Properties

Label 4002.2.a.bj.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 26x^{6} + 4x^{5} + 209x^{4} + 113x^{3} - 436x^{2} - 360x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.26152\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.26152 q^{5} -1.00000 q^{6} +3.32565 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.26152 q^{5} -1.00000 q^{6} +3.32565 q^{7} +1.00000 q^{8} +1.00000 q^{9} -2.26152 q^{10} -5.42976 q^{11} -1.00000 q^{12} +5.07555 q^{13} +3.32565 q^{14} +2.26152 q^{15} +1.00000 q^{16} -0.475759 q^{17} +1.00000 q^{18} +3.32565 q^{19} -2.26152 q^{20} -3.32565 q^{21} -5.42976 q^{22} +1.00000 q^{23} -1.00000 q^{24} +0.114494 q^{25} +5.07555 q^{26} -1.00000 q^{27} +3.32565 q^{28} +1.00000 q^{29} +2.26152 q^{30} -10.7446 q^{31} +1.00000 q^{32} +5.42976 q^{33} -0.475759 q^{34} -7.52105 q^{35} +1.00000 q^{36} +10.2383 q^{37} +3.32565 q^{38} -5.07555 q^{39} -2.26152 q^{40} +7.67552 q^{41} -3.32565 q^{42} -3.21017 q^{43} -5.42976 q^{44} -2.26152 q^{45} +1.00000 q^{46} +10.9185 q^{47} -1.00000 q^{48} +4.05997 q^{49} +0.114494 q^{50} +0.475759 q^{51} +5.07555 q^{52} -8.38154 q^{53} -1.00000 q^{54} +12.2795 q^{55} +3.32565 q^{56} -3.32565 q^{57} +1.00000 q^{58} +8.47422 q^{59} +2.26152 q^{60} +13.3343 q^{61} -10.7446 q^{62} +3.32565 q^{63} +1.00000 q^{64} -11.4785 q^{65} +5.42976 q^{66} -6.27220 q^{67} -0.475759 q^{68} -1.00000 q^{69} -7.52105 q^{70} -9.51825 q^{71} +1.00000 q^{72} -4.26658 q^{73} +10.2383 q^{74} -0.114494 q^{75} +3.32565 q^{76} -18.0575 q^{77} -5.07555 q^{78} +11.3630 q^{79} -2.26152 q^{80} +1.00000 q^{81} +7.67552 q^{82} -5.80141 q^{83} -3.32565 q^{84} +1.07594 q^{85} -3.21017 q^{86} -1.00000 q^{87} -5.42976 q^{88} -15.0725 q^{89} -2.26152 q^{90} +16.8795 q^{91} +1.00000 q^{92} +10.7446 q^{93} +10.9185 q^{94} -7.52105 q^{95} -1.00000 q^{96} +12.8116 q^{97} +4.05997 q^{98} -5.42976 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{2} - 8 q^{3} + 8 q^{4} + q^{5} - 8 q^{6} + 8 q^{8} + 8 q^{9} + q^{10} + 3 q^{11} - 8 q^{12} + 9 q^{13} - q^{15} + 8 q^{16} + 8 q^{17} + 8 q^{18} + q^{20} + 3 q^{22} + 8 q^{23} - 8 q^{24} + 13 q^{25} + 9 q^{26} - 8 q^{27} + 8 q^{29} - q^{30} - 9 q^{31} + 8 q^{32} - 3 q^{33} + 8 q^{34} - 2 q^{35} + 8 q^{36} + 7 q^{37} - 9 q^{39} + q^{40} + 3 q^{41} + 16 q^{43} + 3 q^{44} + q^{45} + 8 q^{46} + 24 q^{47} - 8 q^{48} + 6 q^{49} + 13 q^{50} - 8 q^{51} + 9 q^{52} + 8 q^{53} - 8 q^{54} + 13 q^{55} + 8 q^{58} - 3 q^{59} - q^{60} + 31 q^{61} - 9 q^{62} + 8 q^{64} + 13 q^{65} - 3 q^{66} - 11 q^{67} + 8 q^{68} - 8 q^{69} - 2 q^{70} + 7 q^{71} + 8 q^{72} + 14 q^{73} + 7 q^{74} - 13 q^{75} + 10 q^{77} - 9 q^{78} + 12 q^{79} + q^{80} + 8 q^{81} + 3 q^{82} - 8 q^{83} + 22 q^{85} + 16 q^{86} - 8 q^{87} + 3 q^{88} - 12 q^{89} + q^{90} + 28 q^{91} + 8 q^{92} + 9 q^{93} + 24 q^{94} - 2 q^{95} - 8 q^{96} + 16 q^{97} + 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −2.26152 −1.01138 −0.505692 0.862714i \(-0.668763\pi\)
−0.505692 + 0.862714i \(0.668763\pi\)
\(6\) −1.00000 −0.408248
\(7\) 3.32565 1.25698 0.628489 0.777818i \(-0.283674\pi\)
0.628489 + 0.777818i \(0.283674\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −2.26152 −0.715157
\(11\) −5.42976 −1.63713 −0.818567 0.574411i \(-0.805231\pi\)
−0.818567 + 0.574411i \(0.805231\pi\)
\(12\) −1.00000 −0.288675
\(13\) 5.07555 1.40770 0.703852 0.710347i \(-0.251462\pi\)
0.703852 + 0.710347i \(0.251462\pi\)
\(14\) 3.32565 0.888818
\(15\) 2.26152 0.583923
\(16\) 1.00000 0.250000
\(17\) −0.475759 −0.115388 −0.0576942 0.998334i \(-0.518375\pi\)
−0.0576942 + 0.998334i \(0.518375\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.32565 0.762957 0.381479 0.924378i \(-0.375415\pi\)
0.381479 + 0.924378i \(0.375415\pi\)
\(20\) −2.26152 −0.505692
\(21\) −3.32565 −0.725717
\(22\) −5.42976 −1.15763
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) 0.114494 0.0228988
\(26\) 5.07555 0.995397
\(27\) −1.00000 −0.192450
\(28\) 3.32565 0.628489
\(29\) 1.00000 0.185695
\(30\) 2.26152 0.412896
\(31\) −10.7446 −1.92979 −0.964895 0.262636i \(-0.915408\pi\)
−0.964895 + 0.262636i \(0.915408\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.42976 0.945200
\(34\) −0.475759 −0.0815920
\(35\) −7.52105 −1.27129
\(36\) 1.00000 0.166667
\(37\) 10.2383 1.68317 0.841586 0.540123i \(-0.181622\pi\)
0.841586 + 0.540123i \(0.181622\pi\)
\(38\) 3.32565 0.539492
\(39\) −5.07555 −0.812738
\(40\) −2.26152 −0.357578
\(41\) 7.67552 1.19871 0.599357 0.800482i \(-0.295423\pi\)
0.599357 + 0.800482i \(0.295423\pi\)
\(42\) −3.32565 −0.513159
\(43\) −3.21017 −0.489547 −0.244773 0.969580i \(-0.578714\pi\)
−0.244773 + 0.969580i \(0.578714\pi\)
\(44\) −5.42976 −0.818567
\(45\) −2.26152 −0.337128
\(46\) 1.00000 0.147442
\(47\) 10.9185 1.59262 0.796310 0.604888i \(-0.206782\pi\)
0.796310 + 0.604888i \(0.206782\pi\)
\(48\) −1.00000 −0.144338
\(49\) 4.05997 0.579996
\(50\) 0.114494 0.0161919
\(51\) 0.475759 0.0666196
\(52\) 5.07555 0.703852
\(53\) −8.38154 −1.15129 −0.575646 0.817699i \(-0.695249\pi\)
−0.575646 + 0.817699i \(0.695249\pi\)
\(54\) −1.00000 −0.136083
\(55\) 12.2795 1.65577
\(56\) 3.32565 0.444409
\(57\) −3.32565 −0.440494
\(58\) 1.00000 0.131306
