 1.11489 0.0483368
\(533\) 23.2901 1.00881
\(534\) 13.8513 0.599403
\(535\) −49.8579 −2.15554
\(536\) −12.9486 −0.559292
\(537\) −13.3185 −0.574734
\(538\) 16.6963 0.719827
\(539\) −24.9528 −1.07479
\(540\) −3.49512 −0.150406
\(541\) −32.9877 −1.41825 −0.709125 0.705082i \(-0.750910\pi\)
−0.709125 + 0.705082i \(0.750910\pi\)
\(542\) 27.1117 1.16455
\(543\) 21.7224 0.932197
\(544\) −3.65785 −0.156829
\(545\) 32.2212 1.38021
\(546\) 5.74175 0.245724
\(547\) −1.57869 −0.0675000 −0.0337500 0.999430i \(-0.510745\pi\)
−0.0337500 + 0.999430i \(0.510745\pi\)
\(548\) −5.58255 −0.238475
\(549\) −6.93145 −0.295827
\(550\) 30.5952 1.30458
\(551\) −1.05589 −0.0449822
\(552\) −1.00000 −0.0425628
\(553\) −4.93054 −0.209668
\(554\) 18.4920 0.785652
\(555\) −24.8676 −1.05557
\(556\) −20.7073 −0.878185
\(557\) −21.8487 −0.925757 −0.462879 0.886422i \(-0.653183\pi\)
−0.462879 + 0.886422i \(0.653183\pi\)
\(558\) −4.03347 −0.170750
\(559\) 46.1433 1.95166
\(560\) −3.69045 −0.155950
\(561\) 15.5093 0.654802
\(562\) −11.5054 −0.485326
\(563\) −40.1340 −1.69145 −0.845723 0.533622i \(-0.820830\pi\)
−0.845723 + 0.533622i \(0.820830\pi\)
\(564\) 4.96374 0.209011
\(565\) 52.5641 2.21139
\(566\) −21.2173 −0.891830
\(567\) −1.05589 −0.0443430
\(568\) 9.18374 0.385341
\(569\) −18.0124 −0.755119 −0.377560 0.925985i \(-0.623237\pi\)
−0.377560 + 0.925985i \(0.623237\pi\)
\(570\) 3.69045 0.154576
\(571\) −37.3882 −1.56465 −0.782323 0.622873i \(-0.785965\pi\)
−0.782323 + 0.622873i \(0.785965\pi\)
\(572\) 23.0565 0.964039
\(573\) −10.9414 −0.457084
\(574\) −4.52232 −0.188758
\(575\) 7.21586 0.300922
\(576\) 1.00000 0.0416667
\(577\) 42.9285 1.78714 0.893569 0.448927i \(-0.148194\pi\)
0.893569 + 0.448927i \(0.148194\pi\)
\(578\) −3.62013 −0.150577
\(579\) 3.93212 0.163413
\(580\) 3.49512 0.145127
\(581\) 4.85915 0.201591
\(582\) −4.83622 −0.200468
\(583\) 38.4520 1.59252
\(584\) −12.3054 −0.509201
\(585\) 19.0060 0.785799
\(586\) −8.00326 −0.330612
\(587\) 26.7238 1.10301 0.551505 0.834171i \(-0.314054\pi\)
0.551505 + 0.834171i \(0.314054\pi\)
\(588\) 5.88511 0.242698
\(589\) 4.25888 0.175484
\(590\) −46.3159 −1.90680
\(591\) 5.87495 0.241663
\(592\) 7.11494 0.292422
\(593\) −46.4606 −1.90791 −0.953955 0.299951i \(-0.903030\pi\)
−0.953955 + 0.299951i \(0.903030\pi\)
\(594\) −4.23999 −0.173969
\(595\) 13.4991 0.553409
\(596\) 1.18480 0.0485315
\(597\) 5.40515 0.221218
\(598\) 5.43785 0.222370
\(599\) −27.8443 −1.13769 −0.568844 0.822446i \(-0.692609\pi\)
−0.568844 + 0.822446i \(0.692609\pi\)
