Properties

Label 4002.2.a.bi.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 24x^{6} - 3x^{5} + 194x^{4} + 39x^{3} - 607x^{2} - 104x + 600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.57534\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -2.69359 q^{5} -1.00000 q^{6} -3.87906 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -2.69359 q^{5} -1.00000 q^{6} -3.87906 q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.69359 q^{10} -6.10949 q^{11} +1.00000 q^{12} +5.79409 q^{13} +3.87906 q^{14} -2.69359 q^{15} +1.00000 q^{16} +8.21209 q^{17} -1.00000 q^{18} +4.11557 q^{19} -2.69359 q^{20} -3.87906 q^{21} +6.10949 q^{22} -1.00000 q^{23} -1.00000 q^{24} +2.25542 q^{25} -5.79409 q^{26} +1.00000 q^{27} -3.87906 q^{28} +1.00000 q^{29} +2.69359 q^{30} +0.978738 q^{31} -1.00000 q^{32} -6.10949 q^{33} -8.21209 q^{34} +10.4486 q^{35} +1.00000 q^{36} -2.93762 q^{37} -4.11557 q^{38} +5.79409 q^{39} +2.69359 q^{40} -10.0259 q^{41} +3.87906 q^{42} -4.09974 q^{43} -6.10949 q^{44} -2.69359 q^{45} +1.00000 q^{46} +6.91570 q^{47} +1.00000 q^{48} +8.04711 q^{49} -2.25542 q^{50} +8.21209 q^{51} +5.79409 q^{52} +4.37463 q^{53} -1.00000 q^{54} +16.4565 q^{55} +3.87906 q^{56} +4.11557 q^{57} -1.00000 q^{58} -6.65937 q^{59} -2.69359 q^{60} +6.57573 q^{61} -0.978738 q^{62} -3.87906 q^{63} +1.00000 q^{64} -15.6069 q^{65} +6.10949 q^{66} +9.19748 q^{67} +8.21209 q^{68} -1.00000 q^{69} -10.4486 q^{70} -11.3406 q^{71} -1.00000 q^{72} +13.1310 q^{73} +2.93762 q^{74} +2.25542 q^{75} +4.11557 q^{76} +23.6991 q^{77} -5.79409 q^{78} -10.9603 q^{79} -2.69359 q^{80} +1.00000 q^{81} +10.0259 q^{82} -2.83411 q^{83} -3.87906 q^{84} -22.1200 q^{85} +4.09974 q^{86} +1.00000 q^{87} +6.10949 q^{88} -12.6111 q^{89} +2.69359 q^{90} -22.4756 q^{91} -1.00000 q^{92} +0.978738 q^{93} -6.91570 q^{94} -11.0856 q^{95} -1.00000 q^{96} +7.30840 q^{97} -8.04711 q^{98} -6.10949 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 3 q^{5} - 8 q^{6} - 6 q^{7} - 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 3 q^{5} - 8 q^{6} - 6 q^{7} - 8 q^{8} + 8 q^{9} + 3 q^{10} - 7 q^{11} + 8 q^{12} - 3 q^{13} + 6 q^{14} - 3 q^{15} + 8 q^{16} - 12 q^{17} - 8 q^{18} - 4 q^{19} - 3 q^{20} - 6 q^{21} + 7 q^{22} - 8 q^{23} - 8 q^{24} + 13 q^{25} + 3 q^{26} + 8 q^{27} - 6 q^{28} + 8 q^{29} + 3 q^{30} - q^{31} - 8 q^{32} - 7 q^{33} + 12 q^{34} - 6 q^{35} + 8 q^{36} - 11 q^{37} + 4 q^{38} - 3 q^{39} + 3 q^{40} - 17 q^{41} + 6 q^{42} - 10 q^{43} - 7 q^{44} - 3 q^{45} + 8 q^{46} - 26 q^{47} + 8 q^{48} + 10 q^{49} - 13 q^{50} - 12 q^{51} - 3 q^{52} - 2 q^{53} - 8 q^{54} + q^{55} + 6 q^{56} - 4 q^{57} - 8 q^{58} - 25 q^{59} - 3 q^{60} + 3 q^{61} + q^{62} - 6 q^{63} + 8 q^{64} - 25 q^{65} + 7 q^{66} + q^{67} - 12 q^{68} - 8 q^{69} + 6 q^{70} - 27 q^{71} - 8 q^{72} + 16 q^{73} + 11 q^{74} + 13 q^{75} - 4 q^{76} - 16 q^{77} + 3 q^{78} - 6 q^{79} - 3 q^{80} + 8 q^{81} + 17 q^{82} - 44 q^{83} - 6 q^{84} - 20 q^{85} + 10 q^{86} + 8 q^{87} + 7 q^{88} - 52 q^{89} + 3 q^{90} - 18 q^{91} - 8 q^{92} - q^{93} + 26 q^{94} - 56 q^{95} - 8 q^{96} - 4 q^{97} - 10 q^{98} - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −2.69359 −1.20461 −0.602305 0.798266i \(-0.705751\pi\)
−0.602305 + 0.798266i \(0.705751\pi\)
\(6\) −1.00000 −0.408248
\(7\) −3.87906 −1.46615 −0.733074 0.680149i \(-0.761915\pi\)
−0.733074 + 0.680149i \(0.761915\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 2.69359 0.851787
\(11\) −6.10949 −1.84208 −0.921041 0.389466i \(-0.872660\pi\)
−0.921041 + 0.389466i \(0.872660\pi\)
\(12\) 1.00000 0.288675
\(13\) 5.79409 1.60699 0.803496 0.595310i \(-0.202971\pi\)
0.803496 + 0.595310i \(0.202971\pi\)
\(14\) 3.87906 1.03672
\(15\) −2.69359 −0.695481
\(16\) 1.00000 0.250000
\(17\) 8.21209 1.99172 0.995862 0.0908798i \(-0.0289679\pi\)
0.995862 + 0.0908798i \(0.0289679\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.11557 0.944175 0.472088 0.881552i \(-0.343501\pi\)
0.472088 + 0.881552i \(0.343501\pi\)
\(20\) −2.69359 −0.602305
\(21\) −3.87906 −0.846481
\(22\) 6.10949 1.30255
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 2.25542 0.451083
\(26\) −5.79409 −1.13631
\(27\) 1.00000 0.192450
\(28\) −3.87906 −0.733074
\(29\) 1.00000 0.185695
\(30\) 2.69359 0.491780
\(31\) 0.978738 0.175787 0.0878933 0.996130i \(-0.471987\pi\)
0.0878933 + 0.996130i \(0.471987\pi\)
\(32\) −1.00000 −0.176777
\(33\) −6.10949 −1.06353
\(34\) −8.21209 −1.40836
\(35\) 10.4486 1.76613
\(36\) 1.00000 0.166667
\(37\) −2.93762 −0.482942 −0.241471 0.970408i \(-0.577630\pi\)
−0.241471 + 0.970408i \(0.577630\pi\)
\(38\) −4.11557 −0.667633
\(39\) 5.79409 0.927797
\(40\) 2.69359 0.425894
\(41\) −10.0259 −1.56578 −0.782888 0.622163i \(-0.786254\pi\)
−0.782888 + 0.622163i \(0.786254\pi\)
\(42\) 3.87906 0.598552
\(43\) −4.09974 −0.625205 −0.312602 0.949884i \(-0.601201\pi\)
−0.312602 + 0.949884i \(0.601201\pi\)
\(44\) −6.10949 −0.921041
\(45\) −2.69359 −0.401536
\(46\) 1.00000 0.147442
\(47\) 6.91570 1.00876 0.504379 0.863482i \(-0.331721\pi\)
0.504379 + 0.863482i \(0.331721\pi\)
\(48\) 1.00000 0.144338
\(49\) 8.04711 1.14959
\(50\) −2.25542 −0.318964
\(51\) 8.21209 1.14992
\(52\) 5.79409 0.803496
\(53\) 4.37463 0.600902 0.300451 0.953797i \(-0.402863\pi\)