\(59\) 8.47422 1.10325 0.551625 0.834092i \(-0.314008\pi\)
0.551625 + 0.834092i \(0.314008\pi\)
\(60\) 2.26152 0.291962
\(61\) 13.3343 1.70728 0.853639 0.520865i \(-0.174390\pi\)
0.853639 + 0.520865i \(0.174390\pi\)
\(62\) −10.7446 −1.36457
\(63\) 3.32565 0.418993
\(64\) 1.00000 0.125000
\(65\) −11.4785 −1.42373
\(66\) 5.42976 0.668357
\(67\) −6.27220 −0.766271 −0.383136 0.923692i \(-0.625156\pi\)
−0.383136 + 0.923692i \(0.625156\pi\)
\(68\) −0.475759 −0.0576942
\(69\) −1.00000 −0.120386
\(70\) −7.52105 −0.898937
\(71\) −9.51825 −1.12961 −0.564804 0.825225i \(-0.691048\pi\)
−0.564804 + 0.825225i \(0.691048\pi\)
\(72\) 1.00000 0.117851
\(73\) −4.26658 −0.499365 −0.249682 0.968328i \(-0.580326\pi\)
−0.249682 + 0.968328i \(0.580326\pi\)
\(74\) 10.2383 1.19018
\(75\) −0.114494 −0.0132206
\(76\) 3.32565 0.381479
\(77\) −18.0575 −2.05784
\(78\) −5.07555 −0.574693
\(79\) 11.3630 1.27843 0.639217 0.769026i \(-0.279259\pi\)
0.639217 + 0.769026i \(0.279259\pi\)
\(80\) −2.26152 −0.252846
\(81\) 1.00000 0.111111
\(82\) 7.67552 0.847619
\(83\) −5.80141 −0.636788 −0.318394 0.947959i \(-0.603143\pi\)
−0.318394 + 0.947959i \(0.603143\pi\)
\(84\) −3.32565 −0.362859
\(85\) 1.07594 0.116702
\(86\) −3.21017 −0.346162
\(87\) −1.00000 −0.107211
\(88\) −5.42976 −0.578814
\(89\) −15.0725 −1.59769 −0.798843 0.601540i \(-0.794554\pi\)
−0.798843 + 0.601540i \(0.794554\pi\)
\(90\) −2.26152 −0.238386
\(91\) 16.8795 1.76945
\(92\) 1.00000 0.104257
\(93\) 10.7446 1.11416
\(94\) 10.9185 1.12615
\(95\) −7.52105 −0.771643
\(96\) −1.00000 −0.102062
\(97\) 12.8116 1.30082 0.650409 0.759584i \(-0.274598\pi\)
0.650409 + 0.759584i \(0.274598\pi\)
\(98\) 4.05997 0.410119
\(99\) −5.42976 −0.545711
\(100\) 0.114494 0.0114494
\(101\) 11.1227 1.10675 0.553373 0.832934i \(-0.313341\pi\)
0.553373 + 0.832934i \(0.313341\pi\)
\(102\) 0.475759 0.0471071
\(103\) −10.3154 −1.01641 −0.508204 0.861237i \(-0.669690\pi\)
−0.508204 + 0.861237i \(0.669690\pi\)
\(104\) 5.07555 0.497698
\(105\) 7.52105 0.733979
\(106\) −8.38154 −0.814087
\(107\) 13.5989 1.31466 0.657329 0.753604i \(-0.271686\pi\)
0.657329 + 0.753604i \(0.271686\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 10.0411 0.961763 0.480882 0.876785i \(-0.340317\pi\)
0.480882 + 0.876785i \(0.340317\pi\)
\(110\) 12.2795 1.17081
\(111\) −10.2383 −0.971780
\(112\) 3.32565 0.314245
\(113\) 9.67975 0.910594 0.455297 0.890340i \(-0.349533\pi\)
0.455297 + 0.890340i \(0.349533\pi\)
\(114\) −3.32565 −0.311476
\(115\) −2.26152 −0.210888
\(116\) 1.00000 0.0928477
\(117\) 5.07555 0.469235
\(118\) 8.47422 0.780116
\(119\) −1.58221 −0.145041
\(120\) 2.26152 0.206448
\(121\) 18.4823 1.68021
\(122\) 13.3343 1.20723
\(123\) −7.67552 −0.692078
\(124\) −10.7446 −0.964895
\(125\) 11.0487 0.988225
\(126\) 3.32565 0.296273
\(127\) 15.5574 1.38050 0.690249 0.723572i \(-0.257501\pi\)
0.690249 + 0.723572i \(0.257501\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.21017 0.282640
\(130\) −11.4785 −1.00673
\(131\) −7.51117 −0.656254 −0.328127 0.944634i \(-0.606417\pi\)
−0.328127 + 0.944634i \(0.606417\pi\)
\(132\) 5.42976 0.472600
\(133\) 11.0600 0.959021
\(134\) −6.27220 −0.541836
\(135\) 2.26152 0.194641
\(136\) −0.475759 −0.0407960
\(137\) −13.0070 −1.11126 −0.555630 0.831430i \(-0.687523\pi\)
−0.555630 + 0.831430i \(0.687523\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 10.5726 0.896753 0.448377 0.893845i \(-0.352002\pi\)
0.448377 + 0.893845i \(0.352002\pi\)
\(140\) −7.52105 −0.635645
\(141\) −10.9185 −0.919500
\(142\) −9.51825 −0.798753
\(143\) −27.5590 −2.30460
\(144\) 1.00000 0.0833333
\(145\) −2.26152 −0.187809
\(146\) −4.26658 −0.353104
\(147\) −4.05997 −0.334861
\(148\) 10.2383 0.841586
\(149\) 12.7765 1.04669 0.523347 0.852120i \(-0.324683\pi\)
0.523347 + 0.852120i \(0.324683\pi\)
\(150\) −0.114494 −0.00934841
\(151\) −10.9044 −0.887387 −0.443694 0.896178i \(-0.646332\pi\)
−0.443694 + 0.896178i \(0.646332\pi\)
\(152\) 3.32565 0.269746
\(153\) −0.475759 −0.0384628
\(154\) −18.0575 −1.45511
\(155\) 24.2992 1.95176
\(156\) −5.07555 −0.406369
\(157\) 14.8916 1.18848 0.594240 0.804287i \(-0.297453\pi\)
0.594240 + 0.804287i \(0.297453\pi\)
\(158\) 11.3630 0.903989
\(159\) 8.38154 0.664699
\(160\) −2.26152 −0.178789
\(161\) 3.32565 0.262098
\(162\) 1.00000 0.0785674
\(163\) 13.5964 1.06495 0.532475 0.846446i \(-0.321262\pi\)
0.532475 + 0.846446i \(0.321262\pi\)
\(164\) 7.67552 0.599357
\(165\) −12.2795 −0.955960
\(166\) −5.80141 −0.450277
\(167\) 10.8182 0.837135 0.418567 0.908186i \(-0.362532\pi\)
0.418567 + 0.908186i \(0.362532\pi\)
\(168\) −3.32565 −0.256580
\(169\) 12.7612 0.981629
\(170\) 1.07594 0.0825208
\(171\) 3.32565 0.254319
\(172\) −3.21017 −0.244773
\(173\) 15.2170 1.15692 0.578462 0.815710i \(-0.303653\pi\)
0.578462 + 0.815710i \(0.303653\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 0.380768 0.0287833
\(176\) −5.42976 −0.409283
\(177\) −8.47422 −0.636962
\(178\) −15.0725 −1.12973
\(179\) 4.92868 0.368387 0.184193 0.982890i \(-0.441033\pi\)
0.184193 + 0.982890i \(0.441033\pi\)
\(180\) −2.26152 −0.168564
\(181\) −0.148726 −0.0110547 −0.00552736 0.999985i \(-0.501759\pi\)
−0.00552736 + 0.999985i \(0.501759\pi\)
\(182\) 16.8795 1.25119
