Properties

Label 4002.2.a.bh.1.7
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 16x^{5} + 51x^{4} + 45x^{3} - 152x^{2} - 54x + 70 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.66930\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +3.71883 q^{5} +1.00000 q^{6} -4.60478 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +3.71883 q^{5} +1.00000 q^{6} -4.60478 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.71883 q^{10} +2.78053 q^{11} +1.00000 q^{12} +1.37983 q^{13} -4.60478 q^{14} +3.71883 q^{15} +1.00000 q^{16} +4.93831 q^{17} +1.00000 q^{18} -7.94337 q^{19} +3.71883 q^{20} -4.60478 q^{21} +2.78053 q^{22} +1.00000 q^{23} +1.00000 q^{24} +8.82973 q^{25} +1.37983 q^{26} +1.00000 q^{27} -4.60478 q^{28} -1.00000 q^{29} +3.71883 q^{30} +3.30293 q^{31} +1.00000 q^{32} +2.78053 q^{33} +4.93831 q^{34} -17.1244 q^{35} +1.00000 q^{36} +6.62374 q^{37} -7.94337 q^{38} +1.37983 q^{39} +3.71883 q^{40} +11.1461 q^{41} -4.60478 q^{42} +2.25663 q^{43} +2.78053 q^{44} +3.71883 q^{45} +1.00000 q^{46} +2.24907 q^{47} +1.00000 q^{48} +14.2040 q^{49} +8.82973 q^{50} +4.93831 q^{51} +1.37983 q^{52} -9.83795 q^{53} +1.00000 q^{54} +10.3403 q^{55} -4.60478 q^{56} -7.94337 q^{57} -1.00000 q^{58} -8.05784 q^{59} +3.71883 q^{60} +6.65714 q^{61} +3.30293 q^{62} -4.60478 q^{63} +1.00000 q^{64} +5.13135 q^{65} +2.78053 q^{66} -4.47849 q^{67} +4.93831 q^{68} +1.00000 q^{69} -17.1244 q^{70} -12.5838 q^{71} +1.00000 q^{72} +4.28247 q^{73} +6.62374 q^{74} +8.82973 q^{75} -7.94337 q^{76} -12.8037 q^{77} +1.37983 q^{78} +7.22562 q^{79} +3.71883 q^{80} +1.00000 q^{81} +11.1461 q^{82} -0.204495 q^{83} -4.60478 q^{84} +18.3648 q^{85} +2.25663 q^{86} -1.00000 q^{87} +2.78053 q^{88} -6.34556 q^{89} +3.71883 q^{90} -6.35380 q^{91} +1.00000 q^{92} +3.30293 q^{93} +2.24907 q^{94} -29.5401 q^{95} +1.00000 q^{96} -9.98687 q^{97} +14.2040 q^{98} +2.78053 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{3} + 7 q^{4} + q^{5} + 7 q^{6} - 2 q^{7} + 7 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 7 q^{2} + 7 q^{3} + 7 q^{4} + q^{5} + 7 q^{6} - 2 q^{7} + 7 q^{8} + 7 q^{9} + q^{10} + 11 q^{11} + 7 q^{12} - q^{13} - 2 q^{14} + q^{15} + 7 q^{16} + 18 q^{17} + 7 q^{18} + 6 q^{19} + q^{20} - 2 q^{21} + 11 q^{22} + 7 q^{23} + 7 q^{24} + 12 q^{25} - q^{26} + 7 q^{27} - 2 q^{28} - 7 q^{29} + q^{30} + 3 q^{31} + 7 q^{32} + 11 q^{33} + 18 q^{34} - 4 q^{35} + 7 q^{36} + 5 q^{37} + 6 q^{38} - q^{39} + q^{40} + 25 q^{41} - 2 q^{42} + 20 q^{43} + 11 q^{44} + q^{45} + 7 q^{46} + 7 q^{48} + 7 q^{49} + 12 q^{50} + 18 q^{51} - q^{52} - 4 q^{53} + 7 q^{54} + 17 q^{55} - 2 q^{56} + 6 q^{57} - 7 q^{58} - 17 q^{59} + q^{60} + 5 q^{61} + 3 q^{62} - 2 q^{63} + 7 q^{64} + 7 q^{65} + 11 q^{66} + 15 q^{67} + 18 q^{68} + 7 q^{69} - 4 q^{70} + 15 q^{71} + 7 q^{72} + 14 q^{73} + 5 q^{74} + 12 q^{75} + 6 q^{76} - 12 q^{77} - q^{78} - 4 q^{79} + q^{80} + 7 q^{81} + 25 q^{82} + 14 q^{83} - 2 q^{84} + 34 q^{85} + 20 q^{86} - 7 q^{87} + 11 q^{88} + 8 q^{89} + q^{90} - 6 q^{91} + 7 q^{92} + 3 q^{93} - 18 q^{95} + 7 q^{96} - 18 q^{97} + 7 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 3.71883 1.66311 0.831557 0.555440i \(-0.187450\pi\)
0.831557 + 0.555440i \(0.187450\pi\)
\(6\) 1.00000 0.408248
\(7\) −4.60478 −1.74044 −0.870221 0.492661i \(-0.836024\pi\)
−0.870221 + 0.492661i \(0.836024\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 3.71883 1.17600
\(11\) 2.78053 0.838360 0.419180 0.907903i \(-0.362318\pi\)
0.419180 + 0.907903i \(0.362318\pi\)
\(12\) 1.00000 0.288675
\(13\) 1.37983 0.382695 0.191348 0.981522i \(-0.438714\pi\)
0.191348 + 0.981522i \(0.438714\pi\)
\(14\) −4.60478 −1.23068
\(15\) 3.71883 0.960199
\(16\) 1.00000 0.250000
\(17\) 4.93831 1.19772 0.598858 0.800855i \(-0.295621\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.94337 −1.82233 −0.911167 0.412037i \(-0.864818\pi\)
−0.911167 + 0.412037i \(0.864818\pi\)
\(20\) 3.71883 0.831557
\(21\) −4.60478 −1.00485
\(22\) 2.78053 0.592810
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) 8.82973 1.76595
\(26\) 1.37983 0.270607
\(27\) 1.00000 0.192450
\(28\) −4.60478 −0.870221
\(29\) −1.00000 −0.185695
\(30\) 3.71883 0.678963
\(31\) 3.30293 0.593223 0.296612 0.954998i \(-0.404143\pi\)
0.296612 + 0.954998i \(0.404143\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.78053 0.484027
\(34\) 4.93831 0.846913
\(35\) −17.1244 −2.89455
\(36\) 1.00000 0.166667
\(37\) 6.62374 1.08894 0.544468 0.838781i \(-0.316731\pi\)
0.544468 + 0.838781i \(0.316731\pi\)
\(38\) −7.94337 −1.28859
\(39\) 1.37983 0.220949
\(40\) 3.71883 0.587999
\(41\) 11.1461 1.74074 0.870368 0.492402i \(-0.163881\pi\)
0.870368 + 0.492402i \(0.163881\pi\)
\(42\) −4.60478 −0.710533
\(43\) 2.25663 0.344133 0.172066 0.985085i \(-0.444956\pi\)
0.172066 + 0.985085i \(0.444956\pi\)
\(44\) 2.78053 0.419180
\(45\) 3.71883 0.554371
\(46\) 1.00000 0.147442
\(47\) 2.24907 0.328061 0.164030 0.986455i \(-0.447550\pi\)
0.164030 + 0.986455i \(0.447550\pi\)
\(48\) 1.00000 0.144338
\(49\) 14.2040 2.02914
\(50\) 8.82973 1.24871
\(51\) 4.93831 0.691502
\(52\) 1.37983 0.191348
\(53\) −9.83795 −1.35135 −0.675673 0.737201i \(-0.736147\pi\)
−0.675673 + 0.737201i \(0.736147\pi\)