0.300451 + 0.953797i \(0.402863\pi\)
\(54\) −1.00000 −0.136083
\(55\) 16.4565 2.21899
\(56\) 3.87906 0.518361
\(57\) 4.11557 0.545120
\(58\) −1.00000 −0.131306
\(59\) −6.65937 −0.866976 −0.433488 0.901159i \(-0.642717\pi\)
−0.433488 + 0.901159i \(0.642717\pi\)
\(60\) −2.69359 −0.347741
\(61\) 6.57573 0.841936 0.420968 0.907076i \(-0.361690\pi\)
0.420968 + 0.907076i \(0.361690\pi\)
\(62\) −0.978738 −0.124300
\(63\) −3.87906 −0.488716
\(64\) 1.00000 0.125000
\(65\) −15.6069 −1.93580
\(66\) 6.10949 0.752027
\(67\) 9.19748 1.12365 0.561826 0.827256i \(-0.310099\pi\)
0.561826 + 0.827256i \(0.310099\pi\)
\(68\) 8.21209 0.995862
\(69\) −1.00000 −0.120386
\(70\) −10.4486 −1.24885
\(71\) −11.3406 −1.34588 −0.672940 0.739697i \(-0.734969\pi\)
−0.672940 + 0.739697i \(0.734969\pi\)
\(72\) −1.00000 −0.117851
\(73\) 13.1310 1.53687 0.768433 0.639930i \(-0.221037\pi\)
0.768433 + 0.639930i \(0.221037\pi\)
\(74\) 2.93762 0.341491
\(75\) 2.25542 0.260433
\(76\) 4.11557 0.472088
\(77\) 23.6991 2.70076
\(78\) −5.79409 −0.656052
\(79\) −10.9603 −1.23312 −0.616562 0.787306i \(-0.711475\pi\)
−0.616562 + 0.787306i \(0.711475\pi\)
\(80\) −2.69359 −0.301152
\(81\) 1.00000 0.111111
\(82\) 10.0259 1.10717
\(83\) −2.83411 −0.311084 −0.155542 0.987829i \(-0.549712\pi\)
−0.155542 + 0.987829i \(0.549712\pi\)
\(84\) −3.87906 −0.423240
\(85\) −22.1200 −2.39925
\(86\) 4.09974 0.442087
\(87\) 1.00000 0.107211
\(88\) 6.10949 0.651274
\(89\) −12.6111 −1.33678 −0.668389 0.743812i \(-0.733016\pi\)
−0.668389 + 0.743812i \(0.733016\pi\)
\(90\) 2.69359 0.283929
\(91\) −22.4756 −2.35609
\(92\) −1.00000 −0.104257
\(93\) 0.978738 0.101490
\(94\) −6.91570 −0.713300
\(95\) −11.0856 −1.13736
\(96\) −1.00000 −0.102062
\(97\) 7.30840 0.742056 0.371028 0.928622i \(-0.379005\pi\)
0.371028 + 0.928622i \(0.379005\pi\)
\(98\) −8.04711 −0.812881
\(99\) −6.10949 −0.614027
\(100\) 2.25542 0.225542
\(101\) −2.90175 −0.288735 −0.144368 0.989524i \(-0.546115\pi\)
−0.144368 + 0.989524i \(0.546115\pi\)
\(102\) −8.21209 −0.813118
\(103\) 0.129262 0.0127365 0.00636827 0.999980i \(-0.497973\pi\)
0.00636827 + 0.999980i \(0.497973\pi\)
\(104\) −5.79409 −0.568157
\(105\) 10.4486 1.01968
\(106\) −4.37463 −0.424902
\(107\) −9.12874 −0.882509 −0.441254 0.897382i \(-0.645466\pi\)
−0.441254 + 0.897382i \(0.645466\pi\)
\(108\) 1.00000 0.0962250
\(109\) −16.9420 −1.62275 −0.811375 0.584527i \(-0.801280\pi\)
−0.811375 + 0.584527i \(0.801280\pi\)
\(110\) −16.4565 −1.56906
\(111\) −2.93762 −0.278827
\(112\) −3.87906 −0.366537
\(113\) 7.59406 0.714389 0.357194 0.934030i \(-0.383733\pi\)
0.357194 + 0.934030i \(0.383733\pi\)
\(114\) −4.11557 −0.385458
\(115\) 2.69359 0.251178
\(116\) 1.00000 0.0928477
\(117\) 5.79409 0.535664
\(118\) 6.65937 0.613045
\(119\) −31.8552 −2.92016
\(120\) 2.69359 0.245890
\(121\) 26.3259 2.39327
\(122\) −6.57573 −0.595339
\(123\) −10.0259 −0.904001
\(124\) 0.978738 0.0878933
\(125\) 7.39278 0.661230
\(126\) 3.87906 0.345574
\(127\) −10.1474 −0.900435 −0.450218 0.892919i \(-0.648654\pi\)
−0.450218 + 0.892919i \(0.648654\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −4.09974 −0.360962
\(130\) 15.6069 1.36882
\(131\) 10.8105 0.944516 0.472258 0.881460i \(-0.343439\pi\)
0.472258 + 0.881460i \(0.343439\pi\)
\(132\) −6.10949 −0.531763
\(133\) −15.9645 −1.38430
\(134\) −9.19748 −0.794541
\(135\) −2.69359 −0.231827
\(136\) −8.21209 −0.704181
\(137\) −20.3271 −1.73666 −0.868329 0.495989i \(-0.834805\pi\)
−0.868329 + 0.495989i \(0.834805\pi\)
\(138\) 1.00000 0.0851257
\(139\) −12.0316 −1.02050 −0.510252 0.860025i \(-0.670448\pi\)
−0.510252 + 0.860025i \(0.670448\pi\)
\(140\) 10.4486 0.883067
\(141\) 6.91570 0.582407
\(142\) 11.3406 0.951681
\(143\) −35.3990 −2.96021
\(144\) 1.00000 0.0833333
\(145\) −2.69359 −0.223690
\(146\) −13.1310 −1.08673
\(147\) 8.04711 0.663715
\(148\) −2.93762 −0.241471
\(149\) 7.04400 0.577067 0.288533 0.957470i \(-0.406832\pi\)
0.288533 + 0.957470i \(0.406832\pi\)
\(150\) −2.25542 −0.184154
\(151\) 17.8844 1.45541 0.727704 0.685891i \(-0.240587\pi\)
0.727704 + 0.685891i \(0.240587\pi\)
\(152\) −4.11557 −0.333816
\(153\) 8.21209 0.663908
\(154\) −23.6991 −1.90973
\(155\) −2.63632 −0.211754
\(156\) 5.79409 0.463899
\(157\) −20.5190 −1.63759 −0.818797 0.574083i \(-0.805359\pi\)
−0.818797 + 0.574083i \(0.805359\pi\)
\(158\) 10.9603 0.871951
\(159\) 4.37463 0.346931
\(160\) 2.69359 0.212947
\(161\) 3.87906 0.305713
\(162\) −1.00000 −0.0785674
\(163\) −8.68240 −0.680058 −0.340029 0.940415i \(-0.610437\pi\)
−0.340029 + 0.940415i \(0.610437\pi\)
\(164\) −10.0259 −0.782888
\(165\) 16.4565 1.28113
\(166\) 2.83411 0.219969
\(167\) −19.6860 −1.52335 −0.761675 0.647959i \(-0.775623\pi\)
−0.761675 + 0.647959i \(0.775623\pi\)
\(168\) 3.87906 0.299276
\(169\) 20.5715 1.58242
\(170\) 22.1200 1.69652
\(171\) 4.11557 0.314725
\(172\) −4.09974 −0.312602
\(173\) −5.58200 −0.424391 −0.212196 0.977227i \(-0.568061\pi\)
−0.212196 + 0.977227i \(0.568061\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −8.74889 −0.661354
\(176\) −6.10949 −0.460521
\(177\) −6.65937 −0.500549
\(178\) 12.6111 0.945244
\(179\) −6.00438 −0.448789 −0.224394 0.974498i \(-0.572040\pi\)
−0.224394 + 0.974498i \(0.572040\pi\)