\(600\) −7.21586 −0.294586
\(601\) −39.5453 −1.61309 −0.806544 0.591174i \(-0.798665\pi\)
−0.806544 + 0.591174i \(0.798665\pi\)
\(602\) −8.95980 −0.365174
\(603\) −12.9486 −0.527306
\(604\) −4.28192 −0.174229
\(605\) 24.3874 0.991487
\(606\) −19.1308 −0.777136
\(607\) 4.48213 0.181924 0.0909621 0.995854i \(-0.471006\pi\)
0.0909621 + 0.995854i \(0.471006\pi\)
\(608\) −1.05589 −0.0428218
\(609\) 1.05589 0.0427866
\(610\) −24.2262 −0.980892
\(611\) −26.9921 −1.09198
\(612\) −3.65785 −0.147860
\(613\) 14.0743 0.568455 0.284227 0.958757i \(-0.408263\pi\)
0.284227 + 0.958757i \(0.408263\pi\)
\(614\) −18.8924 −0.762433
\(615\) −14.9695 −0.603628
\(616\) −4.47695 −0.180381
\(617\) −13.1038 −0.527539 −0.263770 0.964586i \(-0.584966\pi\)
−0.263770 + 0.964586i \(0.584966\pi\)
\(618\) −0.827424 −0.0332839
\(619\) −36.2462 −1.45686 −0.728429 0.685121i \(-0.759749\pi\)
−0.728429 + 0.685121i \(0.759749\pi\)
\(620\) −14.0974 −0.566167
\(621\) −1.00000 −0.0401286
\(622\) −0.789316 −0.0316487
\(623\) 14.6253 0.585952
\(624\) −5.43785 −0.217688
\(625\) −9.01064 −0.360425
\(626\) 6.14077 0.245434
\(627\) 4.47695 0.178792
\(628\) 12.8331 0.512098
\(629\) −26.0254 −1.03770
\(630\) −3.69045 −0.147031
\(631\) −37.2024 −1.48100 −0.740502 0.672054i \(-0.765412\pi\)
−0.740502 + 0.672054i \(0.765412\pi\)
\(632\) 4.66957 0.185746
\(633\) 2.39162 0.0950585
\(634\) −1.88403 −0.0748245
\(635\) 9.57162 0.379838
\(636\) −9.06888 −0.359604
\(637\) −32.0023 −1.26798
\(638\) 4.23999 0.167863
\(639\) 9.18374 0.363303
\(640\) 3.49512 0.138157
\(641\) −17.9456 −0.708808 −0.354404 0.935092i \(-0.615316\pi\)
−0.354404 + 0.935092i \(0.615316\pi\)
\(642\) 14.2650 0.562994
\(643\) 28.8684 1.13846 0.569228 0.822179i \(-0.307242\pi\)
0.569228 + 0.822179i \(0.307242\pi\)
\(644\) −1.05589 −0.0416077
\(645\) −29.6581 −1.16779
\(646\) 3.86227 0.151959
\(647\) 38.8044 1.52556 0.762779 0.646659i \(-0.223834\pi\)
0.762779 + 0.646659i \(0.223834\pi\)
\(648\) 1.00000 0.0392837
\(649\) −56.1867 −2.20552
\(650\) 39.2388 1.53907
\(651\) −4.25888 −0.166919
\(652\) 7.51658 0.294372
\(653\) −7.59637 −0.297269 −0.148634 0.988892i \(-0.547488\pi\)
−0.148634 + 0.988892i \(0.547488\pi\)
\(654\) −9.21892 −0.360488
\(655\) 74.0932 2.89506
\(656\) 4.28297 0.167222
\(657\) −12.3054 −0.480079
\(658\) 5.24114 0.204321
\(659\) −39.7713 −1.54927 −0.774636 0.632408i \(-0.782067\pi\)
−0.774636 + 0.632408i \(0.782067\pi\)
\(660\) −14.8193 −0.576840
\(661\) −26.1141 −1.01572 −0.507861 0.861439i \(-0.669564\pi\)