\(54\) 1.00000 0.136083
\(55\) 10.3403 1.39429
\(56\) −4.60478 −0.615339
\(57\) −7.94337 −1.05213
\(58\) −1.00000 −0.131306
\(59\) −8.05784 −1.04904 −0.524521 0.851398i \(-0.675755\pi\)
−0.524521 + 0.851398i \(0.675755\pi\)
\(60\) 3.71883 0.480099
\(61\) 6.65714 0.852360 0.426180 0.904638i \(-0.359859\pi\)
0.426180 + 0.904638i \(0.359859\pi\)
\(62\) 3.30293 0.419472
\(63\) −4.60478 −0.580148
\(64\) 1.00000 0.125000
\(65\) 5.13135 0.636466
\(66\) 2.78053 0.342259
\(67\) −4.47849 −0.547135 −0.273567 0.961853i \(-0.588204\pi\)
−0.273567 + 0.961853i \(0.588204\pi\)
\(68\) 4.93831 0.598858
\(69\) 1.00000 0.120386
\(70\) −17.1244 −2.04676
\(71\) −12.5838 −1.49342 −0.746712 0.665147i \(-0.768369\pi\)
−0.746712 + 0.665147i \(0.768369\pi\)
\(72\) 1.00000 0.117851
\(73\) 4.28247 0.501225 0.250613 0.968087i \(-0.419368\pi\)
0.250613 + 0.968087i \(0.419368\pi\)
\(74\) 6.62374 0.769995
\(75\) 8.82973 1.01957
\(76\) −7.94337 −0.911167
\(77\) −12.8037 −1.45912
\(78\) 1.37983 0.156235
\(79\) 7.22562 0.812945 0.406473 0.913663i \(-0.366759\pi\)
0.406473 + 0.913663i \(0.366759\pi\)
\(80\) 3.71883 0.415778
\(81\) 1.00000 0.111111
\(82\) 11.1461 1.23089
\(83\) −0.204495 −0.0224462 −0.0112231 0.999937i \(-0.503573\pi\)
−0.0112231 + 0.999937i \(0.503573\pi\)
\(84\) −4.60478 −0.502423
\(85\) 18.3648 1.99194
\(86\) 2.25663 0.243339
\(87\) −1.00000 −0.107211
\(88\) 2.78053 0.296405
\(89\) −6.34556 −0.672628 −0.336314 0.941750i \(-0.609180\pi\)
−0.336314 + 0.941750i \(0.609180\pi\)
\(90\) 3.71883 0.392000
\(91\) −6.35380 −0.666059
\(92\) 1.00000 0.104257
\(93\) 3.30293 0.342498
\(94\) 2.24907 0.231974
\(95\) −29.5401 −3.03075
\(96\) 1.00000 0.102062
\(97\) −9.98687 −1.01401 −0.507007 0.861942i \(-0.669248\pi\)
−0.507007 + 0.861942i \(0.669248\pi\)
\(98\) 14.2040 1.43482
\(99\) 2.78053 0.279453
\(100\) 8.82973 0.882973
\(101\) 18.2379 1.81474 0.907369 0.420335i \(-0.138087\pi\)
0.907369 + 0.420335i \(0.138087\pi\)
\(102\) 4.93831 0.488965
\(103\) 6.97380 0.687149 0.343574 0.939126i \(-0.388362\pi\)
0.343574 + 0.939126i \(0.388362\pi\)
\(104\) 1.37983 0.135303
\(105\) −17.1244 −1.67117
\(106\) −9.83795 −0.955546
\(107\) 10.5583 1.02071 0.510355 0.859964i \(-0.329514\pi\)
0.510355 + 0.859964i \(0.329514\pi\)
\(108\) 1.00000 0.0962250
\(109\) −5.19977 −0.498048 −0.249024 0.968497i \(-0.580110\pi\)
−0.249024 + 0.968497i \(0.580110\pi\)
\(110\) 10.3403 0.985910
\(111\) 6.62374 0.628698
\(112\) −4.60478 −0.435111
\(113\) −4.78183 −0.449837 −0.224918 0.974378i \(-0.572212\pi\)
−0.224918 + 0.974378i \(0.572212\pi\)
\(114\) −7.94337 −0.743965
\(115\) 3.71883 0.346783
\(116\) −1.00000 −0.0928477
\(117\) 1.37983 0.127565
\(118\) −8.05784 −0.741784
\(119\) −22.7398 −2.08456
\(120\) 3.71883 0.339482
\(121\) −3.26868 −0.297153
\(122\) 6.65714 0.602709
\(123\) 11.1461 1.00501
\(124\) 3.30293 0.296612
\(125\) 14.2421 1.27385
\(126\) −4.60478 −0.410226
\(127\) −2.69448 −0.239097 −0.119548 0.992828i \(-0.538145\pi\)
−0.119548 + 0.992828i \(0.538145\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.25663 0.198685
\(130\) 5.13135 0.450049
\(131\) 0.996015 0.0870222 0.0435111 0.999053i \(-0.486146\pi\)
0.0435111 + 0.999053i \(0.486146\pi\)
\(132\) 2.78053 0.242014
\(133\) 36.5775 3.17167
\(134\) −4.47849 −0.386883
\(135\) 3.71883 0.320066
\(136\) 4.93831 0.423457
\(137\) 3.41580 0.291831 0.145916 0.989297i \(-0.453387\pi\)
0.145916 + 0.989297i \(0.453387\pi\)
\(138\) 1.00000 0.0851257
\(139\) 17.7746 1.50762 0.753811 0.657092i \(-0.228214\pi\)
0.753811 + 0.657092i \(0.228214\pi\)
\(140\) −17.1244 −1.44728
\(141\) 2.24907 0.189406
\(142\) −12.5838 −1.05601
\(143\) 3.83665 0.320836
\(144\) 1.00000 0.0833333
\(145\) −3.71883 −0.308832
\(146\) 4.28247 0.354420
\(147\) 14.2040 1.17153
\(148\) 6.62374 0.544468
\(149\) 5.28256 0.432764 0.216382 0.976309i \(-0.430574\pi\)
0.216382 + 0.976309i \(0.430574\pi\)
\(150\) 8.82973 0.720944
\(151\) −18.4191 −1.49893 −0.749463 0.662046i \(-0.769688\pi\)
−0.749463 + 0.662046i \(0.769688\pi\)
\(152\) −7.94337 −0.644293
\(153\) 4.93831 0.399239
\(154\) −12.8037 −1.03175
\(155\) 12.2830 0.986598
\(156\) 1.37983 0.110475
\(157\) −21.4418 −1.71124 −0.855622 0.517601i \(-0.826825\pi\)
−0.855622 + 0.517601i \(0.826825\pi\)
\(158\) 7.22562 0.574839
\(159\) −9.83795 −0.780200
\(160\) 3.71883 0.294000
\(161\) −4.60478 −0.362907
\(162\) 1.00000 0.0785674
\(163\) 1.18250 0.0926208 0.0463104 0.998927i \(-0.485254\pi\)
0.0463104 + 0.998927i \(0.485254\pi\)
\(164\) 11.1461 0.870368
\(165\) 10.3403 0.804992
\(166\) −0.204495 −0.0158719
\(167\) −2.72521 −0.210883 −0.105441 0.994426i \(-0.533626\pi\)
−0.105441 + 0.994426i \(0.533626\pi\)
\(168\) −4.60478 −0.355266
\(169\) −11.0961 −0.853544
\(170\) 18.3648 1.40851
\(171\) −7.94337 −0.607445
\(172\) 2.25663 0.172066
\(173\) −8.72763 −0.663550 −0.331775 0.943359i \(-0.607647\pi\)
−0.331775 + 0.943359i \(0.607647\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −40.6590 −3.07353
\(176\) 2.78053 0.209590
\(177\) −8.05784 −0.605664
\(178\) −6.34556 −0.475620
\(179\) −15.4069 −1.15156 −0.575782 0.817603i \(-0.695302\pi\)
−0.575782 + 0.817603i \(0.695302\pi\)
\(180\) 3.71883 0.277186