\(180\) −2.69359 −0.200768
\(181\) −18.3194 −1.36167 −0.680836 0.732436i \(-0.738383\pi\)
−0.680836 + 0.732436i \(0.738383\pi\)
\(182\) 22.4756 1.66600
\(183\) 6.57573 0.486092
\(184\) 1.00000 0.0737210
\(185\) 7.91274 0.581756
\(186\) −0.978738 −0.0717646
\(187\) −50.1717 −3.66892
\(188\) 6.91570 0.504379
\(189\) −3.87906 −0.282160
\(190\) 11.0856 0.804237
\(191\) 0.201020 0.0145453 0.00727263 0.999974i \(-0.497685\pi\)
0.00727263 + 0.999974i \(0.497685\pi\)
\(192\) 1.00000 0.0721688
\(193\) −1.07001 −0.0770210 −0.0385105 0.999258i \(-0.512261\pi\)
−0.0385105 + 0.999258i \(0.512261\pi\)
\(194\) −7.30840 −0.524713
\(195\) −15.6069 −1.11763
\(196\) 8.04711 0.574794
\(197\) 21.0590 1.50039 0.750196 0.661215i \(-0.229959\pi\)
0.750196 + 0.661215i \(0.229959\pi\)
\(198\) 6.10949 0.434183
\(199\) −21.5663 −1.52880 −0.764398 0.644745i \(-0.776963\pi\)
−0.764398 + 0.644745i \(0.776963\pi\)
\(200\) −2.25542 −0.159482
\(201\) 9.19748 0.648740
\(202\) 2.90175 0.204167
\(203\) −3.87906 −0.272257
\(204\) 8.21209 0.574961
\(205\) 27.0055 1.88615
\(206\) −0.129262 −0.00900610
\(207\) −1.00000 −0.0695048
\(208\) 5.79409 0.401748
\(209\) −25.1440 −1.73925
\(210\) −10.4486 −0.721021
\(211\) 11.9770 0.824531 0.412265 0.911064i \(-0.364738\pi\)
0.412265 + 0.911064i \(0.364738\pi\)
\(212\) 4.37463 0.300451
\(213\) −11.3406 −0.777044
\(214\) 9.12874 0.624028
\(215\) 11.0430 0.753127
\(216\) −1.00000 −0.0680414
\(217\) −3.79659 −0.257729
\(218\) 16.9420 1.14746
\(219\) 13.1310 0.887311
\(220\) 16.4565 1.10949
\(221\) 47.5816 3.20068
\(222\) 2.93762 0.197160
\(223\) −23.2718 −1.55840 −0.779198 0.626778i \(-0.784373\pi\)
−0.779198 + 0.626778i \(0.784373\pi\)
\(224\) 3.87906 0.259181
\(225\) 2.25542 0.150361
\(226\) −7.59406 −0.505149
\(227\) −9.46965 −0.628523 −0.314261 0.949336i \(-0.601757\pi\)
−0.314261 + 0.949336i \(0.601757\pi\)
\(228\) 4.11557 0.272560
\(229\) −26.2271 −1.73314 −0.866568 0.499059i \(-0.833679\pi\)
−0.866568 + 0.499059i \(0.833679\pi\)
\(230\) −2.69359 −0.177610
\(231\) 23.6991 1.55929
\(232\) −1.00000 −0.0656532
\(233\) −8.94429 −0.585960 −0.292980 0.956119i \(-0.594647\pi\)
−0.292980 + 0.956119i \(0.594647\pi\)
\(234\) −5.79409 −0.378772
\(235\) −18.6280 −1.21516
\(236\) −6.65937 −0.433488
\(237\) −10.9603 −0.711945
\(238\) 31.8552 2.06487
\(239\) 1.38468 0.0895675 0.0447838 0.998997i \(-0.485740\pi\)
0.0447838 + 0.998997i \(0.485740\pi\)
\(240\) −2.69359 −0.173870
\(241\) −15.1982 −0.979001 −0.489501 0.872003i \(-0.662821\pi\)
−0.489501 + 0.872003i \(0.662821\pi\)
\(242\) −26.3259 −1.69229
\(243\) 1.00000 0.0641500
\(244\) 6.57573 0.420968
\(245\) −21.6756 −1.38480
\(246\) 10.0259 0.639225
\(247\) 23.8460 1.51728
\(248\) −0.978738 −0.0621500
\(249\) −2.83411 −0.179604
\(250\) −7.39278 −0.467560
\(251\) −18.9951 −1.19896 −0.599480 0.800390i \(-0.704626\pi\)
−0.599480 + 0.800390i \(0.704626\pi\)
\(252\) −3.87906 −0.244358
\(253\) 6.10949 0.384101
\(254\) 10.1474 0.636704
\(255\) −22.1200 −1.38521
\(256\) 1.00000 0.0625000
\(257\) 23.8053 1.48493 0.742466 0.669884i \(-0.233656\pi\)
0.742466 + 0.669884i \(0.233656\pi\)
\(258\) 4.09974 0.255239
\(259\) 11.3952 0.708064
\(260\) −15.6069 −0.967898
\(261\) 1.00000 0.0618984
\(262\) −10.8105 −0.667874
\(263\) −16.9253 −1.04366 −0.521831 0.853049i \(-0.674751\pi\)
−0.521831 + 0.853049i \(0.674751\pi\)
\(264\) 6.10949 0.376013
\(265\) −11.7834 −0.723851
\(266\) 15.9645 0.978848
\(267\) −12.6111 −0.771789
\(268\) 9.19748 0.561826
\(269\) 5.96771 0.363858 0.181929 0.983312i \(-0.441766\pi\)
0.181929 + 0.983312i \(0.441766\pi\)
\(270\) 2.69359 0.163927
\(271\) 14.5399 0.883236 0.441618 0.897203i \(-0.354405\pi\)
0.441618 + 0.897203i \(0.354405\pi\)
\(272\) 8.21209 0.497931
\(273\) −22.4756 −1.36029
\(274\) 20.3271 1.22800
\(275\) −13.7794 −0.830932
\(276\) −1.00000 −0.0601929
\(277\) 4.13692 0.248563 0.124282 0.992247i \(-0.460337\pi\)
0.124282 + 0.992247i \(0.460337\pi\)
\(278\) 12.0316 0.721605
\(279\) 0.978738 0.0585955
\(280\) −10.4486 −0.624423
\(281\) 1.57465 0.0939358 0.0469679 0.998896i \(-0.485044\pi\)
0.0469679 + 0.998896i \(0.485044\pi\)
\(282\) −6.91570 −0.411824
\(283\) 22.2945 1.32527 0.662635 0.748942i \(-0.269438\pi\)
0.662635 + 0.748942i \(0.269438\pi\)
\(284\) −11.3406 −0.672940
\(285\) −11.0856 −0.656656
\(286\) 35.3990 2.09318
\(287\) 38.8909 2.29566
\(288\) −1.00000 −0.0589256
\(289\) 50.4384 2.96696
\(290\) 2.69359 0.158173
\(291\) 7.30840 0.428426
\(292\) 13.1310 0.768433
\(293\) 5.68927 0.332370 0.166185 0.986095i \(-0.446855\pi\)
0.166185 + 0.986095i \(0.446855\pi\)
\(294\) −8.04711 −0.469317
\(295\) 17.9376 1.04437
\(296\) 2.93762 0.170746
\(297\) −6.10949 −0.354509
\(298\) −7.04400 −0.408048
\(299\) −5.79409 −0.335081
\(300\) 2.25542 0.130216
\(301\) 15.9031 0.916642
\(302\) −17.8844 −1.02913
\(303\) −2.90175 −0.166701
\(304\) 4.11557 0.236044
\(305\) −17.7123 −1.01420
\(306\) −8.21209 −0.469454
\(307\) 5.61881 0.320682 0.160341 0.987062i \(-0.448741\pi\)
0.160341 + 0.987062i \(0.448741\pi\)
\(308\) 23.6991 1.35038
\(309\) 0.129262 0.00735345
\(310\) 2.63632 0.149733
\(311\) 3.40536 0.193100 0.0965500 0.995328i \(-0.469219\pi\)
0.0965500 + 0.995328i \(0.469219\pi\)
\(312\) −5.79409 −0.328026
