Properties

Label 4002.2.a.bi.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 24x^{6} - 3x^{5} + 194x^{4} + 39x^{3} - 607x^{2} - 104x + 600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.45069\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -4.40973 q^{5} -1.00000 q^{6} -0.551242 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -4.40973 q^{5} -1.00000 q^{6} -0.551242 q^{7} -1.00000 q^{8} +1.00000 q^{9} +4.40973 q^{10} +1.47581 q^{11} +1.00000 q^{12} -2.62354 q^{13} +0.551242 q^{14} -4.40973 q^{15} +1.00000 q^{16} -1.48725 q^{17} -1.00000 q^{18} +2.46932 q^{19} -4.40973 q^{20} -0.551242 q^{21} -1.47581 q^{22} -1.00000 q^{23} -1.00000 q^{24} +14.4457 q^{25} +2.62354 q^{26} +1.00000 q^{27} -0.551242 q^{28} +1.00000 q^{29} +4.40973 q^{30} +5.87228 q^{31} -1.00000 q^{32} +1.47581 q^{33} +1.48725 q^{34} +2.43083 q^{35} +1.00000 q^{36} +4.22032 q^{37} -2.46932 q^{38} -2.62354 q^{39} +4.40973 q^{40} -0.176142 q^{41} +0.551242 q^{42} +11.2284 q^{43} +1.47581 q^{44} -4.40973 q^{45} +1.00000 q^{46} -3.46051 q^{47} +1.00000 q^{48} -6.69613 q^{49} -14.4457 q^{50} -1.48725 q^{51} -2.62354 q^{52} -3.90957 q^{53} -1.00000 q^{54} -6.50794 q^{55} +0.551242 q^{56} +2.46932 q^{57} -1.00000 q^{58} +9.14724 q^{59} -4.40973 q^{60} -11.4953 q^{61} -5.87228 q^{62} -0.551242 q^{63} +1.00000 q^{64} +11.5691 q^{65} -1.47581 q^{66} -13.9867 q^{67} -1.48725 q^{68} -1.00000 q^{69} -2.43083 q^{70} -15.0454 q^{71} -1.00000 q^{72} +6.61444 q^{73} -4.22032 q^{74} +14.4457 q^{75} +2.46932 q^{76} -0.813530 q^{77} +2.62354 q^{78} -1.53217 q^{79} -4.40973 q^{80} +1.00000 q^{81} +0.176142 q^{82} -5.66460 q^{83} -0.551242 q^{84} +6.55839 q^{85} -11.2284 q^{86} +1.00000 q^{87} -1.47581 q^{88} -6.00851 q^{89} +4.40973 q^{90} +1.44620 q^{91} -1.00000 q^{92} +5.87228 q^{93} +3.46051 q^{94} -10.8890 q^{95} -1.00000 q^{96} -10.1549 q^{97} +6.69613 q^{98} +1.47581 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 3 q^{5} - 8 q^{6} - 6 q^{7} - 8 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 3 q^{5} - 8 q^{6} - 6 q^{7} - 8 q^{8} + 8 q^{9} + 3 q^{10} - 7 q^{11} + 8 q^{12} - 3 q^{13} + 6 q^{14} - 3 q^{15} + 8 q^{16} - 12 q^{17} - 8 q^{18} - 4 q^{19} - 3 q^{20} - 6 q^{21} + 7 q^{22} - 8 q^{23} - 8 q^{24} + 13 q^{25} + 3 q^{26} + 8 q^{27} - 6 q^{28} + 8 q^{29} + 3 q^{30} - q^{31} - 8 q^{32} - 7 q^{33} + 12 q^{34} - 6 q^{35} + 8 q^{36} - 11 q^{37} + 4 q^{38} - 3 q^{39} + 3 q^{40} - 17 q^{41} + 6 q^{42} - 10 q^{43} - 7 q^{44} - 3 q^{45} + 8 q^{46} - 26 q^{47} + 8 q^{48} + 10 q^{49} - 13 q^{50} - 12 q^{51} - 3 q^{52} - 2 q^{53} - 8 q^{54} + q^{55} + 6 q^{56} - 4 q^{57} - 8 q^{58} - 25 q^{59} - 3 q^{60} + 3 q^{61} + q^{62} - 6 q^{63} + 8 q^{64} - 25 q^{65} + 7 q^{66} + q^{67} - 12 q^{68} - 8 q^{69} + 6 q^{70} - 27 q^{71} - 8 q^{72} + 16 q^{73} + 11 q^{74} + 13 q^{75} - 4 q^{76} - 16 q^{77} + 3 q^{78} - 6 q^{79} - 3 q^{80} + 8 q^{81} + 17 q^{82} - 44 q^{83} - 6 q^{84} - 20 q^{85} + 10 q^{86} + 8 q^{87} + 7 q^{88} - 52 q^{89} + 3 q^{90} - 18 q^{91} - 8 q^{92} - q^{93} + 26 q^{94} - 56 q^{95} - 8 q^{96} - 4 q^{97} - 10 q^{98} - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −4.40973 −1.97209 −0.986046 0.166476i \(-0.946761\pi\)
−0.986046 + 0.166476i \(0.946761\pi\)
\(6\) −1.00000 −0.408248
\(7\) −0.551242 −0.208350 −0.104175 0.994559i \(-0.533220\pi\)
−0.104175 + 0.994559i \(0.533220\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 4.40973 1.39448
\(11\) 1.47581 0.444975 0.222487 0.974936i \(-0.428582\pi\)
0.222487 + 0.974936i \(0.428582\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.62354 −0.727638 −0.363819 0.931470i \(-0.618527\pi\)
−0.363819 + 0.931470i \(0.618527\pi\)
\(14\) 0.551242 0.147326
\(15\) −4.40973 −1.13859
\(16\) 1.00000 0.250000
\(17\) −1.48725 −0.360712 −0.180356 0.983601i \(-0.557725\pi\)
−0.180356 + 0.983601i \(0.557725\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.46932 0.566502 0.283251 0.959046i \(-0.408587\pi\)
0.283251 + 0.959046i \(0.408587\pi\)
\(20\) −4.40973 −0.986046
\(21\) −0.551242 −0.120291
\(22\) −1.47581 −0.314645
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 14.4457 2.88914
\(26\) 2.62354 0.514518
\(27\) 1.00000 0.192450
\(28\) −0.551242 −0.104175
\(29\) 1.00000 0.185695
\(30\) 4.40973 0.805103
\(31\) 5.87228 1.05469 0.527346 0.849651i \(-0.323187\pi\)
0.527346 + 0.849651i \(0.323187\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.47581 0.256906
\(34\) 1.48725 0.255062
\(35\) 2.43083 0.410885
\(36\) 1.00000 0.166667
\(37\) 4.22032 0.693816 0.346908 0.937899i \(-0.387232\pi\)
0.346908 + 0.937899i \(0.387232\pi\)
\(38\) −2.46932 −0.400577
\(39\) −2.62354 −0.420102
\(40\) 4.40973 0.697239
\(41\) −0.176142 −0.0275088 −0.0137544 0.999905i \(-0.504378\pi\)
−0.0137544 + 0.999905i \(0.504378\pi\)
\(42\) 0.551242 0.0850584
\(43\) 11.2284 1.71231 0.856154 0.516720i \(-0.172847\pi\)
0.856154 + 0.516720i \(0.172847\pi\)
\(44\) 1.47581 0.222487
\(45\) −4.40973 −0.657364
\(46\) 1.00000 0.147442
\(47\) −3.46051 −0.504767 −0.252384 0.967627i \(-0.581215\pi\)
−0.252384 + 0.967627i \(0.581215\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.69613 −0.956590
\(50\) −14.4457 −2.04293
\(51\) −1.48725 −0.208257
\(52\) −2.62354 −0.363819