\(183\) −13.3343 −0.985698
\(184\) 1.00000 0.0737210
\(185\) −23.1543 −1.70233
\(186\) 10.7446 0.787833
\(187\) 2.58326 0.188906
\(188\) 10.9185 0.796310
\(189\) −3.32565 −0.241906
\(190\) −7.52105 −0.545634
\(191\) 10.5269 0.761697 0.380848 0.924637i \(-0.375632\pi\)
0.380848 + 0.924637i \(0.375632\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −7.02932 −0.505981 −0.252991 0.967469i \(-0.581414\pi\)
−0.252991 + 0.967469i \(0.581414\pi\)
\(194\) 12.8116 0.919817
\(195\) 11.4785 0.821991
\(196\) 4.05997 0.289998
\(197\) 20.5809 1.46633 0.733163 0.680052i \(-0.238043\pi\)
0.733163 + 0.680052i \(0.238043\pi\)
\(198\) −5.42976 −0.385876
\(199\) 5.93277 0.420563 0.210282 0.977641i \(-0.432562\pi\)
0.210282 + 0.977641i \(0.432562\pi\)
\(200\) 0.114494 0.00809596
\(201\) 6.27220 0.442407
\(202\) 11.1227 0.782587
\(203\) 3.32565 0.233415
\(204\) 0.475759 0.0333098
\(205\) −17.3584 −1.21236
\(206\) −10.3154 −0.718708
\(207\) 1.00000 0.0695048
\(208\) 5.07555 0.351926
\(209\) −18.0575 −1.24906
\(210\) 7.52105 0.519002
\(211\) 11.3274 0.779810 0.389905 0.920855i \(-0.372508\pi\)
0.389905 + 0.920855i \(0.372508\pi\)
\(212\) −8.38154 −0.575646
\(213\) 9.51825 0.652179
\(214\) 13.5989 0.929603
\(215\) 7.25988 0.495120
\(216\) −1.00000 −0.0680414
\(217\) −35.7329 −2.42571
\(218\) 10.0411 0.680069
\(219\) 4.26658 0.288308
\(220\) 12.2795 0.827886
\(221\) −2.41474 −0.162433
\(222\) −10.2383 −0.687152
\(223\) 12.7244 0.852090 0.426045 0.904702i \(-0.359907\pi\)
0.426045 + 0.904702i \(0.359907\pi\)
\(224\) 3.32565 0.222205
\(225\) 0.114494 0.00763294
\(226\) 9.67975 0.643887
\(227\) −5.11116 −0.339240 −0.169620 0.985510i \(-0.554254\pi\)
−0.169620 + 0.985510i \(0.554254\pi\)
\(228\) −3.32565 −0.220247
\(229\) −10.9399 −0.722930 −0.361465 0.932386i \(-0.617723\pi\)
−0.361465 + 0.932386i \(0.617723\pi\)
\(230\) −2.26152 −0.149121
\(231\) 18.0575 1.18810
\(232\) 1.00000 0.0656532
\(233\) −20.6365 −1.35194 −0.675970 0.736929i \(-0.736275\pi\)
−0.675970 + 0.736929i \(0.736275\pi\)
\(234\) 5.07555 0.331799
\(235\) −24.6924 −1.61075
\(236\) 8.47422 0.551625
\(237\) −11.3630 −0.738104
\(238\) −1.58221 −0.102559
\(239\) −1.29606 −0.0838351 −0.0419175 0.999121i \(-0.513347\pi\)
−0.0419175 + 0.999121i \(0.513347\pi\)
\(240\) 2.26152 0.145981
\(241\) −17.9590 −1.15684 −0.578420 0.815739i \(-0.696331\pi\)
−0.578420 + 0.815739i \(0.696331\pi\)
\(242\) 18.4823 1.18809
\(243\) −1.00000 −0.0641500
\(244\) 13.3343 0.853639
\(245\) −9.18172 −0.586599
\(246\) −7.67552 −0.489373
\(247\) 16.8795 1.07402
\(248\) −10.7446 −0.682284
\(249\) 5.80141 0.367650
\(250\) 11.0487 0.698781
\(251\) −16.6705 −1.05223 −0.526117 0.850412i \(-0.676353\pi\)
−0.526117 + 0.850412i \(0.676353\pi\)
\(252\) 3.32565 0.209496
\(253\) −5.42976 −0.341366
\(254\) 15.5574 0.976160
\(255\) −1.07594 −0.0673780
\(256\) 1.00000 0.0625000
\(257\) −17.6203 −1.09912 −0.549562 0.835453i \(-0.685205\pi\)
−0.549562 + 0.835453i \(0.685205\pi\)
\(258\) 3.21017 0.199857
\(259\) 34.0492 2.11571
\(260\) −11.4785 −0.711865
\(261\) 1.00000 0.0618984
\(262\) −7.51117 −0.464042
\(263\) −24.3782 −1.50323 −0.751614 0.659604i \(-0.770724\pi\)
−0.751614 + 0.659604i \(0.770724\pi\)
\(264\) 5.42976 0.334179
\(265\) 18.9551 1.16440
\(266\) 11.0600 0.678130
\(267\) 15.0725 0.922424
\(268\) −6.27220 −0.383136
\(269\) 8.45618 0.515582 0.257791 0.966201i \(-0.417005\pi\)
0.257791 + 0.966201i \(0.417005\pi\)
\(270\) 2.26152 0.137632
\(271\) 7.22535 0.438909 0.219455 0.975623i \(-0.429572\pi\)
0.219455 + 0.975623i \(0.429572\pi\)
\(272\) −0.475759 −0.0288471
\(273\) −16.8795 −1.02159
\(274\) −13.0070 −0.785779
\(275\) −0.621676 −0.0374884
\(276\) −1.00000 −0.0601929
\(277\) 14.1385 0.849500 0.424750 0.905311i \(-0.360362\pi\)
0.424750 + 0.905311i \(0.360362\pi\)
\(278\) 10.5726 0.634100
\(279\) −10.7446 −0.643263
\(280\) −7.52105 −0.449469
\(281\) 23.7945 1.41946 0.709731 0.704473i \(-0.248817\pi\)
0.709731 + 0.704473i \(0.248817\pi\)
\(282\) −10.9185 −0.650185
\(283\) −24.7981 −1.47409 −0.737047 0.675842i \(-0.763780\pi\)
−0.737047 + 0.675842i \(0.763780\pi\)
\(284\) −9.51825 −0.564804
\(285\) 7.52105 0.445508
\(286\) −27.5590 −1.62960
\(287\) 25.5261 1.50676
\(288\) 1.00000 0.0589256
\(289\) −16.7737 −0.986686
\(290\) −2.26152 −0.132801
\(291\) −12.8116 −0.751028
\(292\) −4.26658 −0.249682
\(293\) −18.5890 −1.08598 −0.542991 0.839738i \(-0.682708\pi\)
−0.542991 + 0.839738i \(0.682708\pi\)
\(294\) −4.05997 −0.236782
\(295\) −19.1647 −1.11581
\(296\) 10.2383 0.595091
\(297\) 5.42976 0.315067
\(298\) 12.7765 0.740124
\(299\) 5.07555 0.293526
\(300\) −0.114494 −0.00661032
\(301\) −10.6759 −0.615350
\(302\) −10.9044 −0.627478
\(303\) −11.1227 −0.638980
\(304\) 3.32565 0.190739
\(305\) −30.1558 −1.72672
\(306\) −0.475759 −0.0271973
\(307\) 19.6049 1.11891 0.559456 0.828860i \(-0.311010\pi\)
0.559456 + 0.828860i \(0.311010\pi\)
\(308\) −18.0575 −1.02892
\(309\) 10.3154 0.586823
\(310\) 24.2992 1.38010
\(311\) 30.3066 1.71853 0.859266 0.511529i \(-0.170921\pi\)
0.859266 + 0.511529i \(0.170921\pi\)
\(312\) −5.07555 −0.287346
\(313\) −21.3348 −1.20591 −0.602957 0.797774i \(-0.706011\pi\)
−0.602957 + 0.797774i \(0.706011\pi\)
\(314\) 14.8916 0.840383