\(313\) 5.65089 0.319407 0.159704 0.987165i \(-0.448946\pi\)
0.159704 + 0.987165i \(0.448946\pi\)
\(314\) 20.5190 1.15795
\(315\) 10.4486 0.588711
\(316\) −10.9603 −0.616562
\(317\) −18.3224 −1.02909 −0.514544 0.857464i \(-0.672039\pi\)
−0.514544 + 0.857464i \(0.672039\pi\)
\(318\) −4.37463 −0.245317
\(319\) −6.10949 −0.342066
\(320\) −2.69359 −0.150576
\(321\) −9.12874 −0.509517
\(322\) −3.87906 −0.216172
\(323\) 33.7974 1.88054
\(324\) 1.00000 0.0555556
\(325\) 13.0681 0.724887
\(326\) 8.68240 0.480874
\(327\) −16.9420 −0.936895
\(328\) 10.0259 0.553585
\(329\) −26.8264 −1.47899
\(330\) −16.4565 −0.905898
\(331\) 14.7009 0.808032 0.404016 0.914752i \(-0.367614\pi\)
0.404016 + 0.914752i \(0.367614\pi\)
\(332\) −2.83411 −0.155542
\(333\) −2.93762 −0.160981
\(334\) 19.6860 1.07717
\(335\) −24.7742 −1.35356
\(336\) −3.87906 −0.211620
\(337\) 5.79678 0.315771 0.157885 0.987457i \(-0.449532\pi\)
0.157885 + 0.987457i \(0.449532\pi\)
\(338\) −20.5715 −1.11894
\(339\) 7.59406 0.412453
\(340\) −22.1200 −1.19962
\(341\) −5.97960 −0.323813
\(342\) −4.11557 −0.222544
\(343\) −4.06182 −0.219318
\(344\) 4.09974 0.221043
\(345\) 2.69359 0.145018
\(346\) 5.58200 0.300090
\(347\) −8.77365 −0.470994 −0.235497 0.971875i \(-0.575672\pi\)
−0.235497 + 0.971875i \(0.575672\pi\)
\(348\) 1.00000 0.0536056
\(349\) −15.5806 −0.834010 −0.417005 0.908904i \(-0.636920\pi\)
−0.417005 + 0.908904i \(0.636920\pi\)
\(350\) 8.74889 0.467648
\(351\) 5.79409 0.309266
\(352\) 6.10949 0.325637
\(353\) −19.1232 −1.01783 −0.508914 0.860818i \(-0.669953\pi\)
−0.508914 + 0.860818i \(0.669953\pi\)
\(354\) 6.65937 0.353942
\(355\) 30.5469 1.62126
\(356\) −12.6111 −0.668389
\(357\) −31.8552 −1.68596
\(358\) 6.00438 0.317341
\(359\) 1.16936 0.0617166 0.0308583 0.999524i \(-0.490176\pi\)
0.0308583 + 0.999524i \(0.490176\pi\)
\(360\) 2.69359 0.141965
\(361\) −2.06212 −0.108533
\(362\) 18.3194 0.962848
\(363\) 26.3259 1.38175
\(364\) −22.4756 −1.17804
\(365\) −35.3695 −1.85132
\(366\) −6.57573 −0.343719
\(367\) −17.0876 −0.891965 −0.445982 0.895042i \(-0.647146\pi\)
−0.445982 + 0.895042i \(0.647146\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −10.0259 −0.521925
\(370\) −7.91274 −0.411364
\(371\) −16.9695 −0.881010
\(372\) 0.978738 0.0507452
\(373\) 24.6063 1.27407 0.637034 0.770836i \(-0.280161\pi\)
0.637034 + 0.770836i \(0.280161\pi\)
\(374\) 50.1717 2.59432
\(375\) 7.39278 0.381762
\(376\) −6.91570 −0.356650
\(377\) 5.79409 0.298411
\(378\) 3.87906 0.199517
\(379\) 21.8644 1.12310 0.561549 0.827444i \(-0.310206\pi\)
0.561549 + 0.827444i \(0.310206\pi\)
\(380\) −11.0856 −0.568681
\(381\) −10.1474 −0.519866
\(382\) −0.201020 −0.0102851
\(383\) −29.1904 −1.49156 −0.745781 0.666191i \(-0.767923\pi\)
−0.745781 + 0.666191i \(0.767923\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −63.8356 −3.25336
\(386\) 1.07001 0.0544620
\(387\) −4.09974 −0.208402
\(388\) 7.30840 0.371028
\(389\) −31.5252 −1.59839 −0.799196 0.601071i \(-0.794741\pi\)
−0.799196 + 0.601071i \(0.794741\pi\)
\(390\) 15.6069 0.790286
\(391\) −8.21209 −0.415303
\(392\) −8.04711 −0.406441
\(393\) 10.8105 0.545317
\(394\) −21.0590 −1.06094
\(395\) 29.5224 1.48543
\(396\) −6.10949 −0.307014
\(397\) −22.8284 −1.14572 −0.572862 0.819652i \(-0.694167\pi\)
−0.572862 + 0.819652i \(0.694167\pi\)
\(398\) 21.5663 1.08102
\(399\) −15.9645 −0.799226
\(400\) 2.25542 0.112771
\(401\) 5.07367 0.253367 0.126683 0.991943i \(-0.459567\pi\)
0.126683 + 0.991943i \(0.459567\pi\)
\(402\) −9.19748 −0.458729
\(403\) 5.67090 0.282488
\(404\) −2.90175 −0.144368
\(405\) −2.69359 −0.133845
\(406\) 3.87906 0.192515
\(407\) 17.9474 0.889618
\(408\) −8.21209 −0.406559
\(409\) 26.0895 1.29004 0.645021 0.764165i \(-0.276849\pi\)
0.645021 + 0.764165i \(0.276849\pi\)
\(410\) −27.0055 −1.33371
\(411\) −20.3271 −1.00266
\(412\) 0.129262 0.00636827
\(413\) 25.8321 1.27111
\(414\) 1.00000 0.0491473
\(415\) 7.63392 0.374734
\(416\) −5.79409 −0.284079
\(417\) −12.0316 −0.589188
\(418\) 25.1440 1.22983
\(419\) 25.1650 1.22939 0.614696 0.788764i \(-0.289279\pi\)
0.614696 + 0.788764i \(0.289279\pi\)
\(420\) 10.4486 0.509839
\(421\) 37.1329 1.80974 0.904872 0.425683i \(-0.139966\pi\)
0.904872 + 0.425683i \(0.139966\pi\)
\(422\) −11.9770 −0.583031
\(423\) 6.91570 0.336253
\(424\) −4.37463 −0.212451
\(425\) 18.5217 0.898433
\(426\) 11.3406 0.549453
\(427\) −25.5077 −1.23440
\(428\) −9.12874 −0.441254
\(429\) −35.3990 −1.70908
\(430\) −11.0430 −0.532541
\(431\) −16.2673 −0.783566 −0.391783 0.920058i \(-0.628142\pi\)
−0.391783 + 0.920058i \(0.628142\pi\)
\(432\) 1.00000 0.0481125
\(433\) −36.4818 −1.75320 −0.876601 0.481219i \(-0.840194\pi\)
−0.876601 + 0.481219i \(0.840194\pi\)
\(434\) 3.79659 0.182242
\(435\) −2.69359 −0.129148
\(436\) −16.9420 −0.811375
\(437\) −4.11557 −0.196874
\(438\) −13.1310 −0.627423
\(439\) 3.36332 0.160523 0.0802613 0.996774i \(-0.474425\pi\)
0.0802613 + 0.996774i \(0.474425\pi\)
\(440\) −16.4565 −0.784531
\(441\) 8.04711 0.383196
\(442\) −47.5816 −2.26322
\(443\) −21.1581 −1.00525 −0.502625 0.864504i \(-0.667632\pi\)
−0.502625 + 0.864504i \(0.667632\pi\)
\(444\) −2.93762 −0.139413
\(445\) 33.9692 1.61029
\(446\) 23.2718 1.10195
\(447\) 7.04400 0.333170