\(53\) −3.90957 −0.537020 −0.268510 0.963277i \(-0.586531\pi\)
−0.268510 + 0.963277i \(0.586531\pi\)
\(54\) −1.00000 −0.136083
\(55\) −6.50794 −0.877530
\(56\) 0.551242 0.0736628
\(57\) 2.46932 0.327070
\(58\) −1.00000 −0.131306
\(59\) 9.14724 1.19087 0.595434 0.803404i \(-0.296980\pi\)
0.595434 + 0.803404i \(0.296980\pi\)
\(60\) −4.40973 −0.569294
\(61\) −11.4953 −1.47182 −0.735910 0.677079i \(-0.763245\pi\)
−0.735910 + 0.677079i \(0.763245\pi\)
\(62\) −5.87228 −0.745780
\(63\) −0.551242 −0.0694499
\(64\) 1.00000 0.125000
\(65\) 11.5691 1.43497
\(66\) −1.47581 −0.181660
\(67\) −13.9867 −1.70874 −0.854372 0.519662i \(-0.826058\pi\)
−0.854372 + 0.519662i \(0.826058\pi\)
\(68\) −1.48725 −0.180356
\(69\) −1.00000 −0.120386
\(70\) −2.43083 −0.290539
\(71\) −15.0454 −1.78556 −0.892780 0.450494i \(-0.851248\pi\)
−0.892780 + 0.450494i \(0.851248\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.61444 0.774162 0.387081 0.922046i \(-0.373483\pi\)
0.387081 + 0.922046i \(0.373483\pi\)
\(74\) −4.22032 −0.490602
\(75\) 14.4457 1.66805
\(76\) 2.46932 0.283251
\(77\) −0.813530 −0.0927103
\(78\) 2.62354 0.297057
\(79\) −1.53217 −0.172382 −0.0861912 0.996279i \(-0.527470\pi\)
−0.0861912 + 0.996279i \(0.527470\pi\)
\(80\) −4.40973 −0.493023
\(81\) 1.00000 0.111111
\(82\) 0.176142 0.0194517
\(83\) −5.66460 −0.621771 −0.310885 0.950447i \(-0.600626\pi\)
−0.310885 + 0.950447i \(0.600626\pi\)
\(84\) −0.551242 −0.0601454
\(85\) 6.55839 0.711358
\(86\) −11.2284 −1.21079
\(87\) 1.00000 0.107211
\(88\) −1.47581 −0.157322
\(89\) −6.00851 −0.636901 −0.318451 0.947939i \(-0.603162\pi\)
−0.318451 + 0.947939i \(0.603162\pi\)
\(90\) 4.40973 0.464826
\(91\) 1.44620 0.151603
\(92\) −1.00000 −0.104257
\(93\) 5.87228 0.608927
\(94\) 3.46051 0.356924
\(95\) −10.8890 −1.11719
\(96\) −1.00000 −0.102062
\(97\) −10.1549 −1.03108 −0.515539 0.856866i \(-0.672408\pi\)
−0.515539 + 0.856866i \(0.672408\pi\)
\(98\) 6.69613 0.676412
\(99\) 1.47581 0.148325
\(100\) 14.4457 1.44457
\(101\) 12.8475 1.27837 0.639185 0.769053i \(-0.279272\pi\)
0.639185 + 0.769053i \(0.279272\pi\)
\(102\) 1.48725 0.147260
\(103\) 18.7277 1.84530 0.922649 0.385640i \(-0.126019\pi\)
0.922649 + 0.385640i \(0.126019\pi\)
\(104\) 2.62354 0.257259
\(105\) 2.43083 0.237224
\(106\) 3.90957 0.379731
\(107\) 6.71940 0.649589 0.324794 0.945785i \(-0.394705\pi\)
0.324794 + 0.945785i \(0.394705\pi\)
\(108\) 1.00000 0.0962250
\(109\) −12.5528 −1.20234 −0.601170 0.799121i \(-0.705298\pi\)
−0.601170 + 0.799121i \(0.705298\pi\)
\(110\) 6.50794 0.620508
\(111\) 4.22032 0.400575
\(112\) −0.551242 −0.0520874
\(113\) −10.8654 −1.02213 −0.511065 0.859542i \(-0.670749\pi\)
−0.511065 + 0.859542i \(0.670749\pi\)
\(114\) −2.46932 −0.231273
\(115\) 4.40973 0.411209
\(116\) 1.00000 0.0928477
\(117\) −2.62354 −0.242546
\(118\) −9.14724 −0.842071
\(119\) 0.819837 0.0751543
\(120\) 4.40973 0.402551
\(121\) −8.82197 −0.801998
\(122\) 11.4953 1.04073
\(123\) −0.176142 −0.0158822
\(124\) 5.87228 0.527346
\(125\) −41.6531 −3.72556
\(126\) 0.551242 0.0491085
\(127\) −14.9438 −1.32605 −0.663023 0.748599i \(-0.730727\pi\)
−0.663023 + 0.748599i \(0.730727\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 11.2284 0.988602
\(130\) −11.5691 −1.01468
\(131\) 13.7058 1.19748 0.598740 0.800943i \(-0.295668\pi\)
0.598740 + 0.800943i \(0.295668\pi\)
\(132\) 1.47581 0.128453
\(133\) −1.36119 −0.118030
\(134\) 13.9867 1.20826
\(135\) −4.40973 −0.379529
\(136\) 1.48725 0.127531
\(137\) 9.28159 0.792980 0.396490 0.918039i \(-0.370228\pi\)
0.396490 + 0.918039i \(0.370228\pi\)
\(138\) 1.00000 0.0851257
\(139\) 4.17985 0.354530 0.177265 0.984163i \(-0.443275\pi\)
0.177265 + 0.984163i \(0.443275\pi\)
\(140\) 2.43083 0.205442
\(141\) −3.46051 −0.291428
\(142\) 15.0454 1.26258
\(143\) −3.87185 −0.323781
\(144\) 1.00000 0.0833333
\(145\) −4.40973 −0.366208
\(146\) −6.61444 −0.547415
\(147\) −6.69613 −0.552288
\(148\) 4.22032 0.346908
\(149\) −10.7775 −0.882929 −0.441464 0.897279i \(-0.645541\pi\)
−0.441464 + 0.897279i \(0.645541\pi\)
\(150\) −14.4457 −1.17949
\(151\) 23.8315 1.93938 0.969688 0.244346i \(-0.0785732\pi\)
0.969688 + 0.244346i \(0.0785732\pi\)
\(152\) −2.46932 −0.200289
\(153\) −1.48725 −0.120237
\(154\) 0.813530 0.0655561
\(155\) −25.8951 −2.07995
\(156\) −2.62354 −0.210051
\(157\) 8.35619 0.666896 0.333448 0.942768i \(-0.391788\pi\)
0.333448 + 0.942768i \(0.391788\pi\)
\(158\) 1.53217 0.121893
\(159\) −3.90957 −0.310049
\(160\) 4.40973 0.348620
\(161\) 0.551242 0.0434439
\(162\) −1.00000 −0.0785674
\(163\) −22.1395 −1.73410 −0.867048 0.498225i \(-0.833985\pi\)
−0.867048 + 0.498225i \(0.833985\pi\)
\(164\) −0.176142 −0.0137544
\(165\) −6.50794 −0.506642
\(166\) 5.66460 0.439658
\(167\) −18.7616 −1.45182 −0.725909 0.687790i \(-0.758581\pi\)
−0.725909 + 0.687790i \(0.758581\pi\)
\(168\) 0.551242 0.0425292
\(169\) −6.11705 −0.470542
\(170\) −6.55839 −0.503006
\(171\) 2.46932 0.188834
\(172\) 11.2284 0.856154
\(173\) −11.8748 −0.902821 −0.451411 0.892316i \(-0.649079\pi\)
−0.451411 + 0.892316i \(0.649079\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −7.96308 −0.601952
\(176\) 1.47581 0.111244
\(177\) 9.14724 0.687548
\(178\) 6.00851 0.450357
\(179\) −1.33732 −0.0999559 −0.0499780 0.998750i \(-0.515915\pi\)