\(181\) −17.9295 −1.33269 −0.666344 0.745645i \(-0.732142\pi\)
−0.666344 + 0.745645i \(0.732142\pi\)
\(182\) −6.35380 −0.470975
\(183\) 6.65714 0.492110
\(184\) 1.00000 0.0737210
\(185\) 24.6326 1.81103
\(186\) 3.30293 0.242182
\(187\) 13.7311 1.00412
\(188\) 2.24907 0.164030
\(189\) −4.60478 −0.334948
\(190\) −29.5401 −2.14306
\(191\) −7.71097 −0.557946 −0.278973 0.960299i \(-0.589994\pi\)
−0.278973 + 0.960299i \(0.589994\pi\)
\(192\) 1.00000 0.0721688
\(193\) 8.44722 0.608044 0.304022 0.952665i \(-0.401670\pi\)
0.304022 + 0.952665i \(0.401670\pi\)
\(194\) −9.98687 −0.717016
\(195\) 5.13135 0.367464
\(196\) 14.2040 1.01457
\(197\) −4.15297 −0.295887 −0.147944 0.988996i \(-0.547265\pi\)
−0.147944 + 0.988996i \(0.547265\pi\)
\(198\) 2.78053 0.197603
\(199\) −15.2894 −1.08383 −0.541917 0.840432i \(-0.682301\pi\)
−0.541917 + 0.840432i \(0.682301\pi\)
\(200\) 8.82973 0.624356
\(201\) −4.47849 −0.315888
\(202\) 18.2379 1.28321
\(203\) 4.60478 0.323192
\(204\) 4.93831 0.345751
\(205\) 41.4507 2.89504
\(206\) 6.97380 0.485887
\(207\) 1.00000 0.0695048
\(208\) 1.37983 0.0956738
\(209\) −22.0867 −1.52777
\(210\) −17.1244 −1.18170
\(211\) 19.2932 1.32820 0.664099 0.747645i \(-0.268815\pi\)
0.664099 + 0.747645i \(0.268815\pi\)
\(212\) −9.83795 −0.675673
\(213\) −12.5838 −0.862229
\(214\) 10.5583 0.721750
\(215\) 8.39204 0.572332
\(216\) 1.00000 0.0680414
\(217\) −15.2093 −1.03247
\(218\) −5.19977 −0.352173
\(219\) 4.28247 0.289383
\(220\) 10.3403 0.697144
\(221\) 6.81402 0.458360
\(222\) 6.62374 0.444557
\(223\) 29.2088 1.95597 0.977985 0.208677i \(-0.0669159\pi\)
0.977985 + 0.208677i \(0.0669159\pi\)
\(224\) −4.60478 −0.307670
\(225\) 8.82973 0.588649
\(226\) −4.78183 −0.318083
\(227\) 0.308766 0.0204935 0.0102468 0.999948i \(-0.496738\pi\)
0.0102468 + 0.999948i \(0.496738\pi\)
\(228\) −7.94337 −0.526063
\(229\) 12.6463 0.835692 0.417846 0.908518i \(-0.362785\pi\)
0.417846 + 0.908518i \(0.362785\pi\)
\(230\) 3.71883 0.245213
\(231\) −12.8037 −0.842422
\(232\) −1.00000 −0.0656532
\(233\) −28.5421 −1.86986 −0.934928 0.354836i \(-0.884537\pi\)
−0.934928 + 0.354836i \(0.884537\pi\)
\(234\) 1.37983 0.0902022
\(235\) 8.36393 0.545602
\(236\) −8.05784 −0.524521
\(237\) 7.22562 0.469354
\(238\) −22.7398 −1.47400
\(239\) 14.0741 0.910375 0.455188 0.890396i \(-0.349572\pi\)
0.455188 + 0.890396i \(0.349572\pi\)
\(240\) 3.71883 0.240050
\(241\) −19.9558 −1.28546 −0.642732 0.766091i \(-0.722199\pi\)
−0.642732 + 0.766091i \(0.722199\pi\)
\(242\) −3.26868 −0.210119
\(243\) 1.00000 0.0641500
\(244\) 6.65714 0.426180
\(245\) 52.8223 3.37469
\(246\) 11.1461 0.710652
\(247\) −10.9605 −0.697399
\(248\) 3.30293 0.209736
\(249\) −0.204495 −0.0129593
\(250\) 14.2421 0.900751
\(251\) −26.1076 −1.64790 −0.823949 0.566664i \(-0.808234\pi\)
−0.823949 + 0.566664i \(0.808234\pi\)
\(252\) −4.60478 −0.290074
\(253\) 2.78053 0.174810
\(254\) −2.69448 −0.169067
\(255\) 18.3648 1.15005
\(256\) 1.00000 0.0625000
\(257\) −4.52071 −0.281994 −0.140997 0.990010i \(-0.545031\pi\)
−0.140997 + 0.990010i \(0.545031\pi\)
\(258\) 2.25663 0.140492
\(259\) −30.5009 −1.89523
\(260\) 5.13135 0.318233
\(261\) −1.00000 −0.0618984
\(262\) 0.996015 0.0615340
\(263\) −17.0963 −1.05420 −0.527102 0.849802i \(-0.676722\pi\)
−0.527102 + 0.849802i \(0.676722\pi\)
\(264\) 2.78053 0.171130
\(265\) −36.5857 −2.24744
\(266\) 36.5775 2.24271
\(267\) −6.34556 −0.388342
\(268\) −4.47849 −0.273567
\(269\) 2.10959 0.128624 0.0643119 0.997930i \(-0.479515\pi\)
0.0643119 + 0.997930i \(0.479515\pi\)
\(270\) 3.71883 0.226321
\(271\) 4.02444 0.244467 0.122234 0.992501i \(-0.460994\pi\)
0.122234 + 0.992501i \(0.460994\pi\)
\(272\) 4.93831 0.299429
\(273\) −6.35380 −0.384550
\(274\) 3.41580 0.206356
\(275\) 24.5513 1.48050
\(276\) 1.00000 0.0601929
\(277\) −13.7719 −0.827471 −0.413736 0.910397i \(-0.635776\pi\)
−0.413736 + 0.910397i \(0.635776\pi\)
\(278\) 17.7746 1.06605
\(279\) 3.30293 0.197741
\(280\) −17.1244 −1.02338
\(281\) 20.7797 1.23961 0.619805 0.784756i \(-0.287212\pi\)
0.619805 + 0.784756i \(0.287212\pi\)
\(282\) 2.24907 0.133930
\(283\) 13.4968 0.802304 0.401152 0.916012i \(-0.368610\pi\)
0.401152 + 0.916012i \(0.368610\pi\)
\(284\) −12.5838 −0.746712
\(285\) −29.5401 −1.74980
\(286\) 3.83665 0.226866
\(287\) −51.3255 −3.02965
\(288\) 1.00000 0.0589256
\(289\) 7.38690 0.434523
\(290\) −3.71883 −0.218377
\(291\) −9.98687 −0.585441
\(292\) 4.28247 0.250613
\(293\) −7.06536 −0.412763 −0.206381 0.978472i \(-0.566169\pi\)
−0.206381 + 0.978472i \(0.566169\pi\)
\(294\) 14.2040 0.828393
\(295\) −29.9658 −1.74467
\(296\) 6.62374 0.384997
\(297\) 2.78053 0.161342
\(298\) 5.28256 0.306011
\(299\) 1.37983 0.0797975
\(300\) 8.82973 0.509785
\(301\) −10.3913 −0.598944
\(302\) −18.4191 −1.05990
\(303\) 18.2379 1.04774
\(304\) −7.94337 −0.455584
\(305\) 24.7568 1.41757
\(306\) 4.93831 0.282304
\(307\) 0.163949 0.00935709 0.00467854 0.999989i \(-0.498511\pi\)
0.00467854 + 0.999989i \(0.498511\pi\)
\(308\) −12.8037 −0.729559
\(309\) 6.97380 0.396725
\(310\) 12.2830 0.697630
\(311\) −21.5334 −1.22105 −0.610524 0.791998i \(-0.709041\pi\)
−0.610524 + 0.791998i \(0.709041\pi\)
\(312\) 1.37983 0.0781174
\(313\) −26.7907 −1.51430 −0.757151 0.653240i \(-0.773409\pi\)