\(448\) −3.87906 −0.183268
\(449\) −0.616312 −0.0290855 −0.0145428 0.999894i \(-0.504629\pi\)
−0.0145428 + 0.999894i \(0.504629\pi\)
\(450\) −2.25542 −0.106321
\(451\) 61.2529 2.88429
\(452\) 7.59406 0.357194
\(453\) 17.8844 0.840281
\(454\) 9.46965 0.444433
\(455\) 60.5401 2.83816
\(456\) −4.11557 −0.192729
\(457\) −0.171829 −0.00803781 −0.00401891 0.999992i \(-0.501279\pi\)
−0.00401891 + 0.999992i \(0.501279\pi\)
\(458\) 26.2271 1.22551
\(459\) 8.21209 0.383307
\(460\) 2.69359 0.125589
\(461\) −23.8342 −1.11007 −0.555034 0.831828i \(-0.687295\pi\)
−0.555034 + 0.831828i \(0.687295\pi\)
\(462\) −23.6991 −1.10258
\(463\) 14.1466 0.657446 0.328723 0.944426i \(-0.393382\pi\)
0.328723 + 0.944426i \(0.393382\pi\)
\(464\) 1.00000 0.0464238
\(465\) −2.63632 −0.122256
\(466\) 8.94429 0.414336
\(467\) 7.98594 0.369545 0.184773 0.982781i \(-0.440845\pi\)
0.184773 + 0.982781i \(0.440845\pi\)
\(468\) 5.79409 0.267832
\(469\) −35.6776 −1.64744
\(470\) 18.6280 0.859247
\(471\) −20.5190 −0.945466
\(472\) 6.65937 0.306522
\(473\) 25.0474 1.15168
\(474\) 10.9603 0.503421
\(475\) 9.28231 0.425902
\(476\) −31.8552 −1.46008
\(477\) 4.37463 0.200301
\(478\) −1.38468 −0.0633338
\(479\) 1.84873 0.0844706 0.0422353 0.999108i \(-0.486552\pi\)
0.0422353 + 0.999108i \(0.486552\pi\)
\(480\) 2.69359 0.122945
\(481\) −17.0208 −0.776083
\(482\) 15.1982 0.692258
\(483\) 3.87906 0.176503
\(484\) 26.3259 1.19663
\(485\) −19.6858 −0.893887
\(486\) −1.00000 −0.0453609
\(487\) −16.2702 −0.737274 −0.368637 0.929573i \(-0.620175\pi\)
−0.368637 + 0.929573i \(0.620175\pi\)
\(488\) −6.57573 −0.297669
\(489\) −8.68240 −0.392632
\(490\) 21.6756 0.979204
\(491\) 20.0640 0.905476 0.452738 0.891643i \(-0.350447\pi\)
0.452738 + 0.891643i \(0.350447\pi\)
\(492\) −10.0259 −0.452000
\(493\) 8.21209 0.369854
\(494\) −23.8460 −1.07288
\(495\) 16.4565 0.739663
\(496\) 0.978738 0.0439467
\(497\) 43.9908 1.97326
\(498\) 2.83411 0.126999
\(499\) 19.8251 0.887494 0.443747 0.896152i \(-0.353649\pi\)
0.443747 + 0.896152i \(0.353649\pi\)
\(500\) 7.39278 0.330615
\(501\) −19.6860 −0.879507
\(502\) 18.9951 0.847792
\(503\) −17.9815 −0.801757 −0.400879 0.916131i \(-0.631295\pi\)
−0.400879 + 0.916131i \(0.631295\pi\)
\(504\) 3.87906 0.172787
\(505\) 7.81613 0.347813
\(506\) −6.10949 −0.271600
\(507\) 20.5715 0.913612
\(508\) −10.1474 −0.450218
\(509\) −26.2941 −1.16546 −0.582732 0.812665i \(-0.698016\pi\)
−0.582732 + 0.812665i \(0.698016\pi\)
\(510\) 22.1200 0.979489
\(511\) −50.9359 −2.25327
\(512\) −1.00000 −0.0441942
\(513\) 4.11557 0.181707
\(514\) −23.8053 −1.05001
\(515\) −0.348178 −0.0153426
\(516\) −4.09974 −0.180481
\(517\) −42.2514 −1.85821
\(518\) −11.3952 −0.500677
\(519\) −5.58200 −0.245022
\(520\) 15.6069 0.684408
\(521\) −9.00336 −0.394444 −0.197222 0.980359i \(-0.563192\pi\)
−0.197222 + 0.980359i \(0.563192\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 10.7877 0.471713 0.235857 0.971788i \(-0.424210\pi\)
0.235857 + 0.971788i \(0.424210\pi\)
\(524\) 10.8105 0.472258
\(525\) −8.74889 −0.381833
\(526\) 16.9253 0.737980
\(527\) 8.03749 0.350118
\(528\) −6.10949 −0.265882
\(529\) 1.00000 0.0434783
\(530\) 11.7834 0.511840
\(531\) −6.65937 −0.288992
\(532\) −15.9645 −0.692150
\(533\) −58.0907 −2.51619
\(534\) 12.6111 0.545737
\(535\) 24.5891 1.06308
\(536\) −9.19748 −0.397271
\(537\) −6.00438 −0.259108
\(538\) −5.96771 −0.257286
\(539\) −49.1638 −2.11764
\(540\) −2.69359 −0.115914
\(541\) 0.355319 0.0152764 0.00763819 0.999971i \(-0.497569\pi\)
0.00763819 + 0.999971i \(0.497569\pi\)
\(542\) −14.5399 −0.624542
\(543\) −18.3194 −0.786162
\(544\) −8.21209 −0.352090
\(545\) 45.6348 1.95478
\(546\) 22.4756 0.961868
\(547\) −22.3481 −0.955534 −0.477767 0.878487i \(-0.658554\pi\)
−0.477767 + 0.878487i \(0.658554\pi\)
\(548\) −20.3271 −0.868329
\(549\) 6.57573 0.280645
\(550\) 13.7794 0.587558
\(551\) 4.11557 0.175329
\(552\) 1.00000 0.0425628
\(553\) 42.5155 1.80794
\(554\) −4.13692 −0.175761
\(555\) 7.91274 0.335877
\(556\) −12.0316 −0.510252
\(557\) 31.1040 1.31792 0.658959 0.752179i \(-0.270997\pi\)
0.658959 + 0.752179i \(0.270997\pi\)
\(558\) −0.978738 −0.0414333
\(559\) −23.7543 −1.00470
\(560\) 10.4486 0.441534
\(561\) −50.1717 −2.11825
\(562\) −1.57465 −0.0664226
\(563\) 15.0566 0.634560 0.317280 0.948332i \(-0.397230\pi\)
0.317280 + 0.948332i \(0.397230\pi\)
\(564\) 6.91570 0.291203
\(565\) −20.4553 −0.860559
\(566\) −22.2945 −0.937108
\(567\) −3.87906 −0.162905
\(568\) 11.3406 0.475841
\(569\) 7.40783 0.310553 0.155276 0.987871i \(-0.450373\pi\)
0.155276 + 0.987871i \(0.450373\pi\)
\(570\) 11.0856 0.464326
\(571\) −32.5460 −1.36201 −0.681004 0.732280i \(-0.738456\pi\)
−0.681004 + 0.732280i \(0.738456\pi\)
\(572\) −35.3990 −1.48011
\(573\) 0.201020 0.00839772
\(574\) −38.8909 −1.62327
\(575\) −2.25542 −0.0940573
\(576\) 1.00000 0.0416667
\(577\) 21.5402 0.896732 0.448366 0.893850i \(-0.352006\pi\)
0.448366 + 0.893850i \(0.352006\pi\)
\(578\) −50.4384 −2.09796
\(579\) −1.07001 −0.0444681
\(580\) −2.69359 −0.111845
\(581\) 10.9937 0.456094
\(582\) −7.30840 −0.302943
\(583\) −26.7268 −1.10691
\(584\) −13.1310 −0.543364
\(585\) −15.6069 −0.645266
\(586\) −5.68927 −0.235021