−0.0499780 + 0.998750i \(0.515915\pi\)
\(180\) −4.40973 −0.328682
\(181\) −24.0003 −1.78393 −0.891964 0.452107i \(-0.850672\pi\)
−0.891964 + 0.452107i \(0.850672\pi\)
\(182\) −1.44620 −0.107200
\(183\) −11.4953 −0.849756
\(184\) 1.00000 0.0737210
\(185\) −18.6105 −1.36827
\(186\) −5.87228 −0.430576
\(187\) −2.19491 −0.160508
\(188\) −3.46051 −0.252384
\(189\) −0.551242 −0.0400969
\(190\) 10.8890 0.789975
\(191\) −10.3196 −0.746697 −0.373349 0.927691i \(-0.621790\pi\)
−0.373349 + 0.927691i \(0.621790\pi\)
\(192\) 1.00000 0.0721688
\(193\) 12.6810 0.912797 0.456398 0.889776i \(-0.349139\pi\)
0.456398 + 0.889776i \(0.349139\pi\)
\(194\) 10.1549 0.729082
\(195\) 11.5691 0.828480
\(196\) −6.69613 −0.478295
\(197\) −11.2181 −0.799258 −0.399629 0.916677i \(-0.630861\pi\)
−0.399629 + 0.916677i \(0.630861\pi\)
\(198\) −1.47581 −0.104882
\(199\) 14.4889 1.02709 0.513545 0.858063i \(-0.328332\pi\)
0.513545 + 0.858063i \(0.328332\pi\)
\(200\) −14.4457 −1.02147
\(201\) −13.9867 −0.986544
\(202\) −12.8475 −0.903944
\(203\) −0.551242 −0.0386896
\(204\) −1.48725 −0.104129
\(205\) 0.776740 0.0542499
\(206\) −18.7277 −1.30482
\(207\) −1.00000 −0.0695048
\(208\) −2.62354 −0.181910
\(209\) 3.64426 0.252079
\(210\) −2.43083 −0.167743
\(211\) 21.6426 1.48994 0.744968 0.667100i \(-0.232465\pi\)
0.744968 + 0.667100i \(0.232465\pi\)
\(212\) −3.90957 −0.268510
\(213\) −15.0454 −1.03089
\(214\) −6.71940 −0.459328
\(215\) −49.5140 −3.37683
\(216\) −1.00000 −0.0680414
\(217\) −3.23704 −0.219745
\(218\) 12.5528 0.850182
\(219\) 6.61444 0.446963
\(220\) −6.50794 −0.438765
\(221\) 3.90187 0.262468
\(222\) −4.22032 −0.283249
\(223\) 1.04791 0.0701736 0.0350868 0.999384i \(-0.488829\pi\)
0.0350868 + 0.999384i \(0.488829\pi\)
\(224\) 0.551242 0.0368314
\(225\) 14.4457 0.963048
\(226\) 10.8654 0.722755
\(227\) −10.1337 −0.672595 −0.336297 0.941756i \(-0.609175\pi\)
−0.336297 + 0.941756i \(0.609175\pi\)
\(228\) 2.46932 0.163535
\(229\) −2.07214 −0.136931 −0.0684654 0.997653i \(-0.521810\pi\)
−0.0684654 + 0.997653i \(0.521810\pi\)
\(230\) −4.40973 −0.290769
\(231\) −0.813530 −0.0535263
\(232\) −1.00000 −0.0656532
\(233\) −25.9885 −1.70256 −0.851281 0.524710i \(-0.824174\pi\)
−0.851281 + 0.524710i \(0.824174\pi\)
\(234\) 2.62354 0.171506
\(235\) 15.2599 0.995447
\(236\) 9.14724 0.595434
\(237\) −1.53217 −0.0995250
\(238\) −0.819837 −0.0531421
\(239\) −3.04112 −0.196714 −0.0983569 0.995151i \(-0.531359\pi\)
−0.0983569 + 0.995151i \(0.531359\pi\)
\(240\) −4.40973 −0.284647
\(241\) 4.90079 0.315688 0.157844 0.987464i \(-0.449546\pi\)
0.157844 + 0.987464i \(0.449546\pi\)
\(242\) 8.82197 0.567098
\(243\) 1.00000 0.0641500
\(244\) −11.4953 −0.735910
\(245\) 29.5281 1.88648
\(246\) 0.176142 0.0112304
\(247\) −6.47836 −0.412208
\(248\) −5.87228 −0.372890
\(249\) −5.66460 −0.358979
\(250\) 41.6531 2.63437
\(251\) 15.5405 0.980907 0.490453 0.871467i \(-0.336831\pi\)
0.490453 + 0.871467i \(0.336831\pi\)
\(252\) −0.551242 −0.0347250
\(253\) −1.47581 −0.0927836
\(254\) 14.9438 0.937655
\(255\) 6.55839 0.410702
\(256\) 1.00000 0.0625000
\(257\) −12.4808 −0.778529 −0.389265 0.921126i \(-0.627271\pi\)
−0.389265 + 0.921126i \(0.627271\pi\)
\(258\) −11.2284 −0.699047
\(259\) −2.32642 −0.144556
\(260\) 11.5691 0.717485
\(261\) 1.00000 0.0618984
\(262\) −13.7058 −0.846746
\(263\) −24.6452 −1.51969 −0.759844 0.650105i \(-0.774725\pi\)
−0.759844 + 0.650105i \(0.774725\pi\)
\(264\) −1.47581 −0.0908300
\(265\) 17.2401 1.05905
\(266\) 1.36119 0.0834601
\(267\) −6.00851 −0.367715
\(268\) −13.9867 −0.854372
\(269\) 9.53343 0.581263 0.290632 0.956835i \(-0.406135\pi\)
0.290632 + 0.956835i \(0.406135\pi\)
\(270\) 4.40973 0.268368
\(271\) 14.8510 0.902134 0.451067 0.892490i \(-0.351044\pi\)
0.451067 + 0.892490i \(0.351044\pi\)
\(272\) −1.48725 −0.0901781
\(273\) 1.44620 0.0875282
\(274\) −9.28159 −0.560721
\(275\) 21.3192 1.28560
\(276\) −1.00000 −0.0601929
\(277\) −23.9020 −1.43613 −0.718067 0.695974i \(-0.754973\pi\)
−0.718067 + 0.695974i \(0.754973\pi\)
\(278\) −4.17985 −0.250691
\(279\) 5.87228 0.351564
\(280\) −2.43083 −0.145270
\(281\) −7.50907 −0.447954 −0.223977 0.974594i \(-0.571904\pi\)
−0.223977 + 0.974594i \(0.571904\pi\)
\(282\) 3.46051 0.206070
\(283\) −12.0219 −0.714626 −0.357313 0.933985i \(-0.616307\pi\)
−0.357313 + 0.933985i \(0.616307\pi\)
\(284\) −15.0454 −0.892780
\(285\) −10.8890 −0.645012
\(286\) 3.87185 0.228947
\(287\) 0.0970970 0.00573146
\(288\) −1.00000 −0.0589256
\(289\) −14.7881 −0.869887
\(290\) 4.40973 0.258948
\(291\) −10.1549 −0.595293
\(292\) 6.61444 0.387081
\(293\) −13.9017 −0.812148 −0.406074 0.913840i \(-0.633102\pi\)
−0.406074 + 0.913840i \(0.633102\pi\)
\(294\) 6.69613 0.390526
\(295\) −40.3368 −2.34850
\(296\) −4.22032 −0.245301
\(297\) 1.47581 0.0856354
\(298\) 10.7775 0.624325
\(299\) 2.62354 0.151723
\(300\) 14.4457 0.834024
\(301\) −6.18954 −0.356759
\(302\) −23.8315 −1.37135
\(303\) 12.8475 0.738068
\(304\) 2.46932 0.141625
\(305\) 50.6911 2.90256
\(306\) 1.48725 0.0850207
\(307\) 8.48620 0.484333 0.242167 0.970235i \(-0.422142\pi\)
0.242167 + 0.970235i \(0.422142\pi\)
\(308\) −0.813530 −0.0463552
\(309\) 18.7277 1.06538
\(310\) 25.8951 1.47075
\(311\) 12.0620 0.683975 0.341987 0.939705i \(-0.388900\pi\)