−0.507861 + 0.861439i \(0.669564\pi\)
\(662\) −1.53412 −0.0596251
\(663\) 19.8909 0.772497
\(664\) −4.60197 −0.178591
\(665\) 3.89669 0.151107
\(666\) 7.11494 0.275698
\(667\) 1.00000 0.0387202
\(668\) −9.25414 −0.358054
\(669\) −1.17667 −0.0454927
\(670\) −45.2567 −1.74842
\(671\) −29.3893 −1.13456
\(672\) 1.05589 0.0407317
\(673\) 10.3950 0.400696 0.200348 0.979725i \(-0.435793\pi\)
0.200348 + 0.979725i \(0.435793\pi\)
\(674\) 0.685212 0.0263934
\(675\) −7.21586 −0.277739
\(676\) 16.5703 0.637318
\(677\) 3.20100 0.123024 0.0615122 0.998106i \(-0.480408\pi\)
0.0615122 + 0.998106i \(0.480408\pi\)
\(678\) −15.0393 −0.577580
\(679\) −5.10649 −0.195969
\(680\) −12.7846 −0.490268
\(681\) 5.93573 0.227458
\(682\) −17.1019 −0.654865
\(683\) −19.0993 −0.730813 −0.365407 0.930848i \(-0.619070\pi\)
−0.365407 + 0.930848i \(0.619070\pi\)
\(684\) −1.05589 −0.0403728
\(685\) −19.5117 −0.745503
\(686\) 13.6052 0.519449
\(687\) −1.70563 −0.0650738
\(688\) 8.48558 0.323510
\(689\) 49.3152 1.87876
\(690\) −3.49512 −0.133057
\(691\) −2.67577 −0.101791 −0.0508956 0.998704i \(-0.516208\pi\)
−0.0508956 + 0.998704i \(0.516208\pi\)
\(692\) −9.51083 −0.361548
\(693\) −4.47695 −0.170065
\(694\) −33.4817 −1.27095
\(695\) −72.3745 −2.74532
\(696\) −1.00000 −0.0379049
\(697\) −15.6665 −0.593409
\(698\) −1.04546 −0.0395712
\(699\) −6.92781 −0.262034
\(700\) −7.61912 −0.287976
\(701\) 8.19951 0.309691 0.154846 0.987939i \(-0.450512\pi\)
0.154846 + 0.987939i \(0.450512\pi\)
\(702\) −5.43785 −0.205239
\(703\) −7.51256 −0.283342
\(704\) 4.23999 0.159801
\(705\) 17.3489 0.653396
\(706\) −21.5087 −0.809489
\(707\) −20.1999 −0.759697
\(708\) 13.2516 0.498026
\(709\) 10.6630 0.400458 0.200229 0.979749i \(-0.435831\pi\)
0.200229 + 0.979749i \(0.435831\pi\)
\(710\) 32.0983 1.20463
\(711\) 4.66957 0.175123
\(712\) −13.8513 −0.519098
\(713\) −4.03347 −0.151055
\(714\) −3.86227 −0.144542
\(715\) 80.5851 3.01371
\(716\) 13.3185 0.497734
\(717\) −10.6965 −0.399468
\(718\) −35.5193 −1.32557
\(719\) 0.0184633 0.000688564 0 0.000344282 1.00000i \(-0.499890\pi\)
0.000344282 1.00000i \(0.499890\pi\)
\(720\) 3.49512 0.130255
\(721\) −0.873665 −0.0325370
\(722\) −17.8851 −0.665615
\(723\) −12.1453 −0.451688
\(724\) −21.7224 −0.807306
\(725\) 7.21586 0.267990
\(726\) −6.97755 −0.258961
\(727\) −16.9955 −0.630330 −0.315165 0.949037i \(-0.602060\pi\)
−0.315165 + 0.949037i \(0.602060\pi\)
\(728\) −5.74175 −0.212803
\(729\) 1.00000 0.0370370
\(730\) −43.0089 −1.59183
\(731\) −31.0390 −1.14802
\(732\) 6.93145 0.256194