−0.757151 + 0.653240i \(0.773409\pi\)
\(314\) −21.4418 −1.21003
\(315\) −17.1244 −0.964851
\(316\) 7.22562 0.406473
\(317\) −22.0650 −1.23929 −0.619646 0.784881i \(-0.712724\pi\)
−0.619646 + 0.784881i \(0.712724\pi\)
\(318\) −9.83795 −0.551685
\(319\) −2.78053 −0.155680
\(320\) 3.71883 0.207889
\(321\) 10.5583 0.589307
\(322\) −4.60478 −0.256614
\(323\) −39.2268 −2.18264
\(324\) 1.00000 0.0555556
\(325\) 12.1835 0.675819
\(326\) 1.18250 0.0654928
\(327\) −5.19977 −0.287548
\(328\) 11.1461 0.615443
\(329\) −10.3565 −0.570971
\(330\) 10.3403 0.569216
\(331\) 23.9163 1.31456 0.657280 0.753646i \(-0.271707\pi\)
0.657280 + 0.753646i \(0.271707\pi\)
\(332\) −0.204495 −0.0112231
\(333\) 6.62374 0.362979
\(334\) −2.72521 −0.149117
\(335\) −16.6548 −0.909947
\(336\) −4.60478 −0.251211
\(337\) 28.5941 1.55762 0.778811 0.627259i \(-0.215823\pi\)
0.778811 + 0.627259i \(0.215823\pi\)
\(338\) −11.0961 −0.603547
\(339\) −4.78183 −0.259713
\(340\) 18.3648 0.995969
\(341\) 9.18388 0.497335
\(342\) −7.94337 −0.429528
\(343\) −33.1728 −1.79116
\(344\) 2.25663 0.121669
\(345\) 3.71883 0.200215
\(346\) −8.72763 −0.469200
\(347\) 6.90150 0.370492 0.185246 0.982692i \(-0.440692\pi\)
0.185246 + 0.982692i \(0.440692\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −3.78651 −0.202687 −0.101344 0.994851i \(-0.532314\pi\)
−0.101344 + 0.994851i \(0.532314\pi\)
\(350\) −40.6590 −2.17331
\(351\) 1.37983 0.0736498
\(352\) 2.78053 0.148202
\(353\) 5.72830 0.304887 0.152443 0.988312i \(-0.451286\pi\)
0.152443 + 0.988312i \(0.451286\pi\)
\(354\) −8.05784 −0.428269
\(355\) −46.7971 −2.48373
\(356\) −6.34556 −0.336314
\(357\) −22.7398 −1.20352
\(358\) −15.4069 −0.814279
\(359\) 15.6510 0.826026 0.413013 0.910725i \(-0.364476\pi\)
0.413013 + 0.910725i \(0.364476\pi\)
\(360\) 3.71883 0.196000
\(361\) 44.0972 2.32090
\(362\) −17.9295 −0.942352
\(363\) −3.26868 −0.171561
\(364\) −6.35380 −0.333030
\(365\) 15.9258 0.833595
\(366\) 6.65714 0.347974
\(367\) 28.5831 1.49203 0.746013 0.665931i \(-0.231965\pi\)
0.746013 + 0.665931i \(0.231965\pi\)
\(368\) 1.00000 0.0521286
\(369\) 11.1461 0.580245
\(370\) 24.6326 1.28059
\(371\) 45.3016 2.35194
\(372\) 3.30293 0.171249
\(373\) −14.0297 −0.726432 −0.363216 0.931705i \(-0.618321\pi\)
−0.363216 + 0.931705i \(0.618321\pi\)
\(374\) 13.7311 0.710018
\(375\) 14.2421 0.735460
\(376\) 2.24907 0.115987
\(377\) −1.37983 −0.0710647
\(378\) −4.60478 −0.236844
\(379\) −20.8137 −1.06913 −0.534565 0.845128i \(-0.679524\pi\)
−0.534565 + 0.845128i \(0.679524\pi\)
\(380\) −29.5401 −1.51537
\(381\) −2.69448 −0.138043
\(382\) −7.71097 −0.394528
\(383\) −18.0623 −0.922942 −0.461471 0.887155i \(-0.652678\pi\)
−0.461471 + 0.887155i \(0.652678\pi\)
\(384\) 1.00000 0.0510310
\(385\) −47.6149 −2.42668
\(386\) 8.44722 0.429952
\(387\) 2.25663 0.114711
\(388\) −9.98687 −0.507007
\(389\) −22.5311 −1.14237 −0.571187 0.820820i \(-0.693517\pi\)
−0.571187 + 0.820820i \(0.693517\pi\)
\(390\) 5.13135 0.259836
\(391\) 4.93831 0.249741
\(392\) 14.2040 0.717410
\(393\) 0.996015 0.0502423
\(394\) −4.15297 −0.209224
\(395\) 26.8709 1.35202
\(396\) 2.78053 0.139727
\(397\) −24.4105 −1.22513 −0.612564 0.790421i \(-0.709862\pi\)
−0.612564 + 0.790421i \(0.709862\pi\)
\(398\) −15.2894 −0.766387
\(399\) 36.5775 1.83116
\(400\) 8.82973 0.441486
\(401\) 6.92862 0.345999 0.172999 0.984922i \(-0.444654\pi\)
0.172999 + 0.984922i \(0.444654\pi\)
\(402\) −4.47849 −0.223367
\(403\) 4.55747 0.227024
\(404\) 18.2379 0.907369
\(405\) 3.71883 0.184790
\(406\) 4.60478 0.228531
\(407\) 18.4175 0.912921
\(408\) 4.93831 0.244483
\(409\) −21.4966 −1.06294 −0.531468 0.847078i \(-0.678360\pi\)
−0.531468 + 0.847078i \(0.678360\pi\)
\(410\) 41.4507 2.04710
\(411\) 3.41580 0.168489
\(412\) 6.97380 0.343574
\(413\) 37.1046 1.82580
\(414\) 1.00000 0.0491473
\(415\) −0.760483 −0.0373306
\(416\) 1.37983 0.0676516
\(417\) 17.7746 0.870426
\(418\) −22.0867 −1.08030
\(419\) −22.2577 −1.08736 −0.543680 0.839293i \(-0.682969\pi\)
−0.543680 + 0.839293i \(0.682969\pi\)
\(420\) −17.1244 −0.835586
\(421\) 9.60251 0.467998 0.233999 0.972237i \(-0.424819\pi\)
0.233999 + 0.972237i \(0.424819\pi\)
\(422\) 19.2932 0.939178
\(423\) 2.24907 0.109354
\(424\) −9.83795 −0.477773
\(425\) 43.6039 2.11510
\(426\) −12.5838 −0.609688
\(427\) −30.6547 −1.48348
\(428\) 10.5583 0.510355
\(429\) 3.83665 0.185235
\(430\) 8.39204 0.404700
\(431\) 8.01844 0.386234 0.193117 0.981176i \(-0.438140\pi\)
0.193117 + 0.981176i \(0.438140\pi\)
\(432\) 1.00000 0.0481125
\(433\) −1.63085 −0.0783736 −0.0391868 0.999232i \(-0.512477\pi\)
−0.0391868 + 0.999232i \(0.512477\pi\)
\(434\) −15.2093 −0.730068
\(435\) −3.71883 −0.178304
\(436\) −5.19977 −0.249024
\(437\) −7.94337 −0.379983
\(438\) 4.28247 0.204624
\(439\) −24.6912 −1.17844 −0.589222 0.807971i \(-0.700566\pi\)
−0.589222 + 0.807971i \(0.700566\pi\)
\(440\) 10.3403 0.492955
\(441\) 14.2040 0.676380
\(442\) 6.81402 0.324110
\(443\) 28.2870 1.34396 0.671979 0.740571i \(-0.265445\pi\)
0.671979 + 0.740571i \(0.265445\pi\)
\(444\) 6.62374 0.314349
\(445\) −23.5981 −1.11866
\(446\) 29.2088 1.38308
\(447\) 5.28256 0.249857
\(448\) −4.60478 −0.217555