0.341987 + 0.939705i \(0.388900\pi\)
\(312\) 2.62354 0.148529
\(313\) −12.3576 −0.698495 −0.349248 0.937030i \(-0.613563\pi\)
−0.349248 + 0.937030i \(0.613563\pi\)
\(314\) −8.35619 −0.471567
\(315\) 2.43083 0.136962
\(316\) −1.53217 −0.0861912
\(317\) 5.92579 0.332825 0.166413 0.986056i \(-0.446782\pi\)
0.166413 + 0.986056i \(0.446782\pi\)
\(318\) 3.90957 0.219238
\(319\) 1.47581 0.0826297
\(320\) −4.40973 −0.246511
\(321\) 6.71940 0.375040
\(322\) −0.551242 −0.0307195
\(323\) −3.67251 −0.204344
\(324\) 1.00000 0.0555556
\(325\) −37.8989 −2.10225
\(326\) 22.1395 1.22619
\(327\) −12.5528 −0.694171
\(328\) 0.176142 0.00972584
\(329\) 1.90758 0.105168
\(330\) 6.50794 0.358250
\(331\) 2.59893 0.142850 0.0714251 0.997446i \(-0.477245\pi\)
0.0714251 + 0.997446i \(0.477245\pi\)
\(332\) −5.66460 −0.310885
\(333\) 4.22032 0.231272
\(334\) 18.7616 1.02659
\(335\) 61.6775 3.36980
\(336\) −0.551242 −0.0300727
\(337\) 12.8005 0.697287 0.348644 0.937255i \(-0.386642\pi\)
0.348644 + 0.937255i \(0.386642\pi\)
\(338\) 6.11705 0.332724
\(339\) −10.8654 −0.590127
\(340\) 6.55839 0.355679
\(341\) 8.66638 0.469311
\(342\) −2.46932 −0.133526
\(343\) 7.54988 0.407655
\(344\) −11.2284 −0.605393
\(345\) 4.40973 0.237412
\(346\) 11.8748 0.638391
\(347\) 27.4861 1.47553 0.737767 0.675056i \(-0.235880\pi\)
0.737767 + 0.675056i \(0.235880\pi\)
\(348\) 1.00000 0.0536056
\(349\) 20.0071 1.07096 0.535479 0.844549i \(-0.320131\pi\)
0.535479 + 0.844549i \(0.320131\pi\)
\(350\) 7.96308 0.425645
\(351\) −2.62354 −0.140034
\(352\) −1.47581 −0.0786611
\(353\) 3.93851 0.209626 0.104813 0.994492i \(-0.466576\pi\)
0.104813 + 0.994492i \(0.466576\pi\)
\(354\) −9.14724 −0.486170
\(355\) 66.3461 3.52129
\(356\) −6.00851 −0.318451
\(357\) 0.819837 0.0433904
\(358\) 1.33732 0.0706795
\(359\) −24.1124 −1.27260 −0.636302 0.771440i \(-0.719537\pi\)
−0.636302 + 0.771440i \(0.719537\pi\)
\(360\) 4.40973 0.232413
\(361\) −12.9024 −0.679076
\(362\) 24.0003 1.26143
\(363\) −8.82197 −0.463034
\(364\) 1.44620 0.0758016
\(365\) −29.1679 −1.52672
\(366\) 11.4953 0.600868
\(367\) 15.9489 0.832528 0.416264 0.909244i \(-0.363339\pi\)
0.416264 + 0.909244i \(0.363339\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −0.176142 −0.00916961
\(370\) 18.6105 0.967512
\(371\) 2.15512 0.111888
\(372\) 5.87228 0.304463
\(373\) −23.4595 −1.21469 −0.607343 0.794440i \(-0.707764\pi\)
−0.607343 + 0.794440i \(0.707764\pi\)
\(374\) 2.19491 0.113496
\(375\) −41.6531 −2.15095
\(376\) 3.46051 0.178462
\(377\) −2.62354 −0.135119
\(378\) 0.551242 0.0283528
\(379\) 5.15148 0.264614 0.132307 0.991209i \(-0.457762\pi\)
0.132307 + 0.991209i \(0.457762\pi\)
\(380\) −10.8890 −0.558596
\(381\) −14.9438 −0.765592
\(382\) 10.3196 0.527995
\(383\) 11.1050 0.567438 0.283719 0.958908i \(-0.408432\pi\)
0.283719 + 0.958908i \(0.408432\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 3.58745 0.182833
\(386\) −12.6810 −0.645445
\(387\) 11.2284 0.570770
\(388\) −10.1549 −0.515539
\(389\) −5.16503 −0.261878 −0.130939 0.991390i \(-0.541799\pi\)
−0.130939 + 0.991390i \(0.541799\pi\)
\(390\) −11.5691 −0.585824
\(391\) 1.48725 0.0752137
\(392\) 6.69613 0.338206
\(393\) 13.7058 0.691366
\(394\) 11.2181 0.565161
\(395\) 6.75645 0.339954
\(396\) 1.47581 0.0741624
\(397\) 12.7545 0.640131 0.320065 0.947395i \(-0.396295\pi\)
0.320065 + 0.947395i \(0.396295\pi\)
\(398\) −14.4889 −0.726262
\(399\) −1.36119 −0.0681449
\(400\) 14.4457 0.722286
\(401\) −2.73134 −0.136397 −0.0681984 0.997672i \(-0.521725\pi\)
−0.0681984 + 0.997672i \(0.521725\pi\)
\(402\) 13.9867 0.697592
\(403\) −15.4061 −0.767434
\(404\) 12.8475 0.639185
\(405\) −4.40973 −0.219121
\(406\) 0.551242 0.0273577
\(407\) 6.22840 0.308731
\(408\) 1.48725 0.0736301
\(409\) −34.2894 −1.69550 −0.847752 0.530393i \(-0.822044\pi\)
−0.847752 + 0.530393i \(0.822044\pi\)
\(410\) −0.776740 −0.0383605
\(411\) 9.28159 0.457827
\(412\) 18.7277 0.922649
\(413\) −5.04234 −0.248117
\(414\) 1.00000 0.0491473
\(415\) 24.9794 1.22619
\(416\) 2.62354 0.128630
\(417\) 4.17985 0.204688
\(418\) −3.64426 −0.178247
\(419\) −8.93790 −0.436645 −0.218323 0.975877i \(-0.570058\pi\)
−0.218323 + 0.975877i \(0.570058\pi\)
\(420\) 2.43083 0.118612
\(421\) −35.9832 −1.75371 −0.876857 0.480751i \(-0.840364\pi\)
−0.876857 + 0.480751i \(0.840364\pi\)
\(422\) −21.6426 −1.05354
\(423\) −3.46051 −0.168256
\(424\) 3.90957 0.189865
\(425\) −21.4845 −1.04215
\(426\) 15.0454 0.728951
\(427\) 6.33668 0.306653
\(428\) 6.71940 0.324794
\(429\) −3.87185 −0.186935
\(430\) 49.5140 2.38778
\(431\) −9.00552 −0.433780 −0.216890 0.976196i \(-0.569591\pi\)
−0.216890 + 0.976196i \(0.569591\pi\)
\(432\) 1.00000 0.0481125
\(433\) −16.8779 −0.811100 −0.405550 0.914073i \(-0.632920\pi\)
−0.405550 + 0.914073i \(0.632920\pi\)
\(434\) 3.23704 0.155383
\(435\) −4.40973 −0.211430
\(436\) −12.5528 −0.601170
\(437\) −2.46932 −0.118124
\(438\) −6.61444 −0.316050
\(439\) 10.2677 0.490048 0.245024 0.969517i \(-0.421204\pi\)
0.245024 + 0.969517i \(0.421204\pi\)
\(440\) 6.50794 0.310254
\(441\) −6.69613 −0.318863
\(442\) −3.90187 −0.185593
\(443\) −10.8393 −0.514989 −0.257494 0.966280i \(-0.582897\pi\)
−0.257494 + 0.966280i \(0.582897\pi\)
\(444\) 4.22032 0.200287
\(445\) 26.4959 1.25603