\(733\) 44.0222 1.62600 0.812998 0.582266i \(-0.197834\pi\)
0.812998 + 0.582266i \(0.197834\pi\)
\(734\) 14.9554 0.552015
\(735\) 20.5692 0.758705
\(736\) 1.00000 0.0368605
\(737\) −54.9018 −2.02233
\(738\) 4.28297 0.157658
\(739\) 35.2198 1.29558 0.647791 0.761818i \(-0.275693\pi\)
0.647791 + 0.761818i \(0.275693\pi\)
\(740\) 24.8676 0.914150
\(741\) 5.74175 0.210928
\(742\) −9.57569 −0.351535
\(743\) 1.30868 0.0480109 0.0240054 0.999712i \(-0.492358\pi\)
0.0240054 + 0.999712i \(0.492358\pi\)
\(744\) 4.03347 0.147874
\(745\) 4.14103 0.151716
\(746\) 22.6229 0.828284
\(747\) −4.60197 −0.168377
\(748\) −15.5093 −0.567075
\(749\) 15.0622 0.550361
\(750\) −7.74471 −0.282797
\(751\) 6.90025 0.251794 0.125897 0.992043i \(-0.459819\pi\)
0.125897 + 0.992043i \(0.459819\pi\)
\(752\) −4.96374 −0.181009
\(753\) −14.0329 −0.511388
\(754\) 5.43785 0.198035
\(755\) −14.9658 −0.544663
\(756\) 1.05589 0.0384022
\(757\) 43.5338 1.58226 0.791132 0.611646i \(-0.209492\pi\)
0.791132 + 0.611646i \(0.209492\pi\)
\(758\) 2.96130 0.107559
\(759\) −4.23999 −0.153902
\(760\) −3.69045 −0.133867
\(761\) 10.3834 0.376398 0.188199 0.982131i \(-0.439735\pi\)
0.188199 + 0.982131i \(0.439735\pi\)
\(762\) −2.73857 −0.0992079
\(763\) −9.73412 −0.352399
\(764\) 10.9414 0.395846
\(765\) −12.7846 −0.462229
\(766\) 8.51598 0.307695
\(767\) −72.0603 −2.60195
\(768\) −1.00000 −0.0360844
\(769\) −26.2358 −0.946089 −0.473044 0.881039i \(-0.656845\pi\)
−0.473044 + 0.881039i \(0.656845\pi\)
\(770\) −15.6475 −0.563896
\(771\) 0.413438 0.0148896
\(772\) −3.93212 −0.141520
\(773\) −11.8771 −0.427190 −0.213595 0.976922i \(-0.568517\pi\)
−0.213595 + 0.976922i \(0.568517\pi\)
\(774\) 8.48558 0.305008
\(775\) −29.1049 −1.04548
\(776\) 4.83622 0.173610
\(777\) 7.51256 0.269512
\(778\) −36.8685 −1.32180
\(779\) −4.52232 −0.162029
\(780\) −19.0060 −0.680522
\(781\) 38.9390 1.39335
\(782\) −3.65785 −0.130804
\(783\) −1.00000 −0.0357371
\(784\) −5.88511 −0.210182
\(785\) 44.8534 1.60089
\(786\) −21.1991 −0.756145
\(787\) −2.81021 −0.100173 −0.0500866 0.998745i \(-0.515950\pi\)
−0.0500866 + 0.998745i \(0.515950\pi\)
\(788\) −5.87495 −0.209286
\(789\) −12.9642 −0.461537
\(790\) 16.3207 0.580665
\(791\) −15.8798 −0.564619
\(792\) 4.23999 0.150662
\(793\) −37.6922 −1.33849
\(794\) 19.9790 0.709027
\(795\) −31.6968 −1.12417
\(796\) −5.40515 −0.191580
\(797\) 43.2628 1.53245 0.766223 0.642575i \(-0.222134\pi\)
0.766223 + 0.642575i \(0.222134\pi\)
\(798\) −1.11489 −0.0394668
\(799\) 18.1566 0.642335
\(800\) 7.21586 0.255119