\(315\) −7.52105 −0.423763
\(316\) 11.3630 0.639217
\(317\) −10.9052 −0.612495 −0.306248 0.951952i \(-0.599074\pi\)
−0.306248 + 0.951952i \(0.599074\pi\)
\(318\) 8.38154 0.470013
\(319\) −5.42976 −0.304008
\(320\) −2.26152 −0.126423
\(321\) −13.5989 −0.759018
\(322\) 3.32565 0.185331
\(323\) −1.58221 −0.0880364
\(324\) 1.00000 0.0555556
\(325\) 0.581120 0.0322348
\(326\) 13.5964 0.753034
\(327\) −10.0411 −0.555274
\(328\) 7.67552 0.423810
\(329\) 36.3110 2.00189
\(330\) −12.2795 −0.675966
\(331\) −5.41872 −0.297840 −0.148920 0.988849i \(-0.547580\pi\)
−0.148920 + 0.988849i \(0.547580\pi\)
\(332\) −5.80141 −0.318394
\(333\) 10.2383 0.561057
\(334\) 10.8182 0.591944
\(335\) 14.1847 0.774995
\(336\) −3.32565 −0.181429
\(337\) 11.5349 0.628344 0.314172 0.949366i \(-0.398273\pi\)
0.314172 + 0.949366i \(0.398273\pi\)
\(338\) 12.7612 0.694117
\(339\) −9.67975 −0.525732
\(340\) 1.07594 0.0583510
\(341\) 58.3407 3.15932
\(342\) 3.32565 0.179831
\(343\) −9.77752 −0.527937
\(344\) −3.21017 −0.173081
\(345\) 2.26152 0.121756
\(346\) 15.2170 0.818068
\(347\) 14.5031 0.778567 0.389283 0.921118i \(-0.372723\pi\)
0.389283 + 0.921118i \(0.372723\pi\)
\(348\) −1.00000 −0.0536056
\(349\) 20.5327 1.09909 0.549544 0.835465i \(-0.314802\pi\)
0.549544 + 0.835465i \(0.314802\pi\)
\(350\) 0.380768 0.0203529
\(351\) −5.07555 −0.270913
\(352\) −5.42976 −0.289407
\(353\) 3.20547 0.170610 0.0853050 0.996355i \(-0.472814\pi\)
0.0853050 + 0.996355i \(0.472814\pi\)
\(354\) −8.47422 −0.450400
\(355\) 21.5257 1.14247
\(356\) −15.0725 −0.798843
\(357\) 1.58221 0.0837394
\(358\) 4.92868 0.260489
\(359\) 24.7598 1.30677 0.653385 0.757026i \(-0.273348\pi\)
0.653385 + 0.757026i \(0.273348\pi\)
\(360\) −2.26152 −0.119193
\(361\) −7.94003 −0.417896
\(362\) −0.148726 −0.00781687
\(363\) −18.4823 −0.970068
\(364\) 16.8795 0.884727
\(365\) 9.64897 0.505050
\(366\) −13.3343 −0.696994
\(367\) −8.73921 −0.456183 −0.228091 0.973640i \(-0.573249\pi\)
−0.228091 + 0.973640i \(0.573249\pi\)
\(368\) 1.00000 0.0521286
\(369\) 7.67552 0.399572
\(370\) −23.1543 −1.20373
\(371\) −27.8741 −1.44715
\(372\) 10.7446 0.557082
\(373\) −21.9187 −1.13491 −0.567454 0.823405i \(-0.692071\pi\)
−0.567454 + 0.823405i \(0.692071\pi\)
\(374\) 2.58326 0.133577
\(375\) −11.0487 −0.570552
\(376\) 10.9185 0.563076
\(377\) 5.07555 0.261404
\(378\) −3.32565 −0.171053
\(379\) 33.3114 1.71109 0.855547 0.517725i \(-0.173221\pi\)
0.855547 + 0.517725i \(0.173221\pi\)
\(380\) −7.52105 −0.385822
\(381\) −15.5574 −0.797031
\(382\) 10.5269 0.538601
\(383\) −26.3568 −1.34677 −0.673385 0.739292i \(-0.735160\pi\)
−0.673385 + 0.739292i \(0.735160\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 40.8375 2.08127
\(386\) −7.02932 −0.357783
\(387\) −3.21017 −0.163182
\(388\) 12.8116 0.650409
\(389\) 14.3999 0.730102 0.365051 0.930988i \(-0.381052\pi\)
0.365051 + 0.930988i \(0.381052\pi\)
\(390\) 11.4785 0.581235
\(391\) −0.475759 −0.0240602
\(392\) 4.05997 0.205059
\(393\) 7.51117 0.378889
\(394\) 20.5809 1.03685
\(395\) −25.6976 −1.29299
\(396\) −5.42976 −0.272856
\(397\) −30.6067 −1.53611 −0.768054 0.640385i \(-0.778775\pi\)
−0.768054 + 0.640385i \(0.778775\pi\)
\(398\) 5.93277 0.297383
\(399\) −11.0600 −0.553691
\(400\) 0.114494 0.00572471
\(401\) −12.1268 −0.605586 −0.302793 0.953056i \(-0.597919\pi\)
−0.302793 + 0.953056i \(0.597919\pi\)
\(402\) 6.27220 0.312829
\(403\) −54.5348 −2.71657
\(404\) 11.1227 0.553373
\(405\) −2.26152 −0.112376
\(406\) 3.32565 0.165049
\(407\) −55.5917 −2.75558
\(408\) 0.475759 0.0235536
\(409\) 18.9080 0.934938 0.467469 0.884009i \(-0.345166\pi\)
0.467469 + 0.884009i \(0.345166\pi\)
\(410\) −17.3584 −0.857269
\(411\) 13.0070 0.641586
\(412\) −10.3154 −0.508204
\(413\) 28.1823 1.38676
\(414\) 1.00000 0.0491473
\(415\) 13.1200 0.644037
\(416\) 5.07555 0.248849
\(417\) −10.5726 −0.517741
\(418\) −18.0575 −0.883221
\(419\) −4.48063 −0.218893 −0.109447 0.993993i \(-0.534908\pi\)
−0.109447 + 0.993993i \(0.534908\pi\)
\(420\) 7.52105 0.366990
\(421\) −8.53845 −0.416138 −0.208069 0.978114i \(-0.566718\pi\)
−0.208069 + 0.978114i \(0.566718\pi\)
\(422\) 11.3274 0.551409
\(423\) 10.9185 0.530874
\(424\) −8.38154 −0.407043
\(425\) −0.0544716 −0.00264226
\(426\) 9.51825 0.461161
\(427\) 44.3452 2.14601
\(428\) 13.5989 0.657329
\(429\) 27.5590 1.33056
\(430\) 7.25988 0.350103
\(431\) −20.6797 −0.996106 −0.498053 0.867147i \(-0.665952\pi\)
−0.498053 + 0.867147i \(0.665952\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −9.84704 −0.473219 −0.236609 0.971605i \(-0.576036\pi\)
−0.236609 + 0.971605i \(0.576036\pi\)
\(434\) −35.7329 −1.71523
\(435\) 2.26152 0.108432
\(436\) 10.0411 0.480882
\(437\) 3.32565 0.159088
\(438\) 4.26658 0.203865
\(439\) −13.4088 −0.639966 −0.319983 0.947423i \(-0.603677\pi\)
−0.319983 + 0.947423i \(0.603677\pi\)
\(440\) 12.2795 0.585404
\(441\) 4.05997 0.193332
\(442\) −2.41474 −0.114857
\(443\) 4.02228 0.191104 0.0955521 0.995424i \(-0.469538\pi\)
0.0955521 + 0.995424i \(0.469538\pi\)
\(444\) −10.2383 −0.485890
\(445\) 34.0869 1.61587
\(446\) 12.7244 0.602519
\(447\) −12.7765 −0.604309
\(448\) 3.32565 0.157122
\(449\) 16.0556 0.757711 0.378855 0.925456i \(-0.376318\pi\)