\(587\) 0.670750 0.0276848 0.0138424 0.999904i \(-0.495594\pi\)
0.0138424 + 0.999904i \(0.495594\pi\)
\(588\) 8.04711 0.331857
\(589\) 4.02806 0.165973
\(590\) −17.9376 −0.738479
\(591\) 21.0590 0.866252
\(592\) −2.93762 −0.120735
\(593\) 34.9286 1.43434 0.717172 0.696896i \(-0.245436\pi\)
0.717172 + 0.696896i \(0.245436\pi\)
\(594\) 6.10949 0.250676
\(595\) 85.8047 3.51765
\(596\) 7.04400 0.288533
\(597\) −21.5663 −0.882650
\(598\) 5.79409 0.236938
\(599\) −25.7392 −1.05168 −0.525838 0.850585i \(-0.676248\pi\)
−0.525838 + 0.850585i \(0.676248\pi\)
\(600\) −2.25542 −0.0920769
\(601\) −1.08614 −0.0443046 −0.0221523 0.999755i \(-0.507052\pi\)
−0.0221523 + 0.999755i \(0.507052\pi\)
\(602\) −15.9031 −0.648164
\(603\) 9.19748 0.374550
\(604\) 17.8844 0.727704
\(605\) −70.9112 −2.88295
\(606\) 2.90175 0.117876
\(607\) 13.8535 0.562298 0.281149 0.959664i \(-0.409285\pi\)
0.281149 + 0.959664i \(0.409285\pi\)
\(608\) −4.11557 −0.166908
\(609\) −3.87906 −0.157187
\(610\) 17.7123 0.717150
\(611\) 40.0702 1.62107
\(612\) 8.21209 0.331954
\(613\) −12.6971 −0.512830 −0.256415 0.966567i \(-0.582541\pi\)
−0.256415 + 0.966567i \(0.582541\pi\)
\(614\) −5.61881 −0.226757
\(615\) 27.0055 1.08897
\(616\) −23.6991 −0.954864
\(617\) −14.2698 −0.574480 −0.287240 0.957859i \(-0.592738\pi\)
−0.287240 + 0.957859i \(0.592738\pi\)
\(618\) −0.129262 −0.00519967
\(619\) 13.9787 0.561853 0.280926 0.959729i \(-0.409358\pi\)
0.280926 + 0.959729i \(0.409358\pi\)
\(620\) −2.63632 −0.105877
\(621\) −1.00000 −0.0401286
\(622\) −3.40536 −0.136542
\(623\) 48.9194 1.95991
\(624\) 5.79409 0.231949
\(625\) −31.1902 −1.24761
\(626\) −5.65089 −0.225855
\(627\) −25.1440 −1.00416
\(628\) −20.5190 −0.818797
\(629\) −24.1240 −0.961886
\(630\) −10.4486 −0.416282
\(631\) 3.72145 0.148149 0.0740743 0.997253i \(-0.476400\pi\)
0.0740743 + 0.997253i \(0.476400\pi\)
\(632\) 10.9603 0.435975
\(633\) 11.9770 0.476043
\(634\) 18.3224 0.727675
\(635\) 27.3329 1.08467
\(636\) 4.37463 0.173465
\(637\) 46.6257 1.84738
\(638\) 6.10949 0.241877
\(639\) −11.3406 −0.448627
\(640\) 2.69359 0.106473
\(641\) 14.6050 0.576864 0.288432 0.957500i \(-0.406866\pi\)
0.288432 + 0.957500i \(0.406866\pi\)
\(642\) 9.12874 0.360283
\(643\) 24.8412 0.979640 0.489820 0.871824i \(-0.337063\pi\)
0.489820 + 0.871824i \(0.337063\pi\)
\(644\) 3.87906 0.152856
\(645\) 11.0430 0.434818
\(646\) −33.7974 −1.32974
\(647\) −19.9968 −0.786155 −0.393078 0.919505i \(-0.628590\pi\)
−0.393078 + 0.919505i \(0.628590\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 40.6854 1.59704
\(650\) −13.0681 −0.512572
\(651\) −3.79659 −0.148800
\(652\) −8.68240 −0.340029
\(653\) 3.47528 0.135998 0.0679991 0.997685i \(-0.478339\pi\)
0.0679991 + 0.997685i \(0.478339\pi\)
\(654\) 16.9420 0.662485
\(655\) −29.1190 −1.13777
\(656\) −10.0259 −0.391444
\(657\) 13.1310 0.512289
\(658\) 26.8264 1.04580
\(659\) −9.64628 −0.375766 −0.187883 0.982191i \(-0.560163\pi\)
−0.187883 + 0.982191i \(0.560163\pi\)
\(660\) 16.4565 0.640567
\(661\) 10.1012 0.392890 0.196445 0.980515i \(-0.437060\pi\)
0.196445 + 0.980515i \(0.437060\pi\)
\(662\) −14.7009 −0.571365
\(663\) 47.5816 1.84792
\(664\) 2.83411 0.109985
\(665\) 43.0019 1.66754
\(666\) 2.93762 0.113830
\(667\) −1.00000 −0.0387202
\(668\) −19.6860 −0.761675
\(669\) −23.2718 −0.899740
\(670\) 24.7742 0.957112
\(671\) −40.1744 −1.55092
\(672\) 3.87906 0.149638
\(673\) −43.3794 −1.67215 −0.836076 0.548613i \(-0.815156\pi\)
−0.836076 + 0.548613i \(0.815156\pi\)
\(674\) −5.79678 −0.223284
\(675\) 2.25542 0.0868110
\(676\) 20.5715 0.791211
\(677\) 23.7539 0.912937 0.456469 0.889739i \(-0.349114\pi\)
0.456469 + 0.889739i \(0.349114\pi\)
\(678\) −7.59406 −0.291648
\(679\) −28.3497 −1.08796
\(680\) 22.1200 0.848262
\(681\) −9.46965 −0.362878
\(682\) 5.97960 0.228971
\(683\) 26.6592 1.02009 0.510043 0.860149i \(-0.329629\pi\)
0.510043 + 0.860149i \(0.329629\pi\)
\(684\) 4.11557 0.157363
\(685\) 54.7527 2.09199
\(686\) 4.06182 0.155081
\(687\) −26.2271 −1.00063
\(688\) −4.09974 −0.156301
\(689\) 25.3470 0.965644
\(690\) −2.69359 −0.102543
\(691\) 8.93840 0.340033 0.170016 0.985441i \(-0.445618\pi\)
0.170016 + 0.985441i \(0.445618\pi\)
\(692\) −5.58200 −0.212196
\(693\) 23.6991 0.900255
\(694\) 8.77365 0.333043
\(695\) 32.4081 1.22931
\(696\) −1.00000 −0.0379049
\(697\) −82.3332 −3.11859
\(698\) 15.5806 0.589734
\(699\) −8.94429 −0.338304
\(700\) −8.74889 −0.330677
\(701\) −46.8814 −1.77069 −0.885344 0.464937i \(-0.846077\pi\)
−0.885344 + 0.464937i \(0.846077\pi\)
\(702\) −5.79409 −0.218684
\(703\) −12.0900 −0.455982
\(704\) −6.10949 −0.230260
\(705\) −18.6280 −0.701572
\(706\) 19.1232 0.719713
\(707\) 11.2561 0.423328
\(708\) −6.65937 −0.250275
\(709\) −29.5638 −1.11029 −0.555147 0.831752i \(-0.687338\pi\)
−0.555147 + 0.831752i \(0.687338\pi\)
\(710\) −30.5469 −1.14640
\(711\) −10.9603 −0.411042
\(712\) 12.6111 0.472622
\(713\) −0.978738 −0.0366540
\(714\) 31.8552 1.19215
\(715\) 95.3502 3.56590
\(716\) −6.00438 −0.224394
\(717\) 1.38468 0.0517118
\(718\) −1.16936 −0.0436402
\(719\) 10.6018 0.395380 0.197690 0.980265i \(-0.436656\pi\)
0.197690 + 0.980265i \(0.436656\pi\)
\(720\) −2.69359 −0.100384
\(721\) −0.501415 −0.0186737
\(722\) 2.06212 0.0767443