\(801\) −13.8513 −0.489410
\(802\) 29.8040 1.05242
\(803\) −52.1748 −1.84121
\(804\) 12.9486 0.456660
\(805\) −3.69045 −0.130071
\(806\) −21.9334 −0.772571
\(807\) −16.6963 −0.587736
\(808\) 19.1308 0.673019
\(809\) −40.4069 −1.42063 −0.710315 0.703883i \(-0.751448\pi\)
−0.710315 + 0.703883i \(0.751448\pi\)
\(810\) 3.49512 0.122806
\(811\) 5.44429 0.191175 0.0955874 0.995421i \(-0.469527\pi\)
0.0955874 + 0.995421i \(0.469527\pi\)
\(812\) −1.05589 −0.0370543
\(813\) −27.1117 −0.950850
\(814\) 30.1673 1.05736
\(815\) 26.2713 0.920245
\(816\) 3.65785 0.128050
\(817\) −8.95980 −0.313464
\(818\) 24.0039 0.839275
\(819\) −5.74175 −0.200633
\(820\) 14.9695 0.522757
\(821\) −38.8105 −1.35449 −0.677247 0.735755i \(-0.736827\pi\)
−0.677247 + 0.735755i \(0.736827\pi\)
\(822\) 5.58255 0.194714
\(823\) −29.0821 −1.01374 −0.506869 0.862023i \(-0.669197\pi\)
−0.506869 + 0.862023i \(0.669197\pi\)
\(824\) 0.827424 0.0288247
\(825\) −30.5952 −1.06519
\(826\) 13.9922 0.486850
\(827\) 31.7654 1.10459 0.552296 0.833648i \(-0.313752\pi\)
0.552296 + 0.833648i \(0.313752\pi\)
\(828\) 1.00000 0.0347524
\(829\) −31.5168 −1.09462 −0.547311 0.836929i \(-0.684349\pi\)
−0.547311 + 0.836929i \(0.684349\pi\)
\(830\) −16.0844 −0.558298
\(831\) −18.4920 −0.641482
\(832\) 5.43785 0.188524
\(833\) 21.5268 0.745861
\(834\) 20.7073 0.717035
\(835\) −32.3443 −1.11932
\(836\) −4.47695 −0.154838
\(837\) 4.03347 0.139417
\(838\) −38.8474 −1.34196
\(839\) 8.92396 0.308089 0.154045 0.988064i \(-0.450770\pi\)
0.154045 + 0.988064i \(0.450770\pi\)
\(840\) 3.69045 0.127332
\(841\) 1.00000 0.0344828
\(842\) 14.0747 0.485047
\(843\) 11.5054 0.396267
\(844\) −2.39162 −0.0823230
\(845\) 57.9150 1.99234
\(846\) −4.96374 −0.170657
\(847\) −7.36749 −0.253150
\(848\) 9.06888 0.311426
\(849\) 21.2173 0.728176
\(850\) −26.3945 −0.905326
\(851\) 7.11494 0.243897
\(852\) −9.18374 −0.314630
\(853\) −20.7711 −0.711188 −0.355594 0.934641i \(-0.615721\pi\)
−0.355594 + 0.934641i \(0.615721\pi\)
\(854\) 7.31882 0.250445
\(855\) −3.69045 −0.126211
\(856\) −14.2650 −0.487567
\(857\) 8.91820 0.304640 0.152320 0.988331i \(-0.451326\pi\)
0.152320 + 0.988331i \(0.451326\pi\)
\(858\) −23.0565 −0.787135
\(859\) 48.2760 1.64716 0.823579 0.567202i \(-0.191974\pi\)
0.823579 + 0.567202i \(0.191974\pi\)
\(860\) 29.6581 1.01133
\(861\) 4.52232 0.154120
\(862\) −4.04478 −0.137766
\(863\) −53.5057 −1.82136 −0.910678 0.413117i \(-0.864440\pi\)
−0.910678 + 0.413117i \(0.864440\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −33.2415 −1.13024