\(449\) −1.75366 −0.0827602 −0.0413801 0.999143i \(-0.513175\pi\)
−0.0413801 + 0.999143i \(0.513175\pi\)
\(450\) 8.82973 0.416237
\(451\) 30.9921 1.45936
\(452\) −4.78183 −0.224918
\(453\) −18.4191 −0.865406
\(454\) 0.308766 0.0144911
\(455\) −23.6287 −1.10773
\(456\) −7.94337 −0.371982
\(457\) 11.1380 0.521016 0.260508 0.965472i \(-0.416110\pi\)
0.260508 + 0.965472i \(0.416110\pi\)
\(458\) 12.6463 0.590923
\(459\) 4.93831 0.230501
\(460\) 3.71883 0.173392
\(461\) 33.5519 1.56267 0.781333 0.624114i \(-0.214540\pi\)
0.781333 + 0.624114i \(0.214540\pi\)
\(462\) −12.8037 −0.595682
\(463\) 27.0322 1.25629 0.628147 0.778094i \(-0.283814\pi\)
0.628147 + 0.778094i \(0.283814\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 12.2830 0.569612
\(466\) −28.5421 −1.32219
\(467\) 36.0487 1.66814 0.834068 0.551662i \(-0.186006\pi\)
0.834068 + 0.551662i \(0.186006\pi\)
\(468\) 1.37983 0.0637826
\(469\) 20.6225 0.952257
\(470\) 8.36393 0.385799
\(471\) −21.4418 −0.987988
\(472\) −8.05784 −0.370892
\(473\) 6.27462 0.288507
\(474\) 7.22562 0.331884
\(475\) −70.1378 −3.21814
\(476\) −22.7398 −1.04228
\(477\) −9.83795 −0.450449
\(478\) 14.0741 0.643732
\(479\) −1.47382 −0.0673404 −0.0336702 0.999433i \(-0.510720\pi\)
−0.0336702 + 0.999433i \(0.510720\pi\)
\(480\) 3.71883 0.169741
\(481\) 9.13963 0.416731
\(482\) −19.9558 −0.908960
\(483\) −4.60478 −0.209525
\(484\) −3.26868 −0.148576
\(485\) −37.1395 −1.68642
\(486\) 1.00000 0.0453609
\(487\) −13.9536 −0.632298 −0.316149 0.948709i \(-0.602390\pi\)
−0.316149 + 0.948709i \(0.602390\pi\)
\(488\) 6.65714 0.301355
\(489\) 1.18250 0.0534746
\(490\) 52.8223 2.38627
\(491\) −40.4341 −1.82477 −0.912384 0.409336i \(-0.865760\pi\)
−0.912384 + 0.409336i \(0.865760\pi\)
\(492\) 11.1461 0.502507
\(493\) −4.93831 −0.222410
\(494\) −10.9605 −0.493136
\(495\) 10.3403 0.464763
\(496\) 3.30293 0.148306
\(497\) 57.9457 2.59922
\(498\) −0.204495 −0.00916364
\(499\) −25.4971 −1.14141 −0.570704 0.821156i \(-0.693329\pi\)
−0.570704 + 0.821156i \(0.693329\pi\)
\(500\) 14.2421 0.636927
\(501\) −2.72521 −0.121753
\(502\) −26.1076 −1.16524
\(503\) −17.1876 −0.766359 −0.383179 0.923674i \(-0.625171\pi\)
−0.383179 + 0.923674i \(0.625171\pi\)
\(504\) −4.60478 −0.205113
\(505\) 67.8237 3.01812
\(506\) 2.78053 0.123609
\(507\) −11.0961 −0.492794
\(508\) −2.69448 −0.119548
\(509\) 27.5658 1.22183 0.610915 0.791696i \(-0.290802\pi\)
0.610915 + 0.791696i \(0.290802\pi\)
\(510\) 18.3648 0.813205
\(511\) −19.7198 −0.872354
\(512\) 1.00000 0.0441942
\(513\) −7.94337 −0.350708
\(514\) −4.52071 −0.199400
\(515\) 25.9344 1.14281
\(516\) 2.25663 0.0993426
\(517\) 6.25360 0.275033
\(518\) −30.5009 −1.34013
\(519\) −8.72763 −0.383100
\(520\) 5.13135 0.225025
\(521\) 39.6580 1.73745 0.868725 0.495296i \(-0.164940\pi\)
0.868725 + 0.495296i \(0.164940\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 1.34961 0.0590144 0.0295072 0.999565i \(-0.490606\pi\)
0.0295072 + 0.999565i \(0.490606\pi\)
\(524\) 0.996015 0.0435111
\(525\) −40.6590 −1.77450
\(526\) −17.0963 −0.745435
\(527\) 16.3109 0.710513
\(528\) 2.78053 0.121007
\(529\) 1.00000 0.0434783
\(530\) −36.5857 −1.58918
\(531\) −8.05784 −0.349681
\(532\) 36.5775 1.58583
\(533\) 15.3798 0.666171
\(534\) −6.34556 −0.274599
\(535\) 39.2646 1.69755
\(536\) −4.47849 −0.193441
\(537\) −15.4069 −0.664856
\(538\) 2.10959 0.0909508
\(539\) 39.4945 1.70115
\(540\) 3.71883 0.160033
\(541\) −6.19991 −0.266555 −0.133278 0.991079i \(-0.542550\pi\)
−0.133278 + 0.991079i \(0.542550\pi\)
\(542\) 4.02444 0.172865
\(543\) −17.9295 −0.769427
\(544\) 4.93831 0.211728
\(545\) −19.3371 −0.828310
\(546\) −6.35380 −0.271918
\(547\) −29.0573 −1.24240 −0.621201 0.783651i \(-0.713355\pi\)
−0.621201 + 0.783651i \(0.713355\pi\)
\(548\) 3.41580 0.145916
\(549\) 6.65714 0.284120
\(550\) 24.5513 1.04687
\(551\) 7.94337 0.338399
\(552\) 1.00000 0.0425628
\(553\) −33.2724 −1.41488
\(554\) −13.7719 −0.585110
\(555\) 24.6326 1.04560
\(556\) 17.7746 0.753811
\(557\) 33.9773 1.43966 0.719832 0.694149i \(-0.244219\pi\)
0.719832 + 0.694149i \(0.244219\pi\)
\(558\) 3.30293 0.139824
\(559\) 3.11376 0.131698
\(560\) −17.1244 −0.723638
\(561\) 13.7311 0.579727
\(562\) 20.7797 0.876537
\(563\) −30.9349 −1.30375 −0.651875 0.758326i \(-0.726017\pi\)
−0.651875 + 0.758326i \(0.726017\pi\)
\(564\) 2.24907 0.0947030
\(565\) −17.7828 −0.748130
\(566\) 13.4968 0.567315
\(567\) −4.60478 −0.193383
\(568\) −12.5838 −0.528005
\(569\) −1.01798 −0.0426759 −0.0213379 0.999772i \(-0.506793\pi\)
−0.0213379 + 0.999772i \(0.506793\pi\)
\(570\) −29.5401 −1.23730
\(571\) 31.4205 1.31491 0.657454 0.753494i \(-0.271633\pi\)
0.657454 + 0.753494i \(0.271633\pi\)
\(572\) 3.83665 0.160418
\(573\) −7.71097 −0.322130
\(574\) −51.3255 −2.14229
\(575\) 8.82973 0.368225
\(576\) 1.00000 0.0416667
\(577\) 25.3878 1.05691 0.528453 0.848962i \(-0.322772\pi\)
0.528453 + 0.848962i \(0.322772\pi\)
\(578\) 7.38690 0.307254
\(579\) 8.44722 0.351055
\(580\) −3.71883 −0.154416
\(581\) 0.941654 0.0390664
\(582\) −9.98687 −0.413969
\(583\) −27.3547 −1.13291
\(584\) 4.28247 0.177210
\(585\) 5.13135 0.212155
\(586\) −7.06536 −0.291867
\(587\) 34.2879 1.41521 0.707607 0.706606i \(-0.249775\pi\)