0.378855 + 0.925456i \(0.376318\pi\)
\(450\) 0.114494 0.00539731
\(451\) −41.6762 −1.96246
\(452\) 9.67975 0.455297
\(453\) 10.9044 0.512333
\(454\) −5.11116 −0.239879
\(455\) −38.1734 −1.78960
\(456\) −3.32565 −0.155738
\(457\) 17.0167 0.796008 0.398004 0.917384i \(-0.369703\pi\)
0.398004 + 0.917384i \(0.369703\pi\)
\(458\) −10.9399 −0.511189
\(459\) 0.475759 0.0222065
\(460\) −2.26152 −0.105444
\(461\) −27.7056 −1.29038 −0.645189 0.764023i \(-0.723221\pi\)
−0.645189 + 0.764023i \(0.723221\pi\)
\(462\) 18.0575 0.840111
\(463\) 26.7779 1.24447 0.622236 0.782829i \(-0.286224\pi\)
0.622236 + 0.782829i \(0.286224\pi\)
\(464\) 1.00000 0.0464238
\(465\) −24.2992 −1.12685
\(466\) −20.6365 −0.955966
\(467\) −4.74293 −0.219477 −0.109738 0.993961i \(-0.535001\pi\)
−0.109738 + 0.993961i \(0.535001\pi\)
\(468\) 5.07555 0.234617
\(469\) −20.8592 −0.963187
\(470\) −24.6924 −1.13897
\(471\) −14.8916 −0.686170
\(472\) 8.47422 0.390058
\(473\) 17.4305 0.801454
\(474\) −11.3630 −0.521919
\(475\) 0.380768 0.0174708
\(476\) −1.58221 −0.0725204
\(477\) −8.38154 −0.383764
\(478\) −1.29606 −0.0592803
\(479\) 12.2155 0.558138 0.279069 0.960271i \(-0.409974\pi\)
0.279069 + 0.960271i \(0.409974\pi\)
\(480\) 2.26152 0.103224
\(481\) 51.9652 2.36941
\(482\) −17.9590 −0.818009
\(483\) −3.32565 −0.151322
\(484\) 18.4823 0.840104
\(485\) −28.9737 −1.31563
\(486\) −1.00000 −0.0453609
\(487\) −3.51808 −0.159419 −0.0797097 0.996818i \(-0.525399\pi\)
−0.0797097 + 0.996818i \(0.525399\pi\)
\(488\) 13.3343 0.603614
\(489\) −13.5964 −0.614849
\(490\) −9.18172 −0.414788
\(491\) 22.4101 1.01136 0.505678 0.862722i \(-0.331242\pi\)
0.505678 + 0.862722i \(0.331242\pi\)
\(492\) −7.67552 −0.346039
\(493\) −0.475759 −0.0214271
\(494\) 16.8795 0.759445
\(495\) 12.2795 0.551924
\(496\) −10.7446 −0.482448
\(497\) −31.6544 −1.41989
\(498\) 5.80141 0.259967
\(499\) −32.9006 −1.47283 −0.736417 0.676528i \(-0.763484\pi\)
−0.736417 + 0.676528i \(0.763484\pi\)
\(500\) 11.0487 0.494113
\(501\) −10.8182 −0.483320
\(502\) −16.6705 −0.744042
\(503\) −38.8276 −1.73123 −0.865617 0.500706i \(-0.833074\pi\)
−0.865617 + 0.500706i \(0.833074\pi\)
\(504\) 3.32565 0.148136
\(505\) −25.1541 −1.11934
\(506\) −5.42976 −0.241382
\(507\) −12.7612 −0.566744
\(508\) 15.5574 0.690249
\(509\) 9.38831 0.416130 0.208065 0.978115i \(-0.433283\pi\)
0.208065 + 0.978115i \(0.433283\pi\)
\(510\) −1.07594 −0.0476434
\(511\) −14.1892 −0.627691
\(512\) 1.00000 0.0441942
\(513\) −3.32565 −0.146831
\(514\) −17.6203 −0.777198
\(515\) 23.3285 1.02798
\(516\) 3.21017 0.141320
\(517\) −59.2846 −2.60733
\(518\) 34.0492 1.49603
\(519\) −15.2170 −0.667950
\(520\) −11.4785 −0.503364
\(521\) −33.2284 −1.45576 −0.727882 0.685703i \(-0.759495\pi\)
−0.727882 + 0.685703i \(0.759495\pi\)
\(522\) 1.00000 0.0437688
\(523\) −42.5475 −1.86047 −0.930237 0.366960i \(-0.880399\pi\)
−0.930237 + 0.366960i \(0.880399\pi\)
\(524\) −7.51117 −0.328127
\(525\) −0.380768 −0.0166181
\(526\) −24.3782 −1.06294
\(527\) 5.11185 0.222675
\(528\) 5.42976 0.236300
\(529\) 1.00000 0.0434783
\(530\) 18.9551 0.823355
\(531\) 8.47422 0.367750
\(532\) 11.0600 0.479511
\(533\) 38.9575 1.68743
\(534\) 15.0725 0.652252
\(535\) −30.7543 −1.32962
\(536\) −6.27220 −0.270918
\(537\) −4.92868 −0.212688
\(538\) 8.45618 0.364572
\(539\) −22.0447 −0.949531
\(540\) 2.26152 0.0973205
\(541\) 29.7144 1.27752 0.638761 0.769405i \(-0.279447\pi\)
0.638761 + 0.769405i \(0.279447\pi\)
\(542\) 7.22535 0.310356
\(543\) 0.148726 0.00638244
\(544\) −0.475759 −0.0203980
\(545\) −22.7082 −0.972713
\(546\) −16.8795 −0.722376
\(547\) −27.3757 −1.17050 −0.585250 0.810853i \(-0.699004\pi\)
−0.585250 + 0.810853i \(0.699004\pi\)
\(548\) −13.0070 −0.555630
\(549\) 13.3343 0.569093
\(550\) −0.621676 −0.0265083
\(551\) 3.32565 0.141678
\(552\) −1.00000 −0.0425628
\(553\) 37.7893 1.60696
\(554\) 14.1385 0.600687
\(555\) 23.1543 0.982843
\(556\) 10.5726 0.448377
\(557\) 25.9964 1.10150 0.550752 0.834669i \(-0.314341\pi\)
0.550752 + 0.834669i \(0.314341\pi\)
\(558\) −10.7446 −0.454856
\(559\) −16.2934 −0.689137
\(560\) −7.52105 −0.317822
\(561\) −2.58326 −0.109065
\(562\) 23.7945 1.00371
\(563\) −27.6383 −1.16482 −0.582408 0.812897i \(-0.697889\pi\)
−0.582408 + 0.812897i \(0.697889\pi\)
\(564\) −10.9185 −0.459750
\(565\) −21.8910 −0.920961
\(566\) −24.7981 −1.04234
\(567\) 3.32565 0.139664
\(568\) −9.51825 −0.399377
\(569\) 37.2581 1.56194 0.780970 0.624569i \(-0.214725\pi\)
0.780970 + 0.624569i \(0.214725\pi\)
\(570\) 7.52105 0.315022
\(571\) −26.3765 −1.10382 −0.551911 0.833903i \(-0.686101\pi\)
−0.551911 + 0.833903i \(0.686101\pi\)
\(572\) −27.5590 −1.15230
\(573\) −10.5269 −0.439766
\(574\) 25.5261 1.06544
\(575\) 0.114494 0.00477474
\(576\) 1.00000 0.0416667
\(577\) 4.33482 0.180461 0.0902305 0.995921i \(-0.471240\pi\)
0.0902305 + 0.995921i \(0.471240\pi\)
\(578\) −16.7737 −0.697692
\(579\) 7.02932 0.292128
\(580\) −2.26152 −0.0939047
\(581\) −19.2935 −0.800429
\(582\) −12.8116 −0.531057
\(583\) 45.5097 1.88482
\(584\) −4.26658 −0.176552
\(585\) −11.4785 −0.474577
\(586\) −18.5890 −0.767906
\(587\) −13.4523 −0.555235 −0.277617 0.960692i \(-0.589545\pi\)
−0.277617 + 0.960692i \(0.589545\pi\)