\(866\) 16.8889 0.573908
\(867\) 3.62013 0.122946
\(868\) 4.25888 0.144556
\(869\) 19.7990 0.671634
\(870\) −3.49512 −0.118496
\(871\) −70.4123 −2.38583
\(872\) 9.21892 0.312192
\(873\) 4.83622 0.163681
\(874\) −1.05589 −0.0357159
\(875\) −8.17752 −0.276451
\(876\) 12.3054 0.415761
\(877\) −24.0632 −0.812556 −0.406278 0.913750i \(-0.633174\pi\)
−0.406278 + 0.913750i \(0.633174\pi\)
\(878\) −18.9116 −0.638235
\(879\) 8.00326 0.269943
\(880\) 14.8193 0.499558
\(881\) −6.20301 −0.208985 −0.104492 0.994526i \(-0.533322\pi\)
−0.104492 + 0.994526i \(0.533322\pi\)
\(882\) −5.88511 −0.198162
\(883\) −12.8830 −0.433546 −0.216773 0.976222i \(-0.569553\pi\)
−0.216773 + 0.976222i \(0.569553\pi\)
\(884\) −19.8909 −0.669002
\(885\) 46.3159 1.55689
\(886\) −38.5977 −1.29672
\(887\) −32.0058 −1.07465 −0.537325 0.843376i \(-0.680565\pi\)
−0.537325 + 0.843376i \(0.680565\pi\)
\(888\) −7.11494 −0.238762
\(889\) −2.89161 −0.0969816
\(890\) −48.4118 −1.62277
\(891\) 4.23999 0.142045
\(892\) 1.17667 0.0393979
\(893\) 5.24114 0.175388
\(894\) −1.18480 −0.0396258
\(895\) 46.5496 1.55598
\(896\) −1.05589 −0.0352747
\(897\) −5.43785 −0.181565
\(898\) 27.5904 0.920704
\(899\) −4.03347 −0.134524
\(900\) 7.21586 0.240529
\(901\) −33.1726 −1.10514
\(902\) 18.1597 0.604654
\(903\) 8.95980 0.298163
\(904\) 15.0393 0.500199
\(905\) −75.9223 −2.52374
\(906\) 4.28192 0.142257
\(907\) −9.95932 −0.330694 −0.165347 0.986235i \(-0.552874\pi\)
−0.165347 + 0.986235i \(0.552874\pi\)
\(908\) −5.93573 −0.196984
\(909\) 19.1308 0.634529
\(910\) −20.0681 −0.665251
\(911\) −42.5141 −1.40856 −0.704278 0.709924i \(-0.748729\pi\)
−0.704278 + 0.709924i \(0.748729\pi\)
\(912\) 1.05589 0.0349639
\(913\) −19.5123 −0.645763
\(914\) 22.5461 0.745759
\(915\) 24.2262 0.800895
\(916\) 1.70563 0.0563555
\(917\) −22.3838 −0.739177
\(918\) 3.65785 0.120727
\(919\) −12.5938 −0.415430 −0.207715 0.978189i \(-0.566603\pi\)
−0.207715 + 0.978189i \(0.566603\pi\)
\(920\) 3.49512 0.115231
\(921\) 18.8924 0.622524
\(922\) −27.2823 −0.898494
\(923\) 49.9398 1.64379
\(924\) 4.47695 0.147281
\(925\) 51.3404 1.68806
\(926\) −4.47035 −0.146905
\(927\) 0.827424 0.0271762
\(928\) 1.00000 0.0328266
\(929\) −33.7555 −1.10748 −0.553742 0.832688i \(-0.686801\pi\)
−0.553742 + 0.832688i \(0.686801\pi\)
\(930\) 14.0974 0.462274
\(931\) 6.21400 0.203656
\(932\) 6.92781 0.226928
\(933\) 0.789316 0.0258411
\(934\) −0.457011 −0.0149538
\(935\) −54.2067 −1.77275
\(936\) 5.43785 0.177742
\(937\) −15.4473 −0.504640 −0.252320 0.967644i \(-0.581194\pi\)