\(446\) −1.04791 −0.0496202
\(447\) −10.7775 −0.509759
\(448\) −0.551242 −0.0260437
\(449\) 13.0955 0.618017 0.309008 0.951059i \(-0.400003\pi\)
0.309008 + 0.951059i \(0.400003\pi\)
\(450\) −14.4457 −0.680978
\(451\) −0.259953 −0.0122407
\(452\) −10.8654 −0.511065
\(453\) 23.8315 1.11970
\(454\) 10.1337 0.475596
\(455\) −6.37737 −0.298976
\(456\) −2.46932 −0.115637
\(457\) −35.4656 −1.65901 −0.829506 0.558498i \(-0.811378\pi\)
−0.829506 + 0.558498i \(0.811378\pi\)
\(458\) 2.07214 0.0968247
\(459\) −1.48725 −0.0694191
\(460\) 4.40973 0.205605
\(461\) 1.92528 0.0896693 0.0448347 0.998994i \(-0.485724\pi\)
0.0448347 + 0.998994i \(0.485724\pi\)
\(462\) 0.813530 0.0378488
\(463\) −11.7358 −0.545410 −0.272705 0.962098i \(-0.587918\pi\)
−0.272705 + 0.962098i \(0.587918\pi\)
\(464\) 1.00000 0.0464238
\(465\) −25.8951 −1.20086
\(466\) 25.9885 1.20389
\(467\) 22.6109 1.04631 0.523153 0.852239i \(-0.324756\pi\)
0.523153 + 0.852239i \(0.324756\pi\)
\(468\) −2.62354 −0.121273
\(469\) 7.71004 0.356016
\(470\) −15.2599 −0.703888
\(471\) 8.35619 0.385033
\(472\) −9.14724 −0.421036
\(473\) 16.5710 0.761934
\(474\) 1.53217 0.0703748
\(475\) 35.6711 1.63670
\(476\) 0.819837 0.0375772
\(477\) −3.90957 −0.179007
\(478\) 3.04112 0.139098
\(479\) 14.5128 0.663107 0.331553 0.943437i \(-0.392427\pi\)
0.331553 + 0.943437i \(0.392427\pi\)
\(480\) 4.40973 0.201276
\(481\) −11.0722 −0.504847
\(482\) −4.90079 −0.223225
\(483\) 0.551242 0.0250824
\(484\) −8.82197 −0.400999
\(485\) 44.7805 2.03338
\(486\) −1.00000 −0.0453609
\(487\) −35.8058 −1.62252 −0.811258 0.584688i \(-0.801217\pi\)
−0.811258 + 0.584688i \(0.801217\pi\)
\(488\) 11.4953 0.520367
\(489\) −22.1395 −1.00118
\(490\) −29.5281 −1.33395
\(491\) 26.8408 1.21131 0.605654 0.795728i \(-0.292912\pi\)
0.605654 + 0.795728i \(0.292912\pi\)
\(492\) −0.176142 −0.00794111
\(493\) −1.48725 −0.0669826
\(494\) 6.47836 0.291475
\(495\) −6.50794 −0.292510
\(496\) 5.87228 0.263673
\(497\) 8.29364 0.372021
\(498\) 5.66460 0.253837
\(499\) −17.7232 −0.793398 −0.396699 0.917949i \(-0.629844\pi\)
−0.396699 + 0.917949i \(0.629844\pi\)
\(500\) −41.6531 −1.86278
\(501\) −18.7616 −0.838208
\(502\) −15.5405 −0.693606
\(503\) −5.71020 −0.254605 −0.127303 0.991864i \(-0.540632\pi\)
−0.127303 + 0.991864i \(0.540632\pi\)
\(504\) 0.551242 0.0245543
\(505\) −56.6538 −2.52106
\(506\) 1.47581 0.0656079
\(507\) −6.11705 −0.271668
\(508\) −14.9438 −0.663023
\(509\) 26.2838 1.16501 0.582504 0.812828i \(-0.302073\pi\)
0.582504 + 0.812828i \(0.302073\pi\)
\(510\) −6.55839 −0.290410
\(511\) −3.64616 −0.161296
\(512\) −1.00000 −0.0441942
\(513\) 2.46932 0.109023
\(514\) 12.4808 0.550503
\(515\) −82.5842 −3.63910
\(516\) 11.2284 0.494301
\(517\) −5.10707 −0.224609
\(518\) 2.32642 0.102217
\(519\) −11.8748 −0.521244
\(520\) −11.5691 −0.507338
\(521\) −5.74010 −0.251478 −0.125739 0.992063i \(-0.540130\pi\)
−0.125739 + 0.992063i \(0.540130\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 26.4650 1.15723 0.578617 0.815599i \(-0.303593\pi\)
0.578617 + 0.815599i \(0.303593\pi\)
\(524\) 13.7058 0.598740
\(525\) −7.96308 −0.347537
\(526\) 24.6452 1.07458
\(527\) −8.73357 −0.380440
\(528\) 1.47581 0.0642265
\(529\) 1.00000 0.0434783
\(530\) −17.2401 −0.748864
\(531\) 9.14724 0.396956
\(532\) −1.36119 −0.0590152
\(533\) 0.462116 0.0200165
\(534\) 6.00851 0.260014
\(535\) −29.6307 −1.28105
\(536\) 13.9867 0.604132
\(537\) −1.33732 −0.0577096
\(538\) −9.53343 −0.411015
\(539\) −9.88224 −0.425658
\(540\) −4.40973 −0.189765
\(541\) −23.2870 −1.00119 −0.500593 0.865683i \(-0.666885\pi\)
−0.500593 + 0.865683i \(0.666885\pi\)
\(542\) −14.8510 −0.637905
\(543\) −24.0003 −1.02995
\(544\) 1.48725 0.0637655
\(545\) 55.3544 2.37112
\(546\) −1.44620 −0.0618918
\(547\) 9.56612 0.409018 0.204509 0.978865i \(-0.434440\pi\)
0.204509 + 0.978865i \(0.434440\pi\)
\(548\) 9.28159 0.396490
\(549\) −11.4953 −0.490607
\(550\) −21.3192 −0.909053
\(551\) 2.46932 0.105197
\(552\) 1.00000 0.0425628
\(553\) 0.844595 0.0359158
\(554\) 23.9020 1.01550
\(555\) −18.6105 −0.789970
\(556\) 4.17985 0.177265
\(557\) −17.3040 −0.733195 −0.366597 0.930380i \(-0.619477\pi\)
−0.366597 + 0.930380i \(0.619477\pi\)
\(558\) −5.87228 −0.248593
\(559\) −29.4580 −1.24594
\(560\) 2.43083 0.102721
\(561\) −2.19491 −0.0926692
\(562\) 7.50907 0.316751
\(563\) 18.1919 0.766699 0.383349 0.923603i \(-0.374770\pi\)
0.383349 + 0.923603i \(0.374770\pi\)
\(564\) −3.46051 −0.145714
\(565\) 47.9134 2.01573
\(566\) 12.0219 0.505317
\(567\) −0.551242 −0.0231500
\(568\) 15.0454 0.631290
\(569\) 24.4337 1.02431 0.512157 0.858892i \(-0.328846\pi\)
0.512157 + 0.858892i \(0.328846\pi\)
\(570\) 10.8890 0.456092
\(571\) −38.9830 −1.63139 −0.815693 0.578485i \(-0.803644\pi\)
−0.815693 + 0.578485i \(0.803644\pi\)
\(572\) −3.87185 −0.161890
\(573\) −10.3196 −0.431106
\(574\) −0.0970970 −0.00405275
\(575\) −14.4457 −0.602428
\(576\) 1.00000 0.0416667
\(577\) −7.61844 −0.317160 −0.158580 0.987346i \(-0.550692\pi\)
−0.158580 + 0.987346i \(0.550692\pi\)
\(578\) 14.7881 0.615103
\(579\) 12.6810 0.527003
\(580\) −4.40973 −0.183104
\(581\) 3.12256 0.129546
\(582\) 10.1549 0.420935
\(583\) −5.76979 −0.238960
\(584\) −6.61444 −0.273708
\(585\) 11.5691 0.478323
\(586\) 13.9017 0.574275