\(588\) −4.05997 −0.167430
\(589\) −35.7329 −1.47235
\(590\) −19.1647 −0.788997
\(591\) −20.5809 −0.846584
\(592\) 10.2383 0.420793
\(593\) −12.8445 −0.527459 −0.263730 0.964597i \(-0.584953\pi\)
−0.263730 + 0.964597i \(0.584953\pi\)
\(594\) 5.42976 0.222786
\(595\) 3.57820 0.146692
\(596\) 12.7765 0.523347
\(597\) −5.93277 −0.242812
\(598\) 5.07555 0.207555
\(599\) −10.3493 −0.422862 −0.211431 0.977393i \(-0.567812\pi\)
−0.211431 + 0.977393i \(0.567812\pi\)
\(600\) −0.114494 −0.00467420
\(601\) −1.08778 −0.0443713 −0.0221856 0.999754i \(-0.507062\pi\)
−0.0221856 + 0.999754i \(0.507062\pi\)
\(602\) −10.6759 −0.435118
\(603\) −6.27220 −0.255424
\(604\) −10.9044 −0.443694
\(605\) −41.7981 −1.69934
\(606\) −11.1227 −0.451827
\(607\) −1.88557 −0.0765328 −0.0382664 0.999268i \(-0.512184\pi\)
−0.0382664 + 0.999268i \(0.512184\pi\)
\(608\) 3.32565 0.134873
\(609\) −3.32565 −0.134762
\(610\) −30.1558 −1.22097
\(611\) 55.4171 2.24194
\(612\) −0.475759 −0.0192314
\(613\) −22.0389 −0.890143 −0.445072 0.895495i \(-0.646822\pi\)
−0.445072 + 0.895495i \(0.646822\pi\)
\(614\) 19.6049 0.791191
\(615\) 17.3584 0.699957
\(616\) −18.0575 −0.727557
\(617\) 5.88198 0.236800 0.118400 0.992966i \(-0.462224\pi\)
0.118400 + 0.992966i \(0.462224\pi\)
\(618\) 10.3154 0.414946
\(619\) −41.6908 −1.67569 −0.837847 0.545904i \(-0.816186\pi\)
−0.837847 + 0.545904i \(0.816186\pi\)
\(620\) 24.2992 0.975880
\(621\) −1.00000 −0.0401286
\(622\) 30.3066 1.21519
\(623\) −50.1260 −2.00826
\(624\) −5.07555 −0.203185
\(625\) −25.5594 −1.02237
\(626\) −21.3348 −0.852710
\(627\) 18.0575 0.721147
\(628\) 14.8916 0.594240
\(629\) −4.87098 −0.194219
\(630\) −7.52105 −0.299646
\(631\) −7.84823 −0.312433 −0.156217 0.987723i \(-0.549930\pi\)
−0.156217 + 0.987723i \(0.549930\pi\)
\(632\) 11.3630 0.451995
\(633\) −11.3274 −0.450224
\(634\) −10.9052 −0.433099
\(635\) −35.1835 −1.39621
\(636\) 8.38154 0.332350
\(637\) 20.6066 0.816462
\(638\) −5.42976 −0.214966
\(639\) −9.51825 −0.376536
\(640\) −2.26152 −0.0893946
\(641\) −24.5930 −0.971364 −0.485682 0.874136i \(-0.661429\pi\)
−0.485682 + 0.874136i \(0.661429\pi\)
\(642\) −13.5989 −0.536707
\(643\) −29.1898 −1.15113 −0.575567 0.817754i \(-0.695219\pi\)
−0.575567 + 0.817754i \(0.695219\pi\)
\(644\) 3.32565 0.131049
\(645\) −7.25988 −0.285858
\(646\) −1.58221 −0.0622512
\(647\) −5.44896 −0.214221 −0.107110 0.994247i \(-0.534160\pi\)
−0.107110 + 0.994247i \(0.534160\pi\)
\(648\) 1.00000 0.0392837
\(649\) −46.0130 −1.80617
\(650\) 0.581120 0.0227934
\(651\) 35.7329 1.40048
\(652\) 13.5964 0.532475
\(653\) 0.781257 0.0305729 0.0152865 0.999883i \(-0.495134\pi\)
0.0152865 + 0.999883i \(0.495134\pi\)
\(654\) −10.0411 −0.392638
\(655\) 16.9867 0.663725
\(656\) 7.67552 0.299679
\(657\) −4.26658 −0.166455
\(658\) 36.3110 1.41555
\(659\) −29.9409 −1.16633 −0.583165 0.812354i \(-0.698186\pi\)
−0.583165 + 0.812354i \(0.698186\pi\)
\(660\) −12.2795 −0.477980
\(661\) 45.2682 1.76073 0.880364 0.474298i \(-0.157298\pi\)
0.880364 + 0.474298i \(0.157298\pi\)
\(662\) −5.41872 −0.210604
\(663\) 2.41474 0.0937806
\(664\) −5.80141 −0.225138
\(665\) −25.0124 −0.969939
\(666\) 10.2383 0.396728
\(667\) 1.00000 0.0387202
\(668\) 10.8182 0.418567
\(669\) −12.7244 −0.491954
\(670\) 14.1847 0.548004
\(671\) −72.4019 −2.79504
\(672\) −3.32565 −0.128290
\(673\) −21.3304 −0.822226 −0.411113 0.911584i \(-0.634860\pi\)
−0.411113 + 0.911584i \(0.634860\pi\)
\(674\) 11.5349 0.444307
\(675\) −0.114494 −0.00440688
\(676\) 12.7612 0.490815
\(677\) 28.5225 1.09621 0.548105 0.836410i \(-0.315350\pi\)
0.548105 + 0.836410i \(0.315350\pi\)
\(678\) −9.67975 −0.371748
\(679\) 42.6068 1.63510
\(680\) 1.07594 0.0412604
\(681\) 5.11116 0.195860
\(682\) 58.3407 2.23398
\(683\) 12.8811 0.492882 0.246441 0.969158i \(-0.420739\pi\)
0.246441 + 0.969158i \(0.420739\pi\)
\(684\) 3.32565 0.127160
\(685\) 29.4156 1.12391
\(686\) −9.77752 −0.373307
\(687\) 10.9399 0.417384
\(688\) −3.21017 −0.122387
\(689\) −42.5409 −1.62068
\(690\) 2.26152 0.0860948
\(691\) 20.5790 0.782863 0.391431 0.920207i \(-0.371980\pi\)
0.391431 + 0.920207i \(0.371980\pi\)
\(692\) 15.2170 0.578462
\(693\) −18.0575 −0.685948
\(694\) 14.5031 0.550530
\(695\) −23.9101 −0.906962
\(696\) −1.00000 −0.0379049
\(697\) −3.65170 −0.138318
\(698\) 20.5327 0.777172
\(699\) 20.6365 0.780543
\(700\) 0.380768 0.0143917
\(701\) 21.3176 0.805155 0.402577 0.915386i \(-0.368114\pi\)
0.402577 + 0.915386i \(0.368114\pi\)
\(702\) −5.07555 −0.191564
\(703\) 34.0492 1.28419
\(704\) −5.42976 −0.204642
\(705\) 24.6924 0.929968
\(706\) 3.20547 0.120639
\(707\) 36.9901 1.39116
\(708\) −8.47422 −0.318481
\(709\) 14.6272 0.549337 0.274668 0.961539i \(-0.411432\pi\)
0.274668 + 0.961539i \(0.411432\pi\)
\(710\) 21.5257 0.807847
\(711\) 11.3630 0.426145
\(712\) −15.0725 −0.564867
\(713\) −10.7446 −0.402389
\(714\) 1.58221 0.0592127
\(715\) 62.3254 2.33084
\(716\) 4.92868 0.184193
\(717\) 1.29606 0.0484022
\(718\) 24.7598 0.924026
\(719\) 37.9533 1.41542 0.707709 0.706504i \(-0.249729\pi\)
0.707709 + 0.706504i \(0.249729\pi\)
\(720\) −2.26152 −0.0842821
\(721\) −34.3055 −1.27760
\(722\) −7.94003 −0.295497
\(723\) 17.9590 0.667902
\(724\) −0.148726 −0.00552736