\(723\) −15.1982 −0.565227
\(724\) −18.3194 −0.680836
\(725\) 2.25542 0.0837640
\(726\) −26.3259 −0.977047
\(727\) −34.9434 −1.29598 −0.647990 0.761649i \(-0.724390\pi\)
−0.647990 + 0.761649i \(0.724390\pi\)
\(728\) 22.4756 0.833002
\(729\) 1.00000 0.0370370
\(730\) 35.3695 1.30908
\(731\) −33.6674 −1.24524
\(732\) 6.57573 0.243046
\(733\) −42.0432 −1.55290 −0.776451 0.630177i \(-0.782982\pi\)
−0.776451 + 0.630177i \(0.782982\pi\)
\(734\) 17.0876 0.630714
\(735\) −21.6756 −0.799517
\(736\) 1.00000 0.0368605
\(737\) −56.1920 −2.06986
\(738\) 10.0259 0.369057
\(739\) −31.4012 −1.15511 −0.577556 0.816351i \(-0.695994\pi\)
−0.577556 + 0.816351i \(0.695994\pi\)
\(740\) 7.91274 0.290878
\(741\) 23.8460 0.876003
\(742\) 16.9695 0.622968
\(743\) 3.55239 0.130325 0.0651624 0.997875i \(-0.479243\pi\)
0.0651624 + 0.997875i \(0.479243\pi\)
\(744\) −0.978738 −0.0358823
\(745\) −18.9736 −0.695140
\(746\) −24.6063 −0.900902
\(747\) −2.83411 −0.103695
\(748\) −50.1717 −1.83446
\(749\) 35.4110 1.29389
\(750\) −7.39278 −0.269946
\(751\) −22.3675 −0.816203 −0.408101 0.912937i \(-0.633809\pi\)
−0.408101 + 0.912937i \(0.633809\pi\)
\(752\) 6.91570 0.252189
\(753\) −18.9951 −0.692219
\(754\) −5.79409 −0.211008
\(755\) −48.1731 −1.75320
\(756\) −3.87906 −0.141080
\(757\) 11.3877 0.413894 0.206947 0.978352i \(-0.433647\pi\)
0.206947 + 0.978352i \(0.433647\pi\)
\(758\) −21.8644 −0.794150
\(759\) 6.10949 0.221761
\(760\) 11.0856 0.402118
\(761\) −25.9942 −0.942290 −0.471145 0.882056i \(-0.656159\pi\)
−0.471145 + 0.882056i \(0.656159\pi\)
\(762\) 10.1474 0.367601
\(763\) 65.7190 2.37919
\(764\) 0.201020 0.00727263
\(765\) −22.1200 −0.799750
\(766\) 29.1904 1.05469
\(767\) −38.5850 −1.39322
\(768\) 1.00000 0.0360844
\(769\) −5.74922 −0.207322 −0.103661 0.994613i \(-0.533056\pi\)
−0.103661 + 0.994613i \(0.533056\pi\)
\(770\) 63.8356 2.30048
\(771\) 23.8053 0.857326
\(772\) −1.07001 −0.0385105
\(773\) 23.9262 0.860564 0.430282 0.902694i \(-0.358414\pi\)
0.430282 + 0.902694i \(0.358414\pi\)
\(774\) 4.09974 0.147362
\(775\) 2.20746 0.0792944
\(776\) −7.30840 −0.262356
\(777\) 11.3952 0.408801
\(778\) 31.5252 1.13023
\(779\) −41.2621 −1.47837
\(780\) −15.6069 −0.558816
\(781\) 69.2853 2.47922
\(782\) 8.21209 0.293664
\(783\) 1.00000 0.0357371
\(784\) 8.04711 0.287397
\(785\) 55.2697 1.97266
\(786\) −10.8105 −0.385597
\(787\) −19.3170 −0.688577 −0.344288 0.938864i \(-0.611880\pi\)
−0.344288 + 0.938864i \(0.611880\pi\)
\(788\) 21.0590 0.750196
\(789\) −16.9253 −0.602558
\(790\) −29.5224 −1.05036
\(791\) −29.4578 −1.04740
\(792\) 6.10949 0.217091
\(793\) 38.1004 1.35298
\(794\) 22.8284 0.810149
\(795\) −11.7834 −0.417916
\(796\) −21.5663 −0.764398
\(797\) 47.9515 1.69853 0.849264 0.527968i \(-0.177046\pi\)
0.849264 + 0.527968i \(0.177046\pi\)
\(798\) 15.9645 0.565138
\(799\) 56.7923 2.00917
\(800\) −2.25542 −0.0797410
\(801\) −12.6111 −0.445592
\(802\) −5.07367 −0.179157
\(803\) −80.2238 −2.83103
\(804\) 9.19748 0.324370
\(805\) −10.4486 −0.368264
\(806\) −5.67090 −0.199749
\(807\) 5.96771 0.210073
\(808\) 2.90175 0.102083
\(809\) 25.5392 0.897910 0.448955 0.893554i \(-0.351796\pi\)
0.448955 + 0.893554i \(0.351796\pi\)
\(810\) 2.69359 0.0946430
\(811\) −20.6947 −0.726688 −0.363344 0.931655i \(-0.618365\pi\)
−0.363344 + 0.931655i \(0.618365\pi\)
\(812\) −3.87906 −0.136128
\(813\) 14.5399 0.509936
\(814\) −17.9474 −0.629055
\(815\) 23.3868 0.819204
\(816\) 8.21209 0.287481
\(817\) −16.8728 −0.590303
\(818\) −26.0895 −0.912198
\(819\) −22.4756 −0.785362
\(820\) 27.0055 0.943074
\(821\) 41.2737 1.44046 0.720232 0.693734i \(-0.244035\pi\)
0.720232 + 0.693734i \(0.244035\pi\)
\(822\) 20.3271 0.708987
\(823\) 29.3465 1.02296 0.511478 0.859297i \(-0.329098\pi\)
0.511478 + 0.859297i \(0.329098\pi\)
\(824\) −0.129262 −0.00450305
\(825\) −13.7794 −0.479739
\(826\) −25.8321 −0.898814
\(827\) −1.95279 −0.0679051 −0.0339526 0.999423i \(-0.510810\pi\)
−0.0339526 + 0.999423i \(0.510810\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −33.8615 −1.17606 −0.588030 0.808839i \(-0.700096\pi\)
−0.588030 + 0.808839i \(0.700096\pi\)
\(830\) −7.63392 −0.264977
\(831\) 4.13692 0.143508
\(832\) 5.79409 0.200874
\(833\) 66.0836 2.28966
\(834\) 12.0316 0.416619
\(835\) 53.0260 1.83504
\(836\) −25.1440 −0.869624
\(837\) 0.978738 0.0338301
\(838\) −25.1650 −0.869311
\(839\) −44.8191 −1.54733 −0.773664 0.633596i \(-0.781578\pi\)
−0.773664 + 0.633596i \(0.781578\pi\)
\(840\) −10.4486 −0.360511
\(841\) 1.00000 0.0344828
\(842\) −37.1329 −1.27968
\(843\) 1.57465 0.0542339
\(844\) 11.9770 0.412265
\(845\) −55.4111 −1.90620
\(846\) −6.91570 −0.237767
\(847\) −102.120 −3.50888
\(848\) 4.37463 0.150225
\(849\) 22.2945 0.765146
\(850\) −18.5217 −0.635288
\(851\) 2.93762 0.100700
\(852\) −11.3406 −0.388522
\(853\) 3.24373 0.111063 0.0555316 0.998457i \(-0.482315\pi\)
0.0555316 + 0.998457i \(0.482315\pi\)
\(854\) 25.5077 0.872854
\(855\) −11.0856 −0.379121
\(856\) 9.12874 0.312014
\(857\) −20.4104 −0.697207 −0.348603 0.937270i \(-0.613344\pi\)
−0.348603 + 0.937270i \(0.613344\pi\)
\(858\) 35.3990 1.20850
\(859\) 18.7964 0.641324 0.320662 0.947194i \(-0.396095\pi\)
0.320662 + 0.947194i \(0.396095\pi\)
\(860\) 11.0430 0.376564