\(587\) −12.6532 −0.522252 −0.261126 0.965305i \(-0.584094\pi\)
−0.261126 + 0.965305i \(0.584094\pi\)
\(588\) −6.69613 −0.276144
\(589\) 14.5005 0.597485
\(590\) 40.3368 1.66064
\(591\) −11.2181 −0.461452
\(592\) 4.22032 0.173454
\(593\) −37.6916 −1.54781 −0.773904 0.633303i \(-0.781699\pi\)
−0.773904 + 0.633303i \(0.781699\pi\)
\(594\) −1.47581 −0.0605534
\(595\) −3.61526 −0.148211
\(596\) −10.7775 −0.441464
\(597\) 14.4889 0.592990
\(598\) −2.62354 −0.107284
\(599\) 27.0764 1.10631 0.553156 0.833078i \(-0.313423\pi\)
0.553156 + 0.833078i \(0.313423\pi\)
\(600\) −14.4457 −0.589744
\(601\) 42.3032 1.72558 0.862792 0.505560i \(-0.168714\pi\)
0.862792 + 0.505560i \(0.168714\pi\)
\(602\) 6.18954 0.252267
\(603\) −13.9867 −0.569581
\(604\) 23.8315 0.969688
\(605\) 38.9025 1.58161
\(606\) −12.8475 −0.521893
\(607\) −40.2988 −1.63568 −0.817839 0.575447i \(-0.804828\pi\)
−0.817839 + 0.575447i \(0.804828\pi\)
\(608\) −2.46932 −0.100144
\(609\) −0.551242 −0.0223374
\(610\) −50.6911 −2.05242
\(611\) 9.07878 0.367288
\(612\) −1.48725 −0.0601187
\(613\) 19.1251 0.772455 0.386228 0.922404i \(-0.373778\pi\)
0.386228 + 0.922404i \(0.373778\pi\)
\(614\) −8.48620 −0.342475
\(615\) 0.776740 0.0313212
\(616\) 0.813530 0.0327781
\(617\) −36.8285 −1.48266 −0.741329 0.671141i \(-0.765804\pi\)
−0.741329 + 0.671141i \(0.765804\pi\)
\(618\) −18.7277 −0.753340
\(619\) 25.2137 1.01342 0.506712 0.862115i \(-0.330861\pi\)
0.506712 + 0.862115i \(0.330861\pi\)
\(620\) −25.8951 −1.03997
\(621\) −1.00000 −0.0401286
\(622\) −12.0620 −0.483643
\(623\) 3.31214 0.132698
\(624\) −2.62354 −0.105026
\(625\) 111.450 4.45801
\(626\) 12.3576 0.493911
\(627\) 3.64426 0.145538
\(628\) 8.35619 0.333448
\(629\) −6.27669 −0.250268
\(630\) −2.43083 −0.0968465
\(631\) 2.87385 0.114406 0.0572030 0.998363i \(-0.481782\pi\)
0.0572030 + 0.998363i \(0.481782\pi\)
\(632\) 1.53217 0.0609464
\(633\) 21.6426 0.860215
\(634\) −5.92579 −0.235343
\(635\) 65.8980 2.61508
\(636\) −3.90957 −0.155024
\(637\) 17.5676 0.696052
\(638\) −1.47581 −0.0584280
\(639\) −15.0454 −0.595186
\(640\) 4.40973 0.174310
\(641\) −24.4191 −0.964495 −0.482247 0.876035i \(-0.660179\pi\)
−0.482247 + 0.876035i \(0.660179\pi\)
\(642\) −6.71940 −0.265193
\(643\) −17.8372 −0.703430 −0.351715 0.936107i \(-0.614401\pi\)
−0.351715 + 0.936107i \(0.614401\pi\)
\(644\) 0.551242 0.0217220
\(645\) −49.5140 −1.94961
\(646\) 3.67251 0.144493
\(647\) −42.0735 −1.65408 −0.827040 0.562143i \(-0.809977\pi\)
−0.827040 + 0.562143i \(0.809977\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 13.4996 0.529906
\(650\) 37.8989 1.48652
\(651\) −3.23704 −0.126870
\(652\) −22.1395 −0.867048
\(653\) 31.3197 1.22563 0.612817 0.790225i \(-0.290036\pi\)
0.612817 + 0.790225i \(0.290036\pi\)
\(654\) 12.5528 0.490853
\(655\) −60.4388 −2.36154
\(656\) −0.176142 −0.00687721
\(657\) 6.61444 0.258054
\(658\) −1.90758 −0.0743651
\(659\) −37.6295 −1.46584 −0.732918 0.680317i \(-0.761842\pi\)
−0.732918 + 0.680317i \(0.761842\pi\)
\(660\) −6.50794 −0.253321
\(661\) −41.2593 −1.60480 −0.802400 0.596787i \(-0.796444\pi\)
−0.802400 + 0.596787i \(0.796444\pi\)
\(662\) −2.59893 −0.101010
\(663\) 3.90187 0.151536
\(664\) 5.66460 0.219829
\(665\) 6.00250 0.232767
\(666\) −4.22032 −0.163534
\(667\) −1.00000 −0.0387202
\(668\) −18.7616 −0.725909
\(669\) 1.04791 0.0405147
\(670\) −61.6775 −2.38281
\(671\) −16.9649 −0.654922
\(672\) 0.551242 0.0212646
\(673\) 6.76825 0.260897 0.130448 0.991455i \(-0.458358\pi\)
0.130448 + 0.991455i \(0.458358\pi\)
\(674\) −12.8005 −0.493056
\(675\) 14.4457 0.556016
\(676\) −6.11705 −0.235271
\(677\) −3.98166 −0.153028 −0.0765138 0.997069i \(-0.524379\pi\)
−0.0765138 + 0.997069i \(0.524379\pi\)
\(678\) 10.8654 0.417283
\(679\) 5.59782 0.214825
\(680\) −6.55839 −0.251503
\(681\) −10.1337 −0.388323
\(682\) −8.66638 −0.331853
\(683\) 46.2909 1.77127 0.885637 0.464379i \(-0.153722\pi\)
0.885637 + 0.464379i \(0.153722\pi\)
\(684\) 2.46932 0.0944169
\(685\) −40.9293 −1.56383
\(686\) −7.54988 −0.288256
\(687\) −2.07214 −0.0790570
\(688\) 11.2284 0.428077
\(689\) 10.2569 0.390757
\(690\) −4.40973 −0.167876
\(691\) −17.3548 −0.660206 −0.330103 0.943945i \(-0.607083\pi\)
−0.330103 + 0.943945i \(0.607083\pi\)
\(692\) −11.8748 −0.451411
\(693\) −0.813530 −0.0309034
\(694\) −27.4861 −1.04336
\(695\) −18.4320 −0.699166
\(696\) −1.00000 −0.0379049
\(697\) 0.261969 0.00992277
\(698\) −20.0071 −0.757281
\(699\) −25.9885 −0.982975
\(700\) −7.96308 −0.300976
\(701\) 33.6790 1.27204 0.636018 0.771674i \(-0.280580\pi\)
0.636018 + 0.771674i \(0.280580\pi\)
\(702\) 2.62354 0.0990191
\(703\) 10.4213 0.393048
\(704\) 1.47581 0.0556218
\(705\) 15.2599 0.574722
\(706\) −3.93851 −0.148228
\(707\) −7.08206 −0.266348
\(708\) 9.14724 0.343774
\(709\) −2.08144 −0.0781701 −0.0390850 0.999236i \(-0.512444\pi\)
−0.0390850 + 0.999236i \(0.512444\pi\)
\(710\) −66.3461 −2.48992
\(711\) −1.53217 −0.0574608
\(712\) 6.00851 0.225179
\(713\) −5.87228 −0.219918
\(714\) −0.819837 −0.0306816
\(715\) 17.0738 0.638525
\(716\) −1.33732 −0.0499780
\(717\) −3.04112 −0.113573
\(718\) 24.1124 0.899867
\(719\) −33.1031 −1.23454 −0.617269 0.786752i \(-0.711761\pi\)
−0.617269 + 0.786752i \(0.711761\pi\)
\(720\) −4.40973 −0.164341