0.707607 + 0.706606i \(0.249775\pi\)
\(588\) 14.2040 0.585763
\(589\) −26.2364 −1.08105
\(590\) −29.9658 −1.23367
\(591\) −4.15297 −0.170830
\(592\) 6.62374 0.272234
\(593\) −0.803400 −0.0329917 −0.0164958 0.999864i \(-0.505251\pi\)
−0.0164958 + 0.999864i \(0.505251\pi\)
\(594\) 2.78053 0.114086
\(595\) −84.5656 −3.46685
\(596\) 5.28256 0.216382
\(597\) −15.2894 −0.625752
\(598\) 1.37983 0.0564254
\(599\) 12.6330 0.516168 0.258084 0.966122i \(-0.416909\pi\)
0.258084 + 0.966122i \(0.416909\pi\)
\(600\) 8.82973 0.360472
\(601\) −12.9777 −0.529371 −0.264686 0.964335i \(-0.585268\pi\)
−0.264686 + 0.964335i \(0.585268\pi\)
\(602\) −10.3913 −0.423517
\(603\) −4.47849 −0.182378
\(604\) −18.4191 −0.749463
\(605\) −12.1557 −0.494199
\(606\) 18.2379 0.740864
\(607\) −29.0337 −1.17844 −0.589221 0.807972i \(-0.700565\pi\)
−0.589221 + 0.807972i \(0.700565\pi\)
\(608\) −7.94337 −0.322146
\(609\) 4.60478 0.186595
\(610\) 24.7568 1.00237
\(611\) 3.10333 0.125547
\(612\) 4.93831 0.199619
\(613\) −28.5306 −1.15234 −0.576170 0.817330i \(-0.695453\pi\)
−0.576170 + 0.817330i \(0.695453\pi\)
\(614\) 0.163949 0.00661646
\(615\) 41.4507 1.67145
\(616\) −12.8037 −0.515876
\(617\) −42.1437 −1.69664 −0.848320 0.529484i \(-0.822386\pi\)
−0.848320 + 0.529484i \(0.822386\pi\)
\(618\) 6.97380 0.280527
\(619\) 29.1517 1.17171 0.585854 0.810417i \(-0.300759\pi\)
0.585854 + 0.810417i \(0.300759\pi\)
\(620\) 12.2830 0.493299
\(621\) 1.00000 0.0401286
\(622\) −21.5334 −0.863411
\(623\) 29.2199 1.17067
\(624\) 1.37983 0.0552373
\(625\) 8.81548 0.352619
\(626\) −26.7907 −1.07077
\(627\) −22.0867 −0.882060
\(628\) −21.4418 −0.855622
\(629\) 32.7101 1.30424
\(630\) −17.1244 −0.682253
\(631\) 35.0433 1.39505 0.697525 0.716560i \(-0.254284\pi\)
0.697525 + 0.716560i \(0.254284\pi\)
\(632\) 7.22562 0.287420
\(633\) 19.2932 0.766836
\(634\) −22.0650 −0.876312
\(635\) −10.0203 −0.397645
\(636\) −9.83795 −0.390100
\(637\) 19.5991 0.776543
\(638\) −2.78053 −0.110082
\(639\) −12.5838 −0.497808
\(640\) 3.71883 0.147000
\(641\) 32.3259 1.27680 0.638398 0.769707i \(-0.279598\pi\)
0.638398 + 0.769707i \(0.279598\pi\)
\(642\) 10.5583 0.416703
\(643\) 21.0841 0.831476 0.415738 0.909484i \(-0.363523\pi\)
0.415738 + 0.909484i \(0.363523\pi\)
\(644\) −4.60478 −0.181454
\(645\) 8.39204 0.330436
\(646\) −39.2268 −1.54336
\(647\) 18.5913 0.730898 0.365449 0.930831i \(-0.380915\pi\)
0.365449 + 0.930831i \(0.380915\pi\)
\(648\) 1.00000 0.0392837
\(649\) −22.4050 −0.879474
\(650\) 12.1835 0.477876
\(651\) −15.2093 −0.596098
\(652\) 1.18250 0.0463104
\(653\) −27.2557 −1.06660 −0.533300 0.845926i \(-0.679048\pi\)
−0.533300 + 0.845926i \(0.679048\pi\)
\(654\) −5.19977 −0.203327
\(655\) 3.70401 0.144728
\(656\) 11.1461 0.435184
\(657\) 4.28247 0.167075
\(658\) −10.3565 −0.403738
\(659\) −50.2556 −1.95768 −0.978840 0.204627i \(-0.934402\pi\)
−0.978840 + 0.204627i \(0.934402\pi\)
\(660\) 10.3403 0.402496
\(661\) −2.74580 −0.106799 −0.0533996 0.998573i \(-0.517006\pi\)
−0.0533996 + 0.998573i \(0.517006\pi\)
\(662\) 23.9163 0.929535
\(663\) 6.81402 0.264634
\(664\) −0.204495 −0.00793594
\(665\) 136.026 5.27484
\(666\) 6.62374 0.256665
\(667\) −1.00000 −0.0387202
\(668\) −2.72521 −0.105441
\(669\) 29.2088 1.12928
\(670\) −16.6548 −0.643430
\(671\) 18.5104 0.714584
\(672\) −4.60478 −0.177633
\(673\) −10.6408 −0.410173 −0.205086 0.978744i \(-0.565748\pi\)
−0.205086 + 0.978744i \(0.565748\pi\)
\(674\) 28.5941 1.10140
\(675\) 8.82973 0.339856
\(676\) −11.0961 −0.426772
\(677\) −11.5858 −0.445277 −0.222638 0.974901i \(-0.571467\pi\)
−0.222638 + 0.974901i \(0.571467\pi\)
\(678\) −4.78183 −0.183645
\(679\) 45.9873 1.76483
\(680\) 18.3648 0.704256
\(681\) 0.308766 0.0118320
\(682\) 9.18388 0.351669
\(683\) 10.6120 0.406057 0.203029 0.979173i \(-0.434922\pi\)
0.203029 + 0.979173i \(0.434922\pi\)
\(684\) −7.94337 −0.303722
\(685\) 12.7028 0.485348
\(686\) −33.1728 −1.26654
\(687\) 12.6463 0.482487
\(688\) 2.25663 0.0860332
\(689\) −13.5747 −0.517154
\(690\) 3.71883 0.141574
\(691\) −11.1751 −0.425123 −0.212561 0.977148i \(-0.568181\pi\)
−0.212561 + 0.977148i \(0.568181\pi\)
\(692\) −8.72763 −0.331775
\(693\) −12.8037 −0.486372
\(694\) 6.90150 0.261977
\(695\) 66.1008 2.50735
\(696\) −1.00000 −0.0379049
\(697\) 55.0431 2.08491
\(698\) −3.78651 −0.143321
\(699\) −28.5421 −1.07956
\(700\) −40.6590 −1.53676
\(701\) −32.7324 −1.23628 −0.618142 0.786066i \(-0.712114\pi\)
−0.618142 + 0.786066i \(0.712114\pi\)
\(702\) 1.37983 0.0520782
\(703\) −52.6149 −1.98441
\(704\) 2.78053 0.104795
\(705\) 8.36393 0.315004
\(706\) 5.72830 0.215587
\(707\) −83.9815 −3.15845
\(708\) −8.05784 −0.302832
\(709\) −35.9866 −1.35151 −0.675753 0.737128i \(-0.736181\pi\)
−0.675753 + 0.737128i \(0.736181\pi\)
\(710\) −46.7971 −1.75626
\(711\) 7.22562 0.270982
\(712\) −6.34556 −0.237810
\(713\) 3.30293 0.123696
\(714\) −22.7398 −0.851016
\(715\) 14.2679 0.533587
\(716\) −15.4069 −0.575782
\(717\) 14.0741 0.525605
\(718\) 15.6510 0.584088
\(719\) 0.778740 0.0290421 0.0145210 0.999895i \(-0.495378\pi\)
0.0145210 + 0.999895i \(0.495378\pi\)
\(720\) 3.71883 0.138593
\(721\) −32.1128 −1.19594
\(722\) 44.0972 1.64113
\(723\) −19.9558 −0.742163
\(724\) −17.9295 −0.666344