−0.252320 + 0.967644i \(0.581194\pi\)
\(938\) 13.6722 0.446413
\(939\) −6.14077 −0.200396
\(940\) −17.3489 −0.565858
\(941\) −8.95014 −0.291766 −0.145883 0.989302i \(-0.546602\pi\)
−0.145883 + 0.989302i \(0.546602\pi\)
\(942\) −12.8331 −0.418127
\(943\) 4.28297 0.139473
\(944\) −13.2516 −0.431303
\(945\) 3.69045 0.120050
\(946\) 35.9788 1.16977
\(947\) 3.32810 0.108149 0.0540744 0.998537i \(-0.482779\pi\)
0.0540744 + 0.998537i \(0.482779\pi\)
\(948\) −4.66957 −0.151661
\(949\) −66.9150 −2.17215
\(950\) −7.61912 −0.247197
\(951\) 1.88403 0.0610939
\(952\) 3.86227 0.125177
\(953\) −4.89734 −0.158640 −0.0793202 0.996849i \(-0.525275\pi\)
−0.0793202 + 0.996849i \(0.525275\pi\)
\(954\) 9.06888 0.293616
\(955\) 38.2415 1.23747
\(956\) 10.6965 0.345950
\(957\) −4.23999 −0.137060
\(958\) −0.135314 −0.00437180
\(959\) 5.89453 0.190344
\(960\) −3.49512 −0.112805
\(961\) −14.7311 −0.475198
\(962\) 38.6900 1.24742
\(963\) −14.2650 −0.459683
\(964\) 12.1453 0.391173
\(965\) −13.7432 −0.442410
\(966\) 1.05589 0.0339726
\(967\) −22.4265 −0.721187 −0.360593 0.932723i \(-0.617426\pi\)
−0.360593 + 0.932723i \(0.617426\pi\)
\(968\) 6.97755 0.224267
\(969\) −3.86227 −0.124074
\(970\) 16.9032 0.542728
\(971\) −30.9397 −0.992901 −0.496451 0.868065i \(-0.665364\pi\)
−0.496451 + 0.868065i \(0.665364\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 21.8645 0.700945
\(974\) 13.4945 0.432391
\(975\) −39.2388 −1.25665
\(976\) −6.93145 −0.221870
\(977\) 7.18204 0.229774 0.114887 0.993379i \(-0.463349\pi\)
0.114887 + 0.993379i \(0.463349\pi\)
\(978\) −7.51658 −0.240354
\(979\) −58.7293 −1.87700
\(980\) −20.5692 −0.657057
\(981\) 9.21892 0.294337
\(982\) 38.8989 1.24131
\(983\) 14.2025 0.452991 0.226495 0.974012i \(-0.427273\pi\)
0.226495 + 0.974012i \(0.427273\pi\)
\(984\) −4.28297 −0.136536
\(985\) −20.5337 −0.654257
\(986\) −3.65785 −0.116490
\(987\) −5.24114 −0.166827
\(988\) −5.74175 −0.182669
\(989\) 8.48558 0.269826
\(990\) 14.8193 0.470988
\(991\) 3.46798 0.110164 0.0550821 0.998482i \(-0.482458\pi\)
0.0550821 + 0.998482i \(0.482458\pi\)
\(992\) −4.03347 −0.128063
\(993\) 1.53412 0.0486837
\(994\) −9.69697 −0.307569
\(995\) −18.8916 −0.598905
\(996\) 4.60197 0.145819
\(997\) 0.983869 0.0311595 0.0155797 0.999879i \(-0.495041\pi\)
0.0155797 + 0.999879i \(0.495041\pi\)
\(998\) −40.7876 −1.29111
\(999\) −7.11494 −0.225107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bj.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bj.1.7 8 1.1 even 1 trivial