\(721\) −10.3235 −0.384467
\(722\) 12.9024 0.480179
\(723\) 4.90079 0.182262
\(724\) −24.0003 −0.891964
\(725\) 14.4457 0.536500
\(726\) 8.82197 0.327414
\(727\) 47.0295 1.74423 0.872114 0.489302i \(-0.162748\pi\)
0.872114 + 0.489302i \(0.162748\pi\)
\(728\) −1.44620 −0.0535999
\(729\) 1.00000 0.0370370
\(730\) 29.1679 1.07955
\(731\) −16.6994 −0.617651
\(732\) −11.4953 −0.424878
\(733\) 10.1938 0.376515 0.188257 0.982120i \(-0.439716\pi\)
0.188257 + 0.982120i \(0.439716\pi\)
\(734\) −15.9489 −0.588686
\(735\) 29.5281 1.08916
\(736\) 1.00000 0.0368605
\(737\) −20.6417 −0.760348
\(738\) 0.176142 0.00648389
\(739\) −6.78095 −0.249441 −0.124721 0.992192i \(-0.539803\pi\)
−0.124721 + 0.992192i \(0.539803\pi\)
\(740\) −18.6105 −0.684134
\(741\) −6.47836 −0.237989
\(742\) −2.15512 −0.0791168
\(743\) 9.46070 0.347079 0.173540 0.984827i \(-0.444479\pi\)
0.173540 + 0.984827i \(0.444479\pi\)
\(744\) −5.87228 −0.215288
\(745\) 47.5259 1.74122
\(746\) 23.4595 0.858912
\(747\) −5.66460 −0.207257
\(748\) −2.19491 −0.0802539
\(749\) −3.70401 −0.135342
\(750\) 41.6531 1.52095
\(751\) 48.8132 1.78122 0.890610 0.454767i \(-0.150278\pi\)
0.890610 + 0.454767i \(0.150278\pi\)
\(752\) −3.46051 −0.126192
\(753\) 15.5405 0.566327
\(754\) 2.62354 0.0955436
\(755\) −105.090 −3.82463
\(756\) −0.551242 −0.0200485
\(757\) −14.2333 −0.517318 −0.258659 0.965969i \(-0.583281\pi\)
−0.258659 + 0.965969i \(0.583281\pi\)
\(758\) −5.15148 −0.187110
\(759\) −1.47581 −0.0535686
\(760\) 10.8890 0.394987
\(761\) 40.5303 1.46922 0.734612 0.678488i \(-0.237364\pi\)
0.734612 + 0.678488i \(0.237364\pi\)
\(762\) 14.9438 0.541356
\(763\) 6.91962 0.250507
\(764\) −10.3196 −0.373349
\(765\) 6.55839 0.237119
\(766\) −11.1050 −0.401239
\(767\) −23.9981 −0.866522
\(768\) 1.00000 0.0360844
\(769\) −15.5560 −0.560964 −0.280482 0.959859i \(-0.590494\pi\)
−0.280482 + 0.959859i \(0.590494\pi\)
\(770\) −3.58745 −0.129283
\(771\) −12.4808 −0.449484
\(772\) 12.6810 0.456398
\(773\) 28.0880 1.01026 0.505128 0.863044i \(-0.331445\pi\)
0.505128 + 0.863044i \(0.331445\pi\)
\(774\) −11.2284 −0.403595
\(775\) 84.8292 3.04716
\(776\) 10.1549 0.364541
\(777\) −2.32642 −0.0834597
\(778\) 5.16503 0.185175
\(779\) −0.434953 −0.0155838
\(780\) 11.5691 0.414240
\(781\) −22.2042 −0.794528
\(782\) −1.48725 −0.0531841
\(783\) 1.00000 0.0357371
\(784\) −6.69613 −0.239148
\(785\) −36.8485 −1.31518
\(786\) −13.7058 −0.488869
\(787\) −35.7497 −1.27434 −0.637169 0.770724i \(-0.719895\pi\)
−0.637169 + 0.770724i \(0.719895\pi\)
\(788\) −11.2181 −0.399629
\(789\) −24.6452 −0.877392
\(790\) −6.75645 −0.240384
\(791\) 5.98945 0.212960
\(792\) −1.47581 −0.0524408
\(793\) 30.1583 1.07095
\(794\) −12.7545 −0.452641
\(795\) 17.2401 0.611445
\(796\) 14.4889 0.513545
\(797\) 29.7454 1.05364 0.526818 0.849978i \(-0.323385\pi\)
0.526818 + 0.849978i \(0.323385\pi\)
\(798\) 1.36119 0.0481857
\(799\) 5.14666 0.182076
\(800\) −14.4457 −0.510733
\(801\) −6.00851 −0.212300
\(802\) 2.73134 0.0964471
\(803\) 9.76168 0.344482
\(804\) −13.9867 −0.493272
\(805\) −2.43083 −0.0856754
\(806\) 15.4061 0.542658
\(807\) 9.53343 0.335593
\(808\) −12.8475 −0.451972
\(809\) −40.6118 −1.42783 −0.713917 0.700230i \(-0.753081\pi\)
−0.713917 + 0.700230i \(0.753081\pi\)
\(810\) 4.40973 0.154942
\(811\) −9.99785 −0.351072 −0.175536 0.984473i \(-0.556166\pi\)
−0.175536 + 0.984473i \(0.556166\pi\)
\(812\) −0.551242 −0.0193448
\(813\) 14.8510 0.520847
\(814\) −6.22840 −0.218305
\(815\) 97.6290 3.41979
\(816\) −1.48725 −0.0520643
\(817\) 27.7264 0.970026
\(818\) 34.2894 1.19890
\(819\) 1.44620 0.0505344
\(820\) 0.776740 0.0271250
\(821\) 54.1700 1.89055 0.945273 0.326281i \(-0.105796\pi\)
0.945273 + 0.326281i \(0.105796\pi\)
\(822\) −9.28159 −0.323733
\(823\) 14.2877 0.498037 0.249018 0.968499i \(-0.419892\pi\)
0.249018 + 0.968499i \(0.419892\pi\)
\(824\) −18.7277 −0.652412
\(825\) 21.3192 0.742239
\(826\) 5.04234 0.175445
\(827\) 14.8112 0.515038 0.257519 0.966273i \(-0.417095\pi\)
0.257519 + 0.966273i \(0.417095\pi\)
\(828\) −1.00000 −0.0347524
\(829\) 56.9386 1.97756 0.988780 0.149380i \(-0.0477279\pi\)
0.988780 + 0.149380i \(0.0477279\pi\)
\(830\) −24.9794 −0.867046
\(831\) −23.9020 −0.829152
\(832\) −2.62354 −0.0909548
\(833\) 9.95886 0.345054
\(834\) −4.17985 −0.144736
\(835\) 82.7337 2.86312
\(836\) 3.64426 0.126039
\(837\) 5.87228 0.202976
\(838\) 8.93790 0.308755
\(839\) 30.6948 1.05970 0.529852 0.848090i \(-0.322248\pi\)
0.529852 + 0.848090i \(0.322248\pi\)
\(840\) −2.43083 −0.0838715
\(841\) 1.00000 0.0344828
\(842\) 35.9832 1.24006
\(843\) −7.50907 −0.258626
\(844\) 21.6426 0.744968
\(845\) 26.9745 0.927952
\(846\) 3.46051 0.118975
\(847\) 4.86304 0.167096
\(848\) −3.90957 −0.134255
\(849\) −12.0219 −0.412590
\(850\) 21.4845 0.736911
\(851\) −4.22032 −0.144671
\(852\) −15.0454 −0.515447
\(853\) −44.2827 −1.51621 −0.758106 0.652131i \(-0.773875\pi\)
−0.758106 + 0.652131i \(0.773875\pi\)
\(854\) −6.33668 −0.216837
\(855\) −10.8890 −0.372398
\(856\) −6.71940 −0.229664
\(857\) −22.5936 −0.771783 −0.385892 0.922544i \(-0.626106\pi\)
−0.385892 + 0.922544i \(0.626106\pi\)
\(858\) 3.87185 0.132183
\(859\) 35.7087 1.21837 0.609183 0.793030i \(-0.291498\pi\)
0.609183 + 0.793030i \(0.291498\pi\)
\(860\) −49.5140 −1.68841