\(725\) 0.114494 0.00425221
\(726\) −18.4823 −0.685942
\(727\) −14.4469 −0.535805 −0.267902 0.963446i \(-0.586330\pi\)
−0.267902 + 0.963446i \(0.586330\pi\)
\(728\) 16.8795 0.625596
\(729\) 1.00000 0.0370370
\(730\) 9.64897 0.357124
\(731\) 1.52727 0.0564880
\(732\) −13.3343 −0.492849
\(733\) −26.7577 −0.988318 −0.494159 0.869372i \(-0.664524\pi\)
−0.494159 + 0.869372i \(0.664524\pi\)
\(734\) −8.73921 −0.322570
\(735\) 9.18172 0.338673
\(736\) 1.00000 0.0368605
\(737\) 34.0565 1.25449
\(738\) 7.67552 0.282540
\(739\) −48.8184 −1.79581 −0.897907 0.440185i \(-0.854913\pi\)
−0.897907 + 0.440185i \(0.854913\pi\)
\(740\) −23.1543 −0.851167
\(741\) −16.8795 −0.620084
\(742\) −27.8741 −1.02329
\(743\) 8.07099 0.296096 0.148048 0.988980i \(-0.452701\pi\)
0.148048 + 0.988980i \(0.452701\pi\)
\(744\) 10.7446 0.393917
\(745\) −28.8944 −1.05861
\(746\) −21.9187 −0.802501
\(747\) −5.80141 −0.212263
\(748\) 2.58326 0.0944532
\(749\) 45.2253 1.65250
\(750\) −11.0487 −0.403441
\(751\) −38.7219 −1.41298 −0.706491 0.707722i \(-0.749723\pi\)
−0.706491 + 0.707722i \(0.749723\pi\)
\(752\) 10.9185 0.398155
\(753\) 16.6705 0.607508
\(754\) 5.07555 0.184841
\(755\) 24.6606 0.897490
\(756\) −3.32565 −0.120953
\(757\) −36.5139 −1.32712 −0.663560 0.748123i \(-0.730955\pi\)
−0.663560 + 0.748123i \(0.730955\pi\)
\(758\) 33.3114 1.20993
\(759\) 5.42976 0.197088
\(760\) −7.52105 −0.272817
\(761\) −11.1352 −0.403649 −0.201825 0.979422i \(-0.564687\pi\)
−0.201825 + 0.979422i \(0.564687\pi\)
\(762\) −15.5574 −0.563586
\(763\) 33.3932 1.20892
\(764\) 10.5269 0.380848
\(765\) 1.07594 0.0389007
\(766\) −26.3568 −0.952310
\(767\) 43.0113 1.55305
\(768\) −1.00000 −0.0360844
\(769\) 30.4924 1.09958 0.549792 0.835301i \(-0.314707\pi\)
0.549792 + 0.835301i \(0.314707\pi\)
\(770\) 40.8375 1.47168
\(771\) 17.6203 0.634579
\(772\) −7.02932 −0.252991
\(773\) 23.9836 0.862629 0.431314 0.902202i \(-0.358050\pi\)
0.431314 + 0.902202i \(0.358050\pi\)
\(774\) −3.21017 −0.115387
\(775\) −1.23020 −0.0441899
\(776\) 12.8116 0.459909
\(777\) −34.0492 −1.22151
\(778\) 14.3999 0.516260
\(779\) 25.5261 0.914568
\(780\) 11.4785 0.410995
\(781\) 51.6818 1.84932
\(782\) −0.475759 −0.0170131
\(783\) −1.00000 −0.0357371
\(784\) 4.05997 0.144999
\(785\) −33.6778 −1.20201
\(786\) 7.51117 0.267915
\(787\) 23.5295 0.838737 0.419368 0.907816i \(-0.362252\pi\)
0.419368 + 0.907816i \(0.362252\pi\)
\(788\) 20.5809 0.733163
\(789\) 24.3782 0.867889
\(790\) −25.6976 −0.914281
\(791\) 32.1915 1.14460
\(792\) −5.42976 −0.192938
\(793\) 67.6787 2.40334
\(794\) −30.6067 −1.08619
\(795\) −18.9551 −0.672266
\(796\) 5.93277 0.210282
\(797\) 23.6907 0.839169 0.419584 0.907716i \(-0.362176\pi\)
0.419584 + 0.907716i \(0.362176\pi\)
\(798\) −11.0600 −0.391519
\(799\) −5.19455 −0.183770
\(800\) 0.114494 0.00404798
\(801\) −15.0725 −0.532562
\(802\) −12.1268 −0.428214
\(803\) 23.1665 0.817527
\(804\) 6.27220 0.221203
\(805\) −7.52105 −0.265082
\(806\) −54.5348 −1.92091
\(807\) −8.45618 −0.297672
\(808\) 11.1227 0.391293
\(809\) 16.4816 0.579463 0.289732 0.957108i \(-0.406434\pi\)
0.289732 + 0.957108i \(0.406434\pi\)
\(810\) −2.26152 −0.0794619
\(811\) −26.4127 −0.927477 −0.463738 0.885972i \(-0.653492\pi\)
−0.463738 + 0.885972i \(0.653492\pi\)
\(812\) 3.32565 0.116708
\(813\) −7.22535 −0.253404
\(814\) −55.5917 −1.94849
\(815\) −30.7485 −1.07707
\(816\) 0.475759 0.0166549
\(817\) −10.6759 −0.373503
\(818\) 18.9080 0.661101
\(819\) 16.8795 0.589818
\(820\) −17.3584 −0.606181
\(821\) 43.3040 1.51132 0.755660 0.654964i \(-0.227316\pi\)
0.755660 + 0.654964i \(0.227316\pi\)
\(822\) 13.0070 0.453670
\(823\) 46.1512 1.60873 0.804366 0.594135i \(-0.202505\pi\)
0.804366 + 0.594135i \(0.202505\pi\)
\(824\) −10.3154 −0.359354
\(825\) 0.621676 0.0216440
\(826\) 28.1823 0.980589
\(827\) −3.66221 −0.127348 −0.0636738 0.997971i \(-0.520282\pi\)
−0.0636738 + 0.997971i \(0.520282\pi\)
\(828\) 1.00000 0.0347524
\(829\) 1.79537 0.0623559 0.0311779 0.999514i \(-0.490074\pi\)
0.0311779 + 0.999514i \(0.490074\pi\)
\(830\) 13.1200 0.455403
\(831\) −14.1385 −0.490459
\(832\) 5.07555 0.175963
\(833\) −1.93157 −0.0669248
\(834\) −10.5726 −0.366098
\(835\) −24.4656 −0.846665
\(836\) −18.0575 −0.624532
\(837\) 10.7446 0.371388
\(838\) −4.48063 −0.154781
\(839\) −20.9770 −0.724206 −0.362103 0.932138i \(-0.617941\pi\)
−0.362103 + 0.932138i \(0.617941\pi\)
\(840\) 7.52105 0.259501
\(841\) 1.00000 0.0344828
\(842\) −8.53845 −0.294254
\(843\) −23.7945 −0.819526
\(844\) 11.3274 0.389905
\(845\) −28.8597 −0.992805
\(846\) 10.9185 0.375384
\(847\) 61.4657 2.11199
\(848\) −8.38154 −0.287823
\(849\) 24.7981 0.851068
\(850\) −0.0544716 −0.00186836
\(851\) 10.2383 0.350966
\(852\) 9.51825 0.326090
\(853\) 44.9562 1.53927 0.769635 0.638484i \(-0.220438\pi\)
0.769635 + 0.638484i \(0.220438\pi\)
\(854\) 44.3452 1.51746
\(855\) −7.52105 −0.257214
\(856\) 13.5989 0.464802
\(857\) −28.5878 −0.976539 −0.488270 0.872693i \(-0.662372\pi\)
−0.488270 + 0.872693i \(0.662372\pi\)
\(858\) 27.5590 0.940849
\(859\) −52.9099 −1.80526 −0.902632 0.430414i \(-0.858368\pi\)
−0.902632 + 0.430414i \(0.858368\pi\)
\(860\) 7.25988 0.247560
\(861\) −25.5261 −0.869928
\(862\) −20.6797 −0.704354