\(861\) 38.8909 1.32540
\(862\) 16.2673 0.554065
\(863\) −14.5564 −0.495505 −0.247752 0.968823i \(-0.579692\pi\)
−0.247752 + 0.968823i \(0.579692\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 15.0356 0.511226
\(866\) 36.4818 1.23970
\(867\) 50.4384 1.71298
\(868\) −3.79659 −0.128865
\(869\) 66.9616 2.27152
\(870\) 2.69359 0.0913212
\(871\) 53.2910 1.80570
\(872\) 16.9420 0.573728
\(873\) 7.30840 0.247352
\(874\) 4.11557 0.139211
\(875\) −28.6770 −0.969461
\(876\) 13.1310 0.443655
\(877\) −16.1896 −0.546684 −0.273342 0.961917i \(-0.588129\pi\)
−0.273342 + 0.961917i \(0.588129\pi\)
\(878\) −3.36332 −0.113507
\(879\) 5.68927 0.191894
\(880\) 16.4565 0.554747
\(881\) −13.2295 −0.445712 −0.222856 0.974851i \(-0.571538\pi\)
−0.222856 + 0.974851i \(0.571538\pi\)
\(882\) −8.04711 −0.270960
\(883\) −5.94164 −0.199952 −0.0999760 0.994990i \(-0.531877\pi\)
−0.0999760 + 0.994990i \(0.531877\pi\)
\(884\) 47.5816 1.60034
\(885\) 17.9376 0.602966
\(886\) 21.1581 0.710819
\(887\) 47.6316 1.59931 0.799656 0.600458i \(-0.205015\pi\)
0.799656 + 0.600458i \(0.205015\pi\)
\(888\) 2.93762 0.0985801
\(889\) 39.3623 1.32017
\(890\) −33.9692 −1.13865
\(891\) −6.10949 −0.204676
\(892\) −23.2718 −0.779198
\(893\) 28.4620 0.952444
\(894\) −7.04400 −0.235586
\(895\) 16.1733 0.540615
\(896\) 3.87906 0.129590
\(897\) −5.79409 −0.193459
\(898\) 0.616312 0.0205666
\(899\) 0.978738 0.0326428
\(900\) 2.25542 0.0751805
\(901\) 35.9248 1.19683
\(902\) −61.2529 −2.03950
\(903\) 15.9031 0.529224
\(904\) −7.59406 −0.252575
\(905\) 49.3450 1.64028
\(906\) −17.8844 −0.594168
\(907\) −52.9568 −1.75840 −0.879200 0.476453i \(-0.841922\pi\)
−0.879200 + 0.476453i \(0.841922\pi\)
\(908\) −9.46965 −0.314261
\(909\) −2.90175 −0.0962451
\(910\) −60.5401 −2.00688
\(911\) 37.1947 1.23232 0.616158 0.787623i \(-0.288688\pi\)
0.616158 + 0.787623i \(0.288688\pi\)
\(912\) 4.11557 0.136280
\(913\) 17.3150 0.573042
\(914\) 0.171829 0.00568359
\(915\) −17.7123 −0.585551
\(916\) −26.2271 −0.866568
\(917\) −41.9345 −1.38480
\(918\) −8.21209 −0.271039
\(919\) −19.5776 −0.645807 −0.322903 0.946432i \(-0.604659\pi\)
−0.322903 + 0.946432i \(0.604659\pi\)
\(920\) −2.69359 −0.0888050
\(921\) 5.61881 0.185146
\(922\) 23.8342 0.784936
\(923\) −65.7084 −2.16282
\(924\) 23.6991 0.779643
\(925\) −6.62555 −0.217847
\(926\) −14.1466 −0.464885
\(927\) 0.129262 0.00424552
\(928\) −1.00000 −0.0328266
\(929\) −20.1892 −0.662387 −0.331194 0.943563i \(-0.607451\pi\)
−0.331194 + 0.943563i \(0.607451\pi\)
\(930\) 2.63632 0.0864483
\(931\) 33.1184 1.08541
\(932\) −8.94429 −0.292980
\(933\) 3.40536 0.111486
\(934\) −7.98594 −0.261308
\(935\) 135.142 4.41961
\(936\) −5.79409 −0.189386
\(937\) −26.2446 −0.857373 −0.428686 0.903453i \(-0.641023\pi\)
−0.428686 + 0.903453i \(0.641023\pi\)
\(938\) 35.6776 1.16491
\(939\) 5.65089 0.184410
\(940\) −18.6280 −0.607579
\(941\) −38.3900 −1.25148 −0.625740 0.780032i \(-0.715203\pi\)
−0.625740 + 0.780032i \(0.715203\pi\)
\(942\) 20.5190 0.668545
\(943\) 10.0259 0.326487
\(944\) −6.65937 −0.216744
\(945\) 10.4486 0.339893
\(946\) −25.0474 −0.814360
\(947\) 44.9550 1.46084 0.730420 0.682998i \(-0.239324\pi\)
0.730420 + 0.682998i \(0.239324\pi\)
\(948\) −10.9603 −0.355972
\(949\) 76.0822 2.46973
\(950\) −9.28231 −0.301158
\(951\) −18.3224 −0.594144
\(952\) 31.8552 1.03243
\(953\) 6.40871 0.207598 0.103799 0.994598i \(-0.466900\pi\)
0.103799 + 0.994598i \(0.466900\pi\)
\(954\) −4.37463 −0.141634
\(955\) −0.541464 −0.0175214
\(956\) 1.38468 0.0447838
\(957\) −6.10949 −0.197492
\(958\) −1.84873 −0.0597298
\(959\) 78.8499 2.54620
\(960\) −2.69359 −0.0869352
\(961\) −30.0421 −0.969099
\(962\) 17.0208 0.548774
\(963\) −9.12874 −0.294170
\(964\) −15.1982 −0.489501
\(965\) 2.88216 0.0927802
\(966\) −3.87906 −0.124807
\(967\) 55.1239 1.77266 0.886332 0.463050i \(-0.153245\pi\)
0.886332 + 0.463050i \(0.153245\pi\)
\(968\) −26.3259 −0.846147
\(969\) 33.7974 1.08573
\(970\) 19.6858 0.632073
\(971\) 50.6889 1.62668 0.813342 0.581787i \(-0.197646\pi\)
0.813342 + 0.581787i \(0.197646\pi\)
\(972\) 1.00000 0.0320750
\(973\) 46.6712 1.49621
\(974\) 16.2702 0.521331
\(975\) 13.0681 0.418514
\(976\) 6.57573 0.210484
\(977\) 57.9315 1.85339 0.926696 0.375812i \(-0.122636\pi\)
0.926696 + 0.375812i \(0.122636\pi\)
\(978\) 8.68240 0.277633
\(979\) 77.0477 2.46245
\(980\) −21.6756 −0.692402
\(981\) −16.9420 −0.540916
\(982\) −20.0640 −0.640269
\(983\) −56.4320 −1.79990 −0.899950 0.435993i \(-0.856397\pi\)
−0.899950 + 0.435993i \(0.856397\pi\)
\(984\) 10.0259 0.319613
\(985\) −56.7243 −1.80739
\(986\) −8.21209 −0.261526
\(987\) −26.8264 −0.853894
\(988\) 23.8460 0.758641
\(989\) 4.09974 0.130364
\(990\) −16.4565 −0.523021
\(991\) 49.3675 1.56821 0.784105 0.620628i \(-0.213122\pi\)
0.784105 + 0.620628i \(0.213122\pi\)
\(992\) −0.978738 −0.0310750
\(993\) 14.7009 0.466517
\(994\) −43.9908 −1.39530
\(995\) 58.0907 1.84160
\(996\) −2.83411 −0.0898021
\(997\) −39.9362 −1.26479 −0.632395 0.774646i \(-0.717928\pi\)
−0.632395 + 0.774646i \(0.717928\pi\)
\(998\) −19.8251 −0.627553
\(999\) −2.93762 −0.0929422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bi.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bi.1.2 8 1.1 even 1 trivial