\(861\) 0.0970970 0.00330906
\(862\) 9.00552 0.306729
\(863\) −40.2004 −1.36844 −0.684219 0.729277i \(-0.739857\pi\)
−0.684219 + 0.729277i \(0.739857\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 52.3645 1.78045
\(866\) 16.8779 0.573535
\(867\) −14.7881 −0.502229
\(868\) −3.23704 −0.109872
\(869\) −2.26119 −0.0767057
\(870\) 4.40973 0.149504
\(871\) 36.6946 1.24335
\(872\) 12.5528 0.425091
\(873\) −10.1549 −0.343692
\(874\) 2.46932 0.0835261
\(875\) 22.9609 0.776220
\(876\) 6.61444 0.223481
\(877\) −25.3805 −0.857039 −0.428520 0.903532i \(-0.640965\pi\)
−0.428520 + 0.903532i \(0.640965\pi\)
\(878\) −10.2677 −0.346517
\(879\) −13.9017 −0.468894
\(880\) −6.50794 −0.219383
\(881\) 17.9112 0.603443 0.301721 0.953396i \(-0.402439\pi\)
0.301721 + 0.953396i \(0.402439\pi\)
\(882\) 6.69613 0.225471
\(883\) 28.5778 0.961719 0.480860 0.876798i \(-0.340325\pi\)
0.480860 + 0.876798i \(0.340325\pi\)
\(884\) 3.90187 0.131234
\(885\) −40.3368 −1.35591
\(886\) 10.8393 0.364152
\(887\) 28.1153 0.944018 0.472009 0.881594i \(-0.343529\pi\)
0.472009 + 0.881594i \(0.343529\pi\)
\(888\) −4.22032 −0.141625
\(889\) 8.23763 0.276281
\(890\) −26.4959 −0.888145
\(891\) 1.47581 0.0494416
\(892\) 1.04791 0.0350868
\(893\) −8.54512 −0.285952
\(894\) 10.7775 0.360454
\(895\) 5.89722 0.197122
\(896\) 0.551242 0.0184157
\(897\) 2.62354 0.0875974
\(898\) −13.0955 −0.437004
\(899\) 5.87228 0.195851
\(900\) 14.4457 0.481524
\(901\) 5.81452 0.193710
\(902\) 0.259953 0.00865550
\(903\) −6.18954 −0.205975
\(904\) 10.8654 0.361377
\(905\) 105.835 3.51807
\(906\) −23.8315 −0.791747
\(907\) −37.7943 −1.25494 −0.627470 0.778641i \(-0.715909\pi\)
−0.627470 + 0.778641i \(0.715909\pi\)
\(908\) −10.1337 −0.336297
\(909\) 12.8475 0.426124
\(910\) 6.37737 0.211408
\(911\) −40.2558 −1.33374 −0.666868 0.745176i \(-0.732365\pi\)
−0.666868 + 0.745176i \(0.732365\pi\)
\(912\) 2.46932 0.0817675
\(913\) −8.35989 −0.276672
\(914\) 35.4656 1.17310
\(915\) 50.6911 1.67580
\(916\) −2.07214 −0.0684654
\(917\) −7.55520 −0.249495
\(918\) 1.48725 0.0490867
\(919\) −45.3190 −1.49494 −0.747469 0.664297i \(-0.768731\pi\)
−0.747469 + 0.664297i \(0.768731\pi\)
\(920\) −4.40973 −0.145384
\(921\) 8.48620 0.279630
\(922\) −1.92528 −0.0634058
\(923\) 39.4721 1.29924
\(924\) −0.813530 −0.0267632
\(925\) 60.9655 2.00453
\(926\) 11.7358 0.385663
\(927\) 18.7277 0.615099
\(928\) −1.00000 −0.0328266
\(929\) 6.17934 0.202738 0.101369 0.994849i \(-0.467678\pi\)
0.101369 + 0.994849i \(0.467678\pi\)
\(930\) 25.8951 0.849135
\(931\) −16.5349 −0.541910
\(932\) −25.9885 −0.851281
\(933\) 12.0620 0.394893
\(934\) −22.6109 −0.739850
\(935\) 9.67896 0.316536
\(936\) 2.62354 0.0857530
\(937\) −21.5453 −0.703853 −0.351926 0.936028i \(-0.614473\pi\)
−0.351926 + 0.936028i \(0.614473\pi\)
\(938\) −7.71004 −0.251742
\(939\) −12.3576 −0.403276
\(940\) 15.2599 0.497724
\(941\) −29.7555 −0.970001 −0.485001 0.874514i \(-0.661181\pi\)
−0.485001 + 0.874514i \(0.661181\pi\)
\(942\) −8.35619 −0.272259
\(943\) 0.176142 0.00573599
\(944\) 9.14724 0.297717
\(945\) 2.43083 0.0790748
\(946\) −16.5710 −0.538768
\(947\) 29.5397 0.959910 0.479955 0.877293i \(-0.340653\pi\)
0.479955 + 0.877293i \(0.340653\pi\)
\(948\) −1.53217 −0.0497625
\(949\) −17.3532 −0.563310
\(950\) −35.6711 −1.15732
\(951\) 5.92579 0.192157
\(952\) −0.819837 −0.0265711
\(953\) 13.7123 0.444184 0.222092 0.975026i \(-0.428711\pi\)
0.222092 + 0.975026i \(0.428711\pi\)
\(954\) 3.90957 0.126577
\(955\) 45.5065 1.47256
\(956\) −3.04112 −0.0983569
\(957\) 1.47581 0.0477063
\(958\) −14.5128 −0.468887
\(959\) −5.11640 −0.165217
\(960\) −4.40973 −0.142323
\(961\) 3.48361 0.112375
\(962\) 11.0722 0.356981
\(963\) 6.71940 0.216530
\(964\) 4.90079 0.157844
\(965\) −55.9197 −1.80012
\(966\) −0.551242 −0.0177359
\(967\) −23.5452 −0.757163 −0.378581 0.925568i \(-0.623588\pi\)
−0.378581 + 0.925568i \(0.623588\pi\)
\(968\) 8.82197 0.283549
\(969\) −3.67251 −0.117978
\(970\) −44.7805 −1.43782
\(971\) 55.3083 1.77493 0.887465 0.460876i \(-0.152465\pi\)
0.887465 + 0.460876i \(0.152465\pi\)
\(972\) 1.00000 0.0320750
\(973\) −2.30411 −0.0738663
\(974\) 35.8058 1.14729
\(975\) −37.8989 −1.21374
\(976\) −11.4953 −0.367955
\(977\) 6.34352 0.202947 0.101474 0.994838i \(-0.467644\pi\)
0.101474 + 0.994838i \(0.467644\pi\)
\(978\) 22.1395 0.707942
\(979\) −8.86745 −0.283405
\(980\) 29.5281 0.943242
\(981\) −12.5528 −0.400780
\(982\) −26.8408 −0.856524
\(983\) 39.7126 1.26664 0.633318 0.773892i \(-0.281693\pi\)
0.633318 + 0.773892i \(0.281693\pi\)
\(984\) 0.176142 0.00561521
\(985\) 49.4689 1.57621
\(986\) 1.48725 0.0473638
\(987\) 1.90758 0.0607189
\(988\) −6.47836 −0.206104
\(989\) −11.2284 −0.357041
\(990\) 6.50794 0.206836
\(991\) −25.5234 −0.810776 −0.405388 0.914145i \(-0.632864\pi\)
−0.405388 + 0.914145i \(0.632864\pi\)
\(992\) −5.87228 −0.186445
\(993\) 2.59893 0.0824746
\(994\) −8.29364 −0.263058
\(995\) −63.8920 −2.02551
\(996\) −5.66460 −0.179490
\(997\) 27.0545 0.856824 0.428412 0.903583i \(-0.359073\pi\)
0.428412 + 0.903583i \(0.359073\pi\)
\(998\) 17.7232 0.561017
\(999\) 4.22032 0.133525
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bi.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bi.1.1 8 1.1 even 1 trivial