\(725\) −8.82973 −0.327928
\(726\) −3.26868 −0.121312
\(727\) −32.3786 −1.20086 −0.600428 0.799679i \(-0.705003\pi\)
−0.600428 + 0.799679i \(0.705003\pi\)
\(728\) −6.35380 −0.235488
\(729\) 1.00000 0.0370370
\(730\) 15.9258 0.589440
\(731\) 11.1439 0.412174
\(732\) 6.65714 0.246055
\(733\) −30.5086 −1.12686 −0.563431 0.826163i \(-0.690519\pi\)
−0.563431 + 0.826163i \(0.690519\pi\)
\(734\) 28.5831 1.05502
\(735\) 52.8223 1.94838
\(736\) 1.00000 0.0368605
\(737\) −12.4526 −0.458696
\(738\) 11.1461 0.410295
\(739\) 21.7963 0.801789 0.400894 0.916124i \(-0.368699\pi\)
0.400894 + 0.916124i \(0.368699\pi\)
\(740\) 24.6326 0.905513
\(741\) −10.9605 −0.402643
\(742\) 45.3016 1.66307
\(743\) −12.2878 −0.450797 −0.225398 0.974267i \(-0.572368\pi\)
−0.225398 + 0.974267i \(0.572368\pi\)
\(744\) 3.30293 0.121091
\(745\) 19.6450 0.719736
\(746\) −14.0297 −0.513665
\(747\) −0.204495 −0.00748208
\(748\) 13.7311 0.502059
\(749\) −48.6186 −1.77649
\(750\) 14.2421 0.520049
\(751\) −31.1076 −1.13513 −0.567567 0.823327i \(-0.692115\pi\)
−0.567567 + 0.823327i \(0.692115\pi\)
\(752\) 2.24907 0.0820152
\(753\) −26.1076 −0.951414
\(754\) −1.37983 −0.0502504
\(755\) −68.4976 −2.49288
\(756\) −4.60478 −0.167474
\(757\) −40.2253 −1.46201 −0.731007 0.682370i \(-0.760950\pi\)
−0.731007 + 0.682370i \(0.760950\pi\)
\(758\) −20.8137 −0.755988
\(759\) 2.78053 0.100927
\(760\) −29.5401 −1.07153
\(761\) −16.2854 −0.590346 −0.295173 0.955444i \(-0.595377\pi\)
−0.295173 + 0.955444i \(0.595377\pi\)
\(762\) −2.69448 −0.0976109
\(763\) 23.9438 0.866824
\(764\) −7.71097 −0.278973
\(765\) 18.3648 0.663979
\(766\) −18.0623 −0.652619
\(767\) −11.1184 −0.401463
\(768\) 1.00000 0.0360844
\(769\) −14.8768 −0.536471 −0.268235 0.963353i \(-0.586440\pi\)
−0.268235 + 0.963353i \(0.586440\pi\)
\(770\) −47.6149 −1.71592
\(771\) −4.52071 −0.162809
\(772\) 8.44722 0.304022
\(773\) 18.0707 0.649957 0.324979 0.945721i \(-0.394643\pi\)
0.324979 + 0.945721i \(0.394643\pi\)
\(774\) 2.25663 0.0811129
\(775\) 29.1640 1.04760
\(776\) −9.98687 −0.358508
\(777\) −30.5009 −1.09421
\(778\) −22.5311 −0.807780
\(779\) −88.5380 −3.17220
\(780\) 5.13135 0.183732
\(781\) −34.9896 −1.25203
\(782\) 4.93831 0.176594
\(783\) −1.00000 −0.0357371
\(784\) 14.2040 0.507285
\(785\) −79.7386 −2.84599
\(786\) 0.996015 0.0355267
\(787\) −4.00793 −0.142867 −0.0714337 0.997445i \(-0.522757\pi\)
−0.0714337 + 0.997445i \(0.522757\pi\)
\(788\) −4.15297 −0.147944
\(789\) −17.0963 −0.608645
\(790\) 26.8709 0.956023
\(791\) 22.0193 0.782915
\(792\) 2.78053 0.0988017
\(793\) 9.18571 0.326194
\(794\) −24.4105 −0.866296
\(795\) −36.5857 −1.29756
\(796\) −15.2894 −0.541917
\(797\) −14.9864 −0.530847 −0.265424 0.964132i \(-0.585512\pi\)
−0.265424 + 0.964132i \(0.585512\pi\)
\(798\) 36.5775 1.29483
\(799\) 11.1066 0.392924
\(800\) 8.82973 0.312178
\(801\) −6.34556 −0.224209
\(802\) 6.92862 0.244658
\(803\) 11.9075 0.420207
\(804\) −4.47849 −0.157944
\(805\) −17.1244 −0.603556
\(806\) 4.55747 0.160530
\(807\) 2.10959 0.0742610
\(808\) 18.2379 0.641607
\(809\) −4.52837 −0.159209 −0.0796044 0.996827i \(-0.525366\pi\)
−0.0796044 + 0.996827i \(0.525366\pi\)
\(810\) 3.71883 0.130667
\(811\) 51.1734 1.79694 0.898470 0.439035i \(-0.144680\pi\)
0.898470 + 0.439035i \(0.144680\pi\)
\(812\) 4.60478 0.161596
\(813\) 4.02444 0.141143
\(814\) 18.4175 0.645533
\(815\) 4.39753 0.154039
\(816\) 4.93831 0.172875
\(817\) −17.9253 −0.627125
\(818\) −21.4966 −0.751610
\(819\) −6.35380 −0.222020
\(820\) 41.4507 1.44752
\(821\) −9.15775 −0.319608 −0.159804 0.987149i \(-0.551086\pi\)
−0.159804 + 0.987149i \(0.551086\pi\)
\(822\) 3.41580 0.119140
\(823\) 23.6275 0.823604 0.411802 0.911273i \(-0.364900\pi\)
0.411802 + 0.911273i \(0.364900\pi\)
\(824\) 6.97380 0.242944
\(825\) 24.5513 0.854766
\(826\) 37.1046 1.29103
\(827\) −3.64580 −0.126777 −0.0633884 0.997989i \(-0.520191\pi\)
−0.0633884 + 0.997989i \(0.520191\pi\)
\(828\) 1.00000 0.0347524
\(829\) −20.4248 −0.709382 −0.354691 0.934984i \(-0.615414\pi\)
−0.354691 + 0.934984i \(0.615414\pi\)
\(830\) −0.760483 −0.0263967
\(831\) −13.7719 −0.477741
\(832\) 1.37983 0.0478369
\(833\) 70.1437 2.43033
\(834\) 17.7746 0.615484
\(835\) −10.1346 −0.350722
\(836\) −22.0867 −0.763886
\(837\) 3.30293 0.114166
\(838\) −22.2577 −0.768879
\(839\) −38.8579 −1.34153 −0.670763 0.741672i \(-0.734033\pi\)
−0.670763 + 0.741672i \(0.734033\pi\)
\(840\) −17.1244 −0.590848
\(841\) 1.00000 0.0344828
\(842\) 9.60251 0.330924
\(843\) 20.7797 0.715689
\(844\) 19.2932 0.664099
\(845\) −41.2645 −1.41954
\(846\) 2.24907 0.0773247
\(847\) 15.0515 0.517177
\(848\) −9.83795 −0.337837
\(849\) 13.4968 0.463210
\(850\) 43.6039 1.49560
\(851\) 6.62374 0.227059
\(852\) −12.5838 −0.431114
\(853\) 3.79944 0.130091 0.0650453 0.997882i \(-0.479281\pi\)
0.0650453 + 0.997882i \(0.479281\pi\)
\(854\) −30.6547 −1.04898
\(855\) −29.5401 −1.01025
\(856\) 10.5583 0.360875
\(857\) −14.6653 −0.500958 −0.250479 0.968122i \(-0.580588\pi\)
−0.250479 + 0.968122i \(0.580588\pi\)
\(858\) 3.83665 0.130981
\(859\) −13.5359 −0.461839 −0.230919 0.972973i \(-0.574173\pi\)
−0.230919 + 0.972973i \(0.574173\pi\)
\(860\) 8.39204 0.286166
\(861\) −51.3255 −1.74917