\(863\) −21.4526 −0.730255 −0.365127 0.930958i \(-0.618975\pi\)
−0.365127 + 0.930958i \(0.618975\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −34.4135 −1.17009
\(866\) −9.84704 −0.334616
\(867\) 16.7737 0.569663
\(868\) −35.7329 −1.21285
\(869\) −61.6982 −2.09297
\(870\) 2.26152 0.0766729
\(871\) −31.8349 −1.07868
\(872\) 10.0411 0.340035
\(873\) 12.8116 0.433606
\(874\) 3.32565 0.112492
\(875\) 36.7441 1.24218
\(876\) 4.26658 0.144154
\(877\) 23.0122 0.777068 0.388534 0.921434i \(-0.372982\pi\)
0.388534 + 0.921434i \(0.372982\pi\)
\(878\) −13.4088 −0.452524
\(879\) 18.5890 0.626993
\(880\) 12.2795 0.413943
\(881\) −38.0521 −1.28201 −0.641004 0.767538i \(-0.721482\pi\)
−0.641004 + 0.767538i \(0.721482\pi\)
\(882\) 4.05997 0.136706
\(883\) −24.7884 −0.834197 −0.417098 0.908861i \(-0.636953\pi\)
−0.417098 + 0.908861i \(0.636953\pi\)
\(884\) −2.41474 −0.0812164
\(885\) 19.1647 0.644213
\(886\) 4.02228 0.135131
\(887\) 44.8102 1.50458 0.752289 0.658833i \(-0.228950\pi\)
0.752289 + 0.658833i \(0.228950\pi\)
\(888\) −10.2383 −0.343576
\(889\) 51.7386 1.73526
\(890\) 34.0869 1.14260
\(891\) −5.42976 −0.181904
\(892\) 12.7244 0.426045
\(893\) 36.3110 1.21510
\(894\) −12.7765 −0.427311
\(895\) −11.1463 −0.372581
\(896\) 3.32565 0.111102
\(897\) −5.07555 −0.169468
\(898\) 16.0556 0.535782
\(899\) −10.7446 −0.358353
\(900\) 0.114494 0.00381647
\(901\) 3.98759 0.132846
\(902\) −41.6762 −1.38767
\(903\) 10.6759 0.355272
\(904\) 9.67975 0.321944
\(905\) 0.336348 0.0111806
\(906\) 10.9044 0.362274
\(907\) −30.3654 −1.00827 −0.504133 0.863626i \(-0.668188\pi\)
−0.504133 + 0.863626i \(0.668188\pi\)
\(908\) −5.11116 −0.169620
\(909\) 11.1227 0.368915
\(910\) −38.1734 −1.26544
\(911\) 3.13192 0.103765 0.0518825 0.998653i \(-0.483478\pi\)
0.0518825 + 0.998653i \(0.483478\pi\)
\(912\) −3.32565 −0.110123
\(913\) 31.5003 1.04251
\(914\) 17.0167 0.562863
\(915\) 30.1558 0.996919
\(916\) −10.9399 −0.361465
\(917\) −24.9796 −0.824898
\(918\) 0.475759 0.0157024
\(919\) 8.64405 0.285141 0.142570 0.989785i \(-0.454463\pi\)
0.142570 + 0.989785i \(0.454463\pi\)
\(920\) −2.26152 −0.0745603
\(921\) −19.6049 −0.646005
\(922\) −27.7056 −0.912435
\(923\) −48.3103 −1.59015
\(924\) 18.0575 0.594048
\(925\) 1.17223 0.0385427
\(926\) 26.7779 0.879975
\(927\) −10.3154 −0.338802
\(928\) 1.00000 0.0328266
\(929\) −52.1329 −1.71042 −0.855212 0.518279i \(-0.826573\pi\)
−0.855212 + 0.518279i \(0.826573\pi\)
\(930\) −24.2992 −0.796803
\(931\) 13.5021 0.442512
\(932\) −20.6365 −0.675970
\(933\) −30.3066 −0.992195
\(934\) −4.74293 −0.155193
\(935\) −5.84210 −0.191057
\(936\) 5.07555 0.165899
\(937\) 17.7798 0.580841 0.290421 0.956899i \(-0.406205\pi\)
0.290421 + 0.956899i \(0.406205\pi\)
\(938\) −20.8592 −0.681076
\(939\) 21.3348 0.696235
\(940\) −24.6924 −0.805376
\(941\) 1.79043 0.0583664 0.0291832 0.999574i \(-0.490709\pi\)
0.0291832 + 0.999574i \(0.490709\pi\)
\(942\) −14.8916 −0.485195
\(943\) 7.67552 0.249949
\(944\) 8.47422 0.275813
\(945\) 7.52105 0.244660
\(946\) 17.4305 0.566713
\(947\) 9.80867 0.318739 0.159369 0.987219i \(-0.449054\pi\)
0.159369 + 0.987219i \(0.449054\pi\)
\(948\) −11.3630 −0.369052
\(949\) −21.6552 −0.702958
\(950\) 0.380768 0.0123537
\(951\) 10.9052 0.353624
\(952\) −1.58221 −0.0512797
\(953\) −42.3654 −1.37235 −0.686175 0.727437i \(-0.740711\pi\)
−0.686175 + 0.727437i \(0.740711\pi\)
\(954\) −8.38154 −0.271362
\(955\) −23.8068 −0.770368
\(956\) −1.29606 −0.0419175
\(957\) 5.42976 0.175519
\(958\) 12.2155 0.394664
\(959\) −43.2567 −1.39683
\(960\) 2.26152 0.0729904
\(961\) 84.4468 2.72409
\(962\) 51.9652 1.67542
\(963\) 13.5989 0.438219
\(964\) −17.9590 −0.578420
\(965\) 15.8970 0.511742
\(966\) −3.32565 −0.107001
\(967\) −33.3307 −1.07184 −0.535922 0.844267i \(-0.680036\pi\)
−0.535922 + 0.844267i \(0.680036\pi\)
\(968\) 18.4823 0.594043
\(969\) 1.58221 0.0508279
\(970\) −28.9737 −0.930289
\(971\) −58.0574 −1.86315 −0.931575 0.363548i \(-0.881565\pi\)
−0.931575 + 0.363548i \(0.881565\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 35.1607 1.12720
\(974\) −3.51808 −0.112727
\(975\) −0.581120 −0.0186107
\(976\) 13.3343 0.426820
\(977\) −13.4850 −0.431424 −0.215712 0.976457i \(-0.569207\pi\)
−0.215712 + 0.976457i \(0.569207\pi\)
\(978\) −13.5964 −0.434764
\(979\) 81.8402 2.61563
\(980\) −9.18172 −0.293299
\(981\) 10.0411 0.320588
\(982\) 22.4101 0.715136
\(983\) 41.5855 1.32637 0.663186 0.748454i \(-0.269204\pi\)
0.663186 + 0.748454i \(0.269204\pi\)
\(984\) −7.67552 −0.244687
\(985\) −46.5442 −1.48302
\(986\) −0.475759 −0.0151512
\(987\) −36.3110 −1.15579
\(988\) 16.8795 0.537009
\(989\) −3.21017 −0.102078
\(990\) 12.2795 0.390269
\(991\) 7.79185 0.247516 0.123758 0.992312i \(-0.460505\pi\)
0.123758 + 0.992312i \(0.460505\pi\)
\(992\) −10.7446 −0.341142
\(993\) 5.41872 0.171958
\(994\) −31.6544 −1.00402
\(995\) −13.4171 −0.425351
\(996\) 5.80141 0.183825
\(997\) 13.3866 0.423958 0.211979 0.977274i \(-0.432009\pi\)
0.211979 + 0.977274i \(0.432009\pi\)
\(998\) −32.9006 −1.04145
\(999\) −10.2383 −0.323927
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bj.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bj.1.2 8 1.1 even 1 trivial