\(862\) 8.01844 0.273109
\(863\) 28.2096 0.960267 0.480134 0.877195i \(-0.340588\pi\)
0.480134 + 0.877195i \(0.340588\pi\)
\(864\) 1.00000 0.0340207
\(865\) −32.4566 −1.10356
\(866\) −1.63085 −0.0554185
\(867\) 7.38690 0.250872
\(868\) −15.2093 −0.516236
\(869\) 20.0910 0.681541
\(870\) −3.71883 −0.126080
\(871\) −6.17955 −0.209386
\(872\) −5.19977 −0.176087
\(873\) −9.98687 −0.338004
\(874\) −7.94337 −0.268689
\(875\) −65.5819 −2.21707
\(876\) 4.28247 0.144691
\(877\) 22.8411 0.771290 0.385645 0.922647i \(-0.373979\pi\)
0.385645 + 0.922647i \(0.373979\pi\)
\(878\) −24.6912 −0.833286
\(879\) −7.06536 −0.238309
\(880\) 10.3403 0.348572
\(881\) −4.29668 −0.144759 −0.0723794 0.997377i \(-0.523059\pi\)
−0.0723794 + 0.997377i \(0.523059\pi\)
\(882\) 14.2040 0.478273
\(883\) 55.8399 1.87916 0.939582 0.342324i \(-0.111214\pi\)
0.939582 + 0.342324i \(0.111214\pi\)
\(884\) 6.81402 0.229180
\(885\) −29.9658 −1.00729
\(886\) 28.2870 0.950321
\(887\) 20.4493 0.686622 0.343311 0.939222i \(-0.388452\pi\)
0.343311 + 0.939222i \(0.388452\pi\)
\(888\) 6.62374 0.222278
\(889\) 12.4075 0.416134
\(890\) −23.5981 −0.791010
\(891\) 2.78053 0.0931511
\(892\) 29.2088 0.977985
\(893\) −17.8652 −0.597837
\(894\) 5.28256 0.176675
\(895\) −57.2956 −1.91518
\(896\) −4.60478 −0.153835
\(897\) 1.37983 0.0460711
\(898\) −1.75366 −0.0585203
\(899\) −3.30293 −0.110159
\(900\) 8.82973 0.294324
\(901\) −48.5829 −1.61853
\(902\) 30.9921 1.03193
\(903\) −10.3913 −0.345800
\(904\) −4.78183 −0.159041
\(905\) −66.6767 −2.21641
\(906\) −18.4191 −0.611934
\(907\) 52.5944 1.74637 0.873184 0.487390i \(-0.162051\pi\)
0.873184 + 0.487390i \(0.162051\pi\)
\(908\) 0.308766 0.0102468
\(909\) 18.2379 0.604913
\(910\) −23.6287 −0.783285
\(911\) −5.27268 −0.174692 −0.0873458 0.996178i \(-0.527839\pi\)
−0.0873458 + 0.996178i \(0.527839\pi\)
\(912\) −7.94337 −0.263031
\(913\) −0.568603 −0.0188180
\(914\) 11.1380 0.368414
\(915\) 24.7568 0.818435
\(916\) 12.6463 0.417846
\(917\) −4.58643 −0.151457
\(918\) 4.93831 0.162988
\(919\) −47.1846 −1.55648 −0.778239 0.627968i \(-0.783887\pi\)
−0.778239 + 0.627968i \(0.783887\pi\)
\(920\) 3.71883 0.122606
\(921\) 0.163949 0.00540232
\(922\) 33.5519 1.10497
\(923\) −17.3635 −0.571527
\(924\) −12.8037 −0.421211
\(925\) 58.4859 1.92300
\(926\) 27.0322 0.888334
\(927\) 6.97380 0.229050
\(928\) −1.00000 −0.0328266
\(929\) −32.4729 −1.06540 −0.532700 0.846304i \(-0.678823\pi\)
−0.532700 + 0.846304i \(0.678823\pi\)
\(930\) 12.2830 0.402777
\(931\) −112.828 −3.69777
\(932\) −28.5421 −0.934928
\(933\) −21.5334 −0.704972
\(934\) 36.0487 1.17955
\(935\) 51.0637 1.66996
\(936\) 1.37983 0.0451011
\(937\) 23.6276 0.771882 0.385941 0.922524i \(-0.373877\pi\)
0.385941 + 0.922524i \(0.373877\pi\)
\(938\) 20.6225 0.673347
\(939\) −26.7907 −0.874283
\(940\) 8.36393 0.272801
\(941\) 9.77868 0.318776 0.159388 0.987216i \(-0.449048\pi\)
0.159388 + 0.987216i \(0.449048\pi\)
\(942\) −21.4418 −0.698613
\(943\) 11.1461 0.362968
\(944\) −8.05784 −0.262260
\(945\) −17.1244 −0.557057
\(946\) 6.27462 0.204005
\(947\) −4.26283 −0.138523 −0.0692617 0.997599i \(-0.522064\pi\)
−0.0692617 + 0.997599i \(0.522064\pi\)
\(948\) 7.22562 0.234677
\(949\) 5.90907 0.191817
\(950\) −70.1378 −2.27557
\(951\) −22.0650 −0.715506
\(952\) −22.7398 −0.737002
\(953\) −26.8988 −0.871337 −0.435668 0.900107i \(-0.643488\pi\)
−0.435668 + 0.900107i \(0.643488\pi\)
\(954\) −9.83795 −0.318515
\(955\) −28.6758 −0.927928
\(956\) 14.0741 0.455188
\(957\) −2.78053 −0.0898816
\(958\) −1.47382 −0.0476168
\(959\) −15.7290 −0.507916
\(960\) 3.71883 0.120025
\(961\) −20.0907 −0.648086
\(962\) 9.13963 0.294673
\(963\) 10.5583 0.340236
\(964\) −19.9558 −0.642732
\(965\) 31.4138 1.01125
\(966\) −4.60478 −0.148156
\(967\) 34.9817 1.12494 0.562468 0.826819i \(-0.309852\pi\)
0.562468 + 0.826819i \(0.309852\pi\)
\(968\) −3.26868 −0.105059
\(969\) −39.2268 −1.26015
\(970\) −37.1395 −1.19248
\(971\) 34.6984 1.11353 0.556763 0.830671i \(-0.312043\pi\)
0.556763 + 0.830671i \(0.312043\pi\)
\(972\) 1.00000 0.0320750
\(973\) −81.8481 −2.62393
\(974\) −13.9536 −0.447102
\(975\) 12.1835 0.390184
\(976\) 6.65714 0.213090
\(977\) −38.1624 −1.22092 −0.610461 0.792046i \(-0.709016\pi\)
−0.610461 + 0.792046i \(0.709016\pi\)
\(978\) 1.18250 0.0378123
\(979\) −17.6440 −0.563904
\(980\) 52.8223 1.68735
\(981\) −5.19977 −0.166016
\(982\) −40.4341 −1.29031
\(983\) −56.5239 −1.80283 −0.901416 0.432953i \(-0.857471\pi\)
−0.901416 + 0.432953i \(0.857471\pi\)
\(984\) 11.1461 0.355326
\(985\) −15.4442 −0.492094
\(986\) −4.93831 −0.157268
\(987\) −10.3565 −0.329650
\(988\) −10.9605 −0.348699
\(989\) 2.25663 0.0717567
\(990\) 10.3403 0.328637
\(991\) −32.1961 −1.02274 −0.511372 0.859359i \(-0.670863\pi\)
−0.511372 + 0.859359i \(0.670863\pi\)
\(992\) 3.30293 0.104868
\(993\) 23.9163 0.758962
\(994\) 57.9457 1.83793
\(995\) −56.8586 −1.80254
\(996\) −0.204495 −0.00647967
\(997\) 31.4497 0.996022 0.498011 0.867171i \(-0.334064\pi\)
0.498011 + 0.867171i \(0.334064\pi\)
\(998\) −25.4971 −0.807097
\(999\) 6.62374 0.209566
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bh.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bh.1.7 7 1.1 even 1 trivial