Properties

Label 4002.2.a.bh.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 16x^{5} + 51x^{4} + 45x^{3} - 152x^{2} - 54x + 70 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.586166\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.65866 q^{5} +1.00000 q^{6} -1.05824 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.65866 q^{5} +1.00000 q^{6} -1.05824 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.65866 q^{10} -2.77476 q^{11} +1.00000 q^{12} +5.36531 q^{13} -1.05824 q^{14} -1.65866 q^{15} +1.00000 q^{16} +5.11610 q^{17} +1.00000 q^{18} -0.230571 q^{19} -1.65866 q^{20} -1.05824 q^{21} -2.77476 q^{22} +1.00000 q^{23} +1.00000 q^{24} -2.24883 q^{25} +5.36531 q^{26} +1.00000 q^{27} -1.05824 q^{28} -1.00000 q^{29} -1.65866 q^{30} +3.97596 q^{31} +1.00000 q^{32} -2.77476 q^{33} +5.11610 q^{34} +1.75526 q^{35} +1.00000 q^{36} -4.94821 q^{37} -0.230571 q^{38} +5.36531 q^{39} -1.65866 q^{40} +5.80251 q^{41} -1.05824 q^{42} +2.66851 q^{43} -2.77476 q^{44} -1.65866 q^{45} +1.00000 q^{46} +4.87939 q^{47} +1.00000 q^{48} -5.88013 q^{49} -2.24883 q^{50} +5.11610 q^{51} +5.36531 q^{52} +5.26109 q^{53} +1.00000 q^{54} +4.60240 q^{55} -1.05824 q^{56} -0.230571 q^{57} -1.00000 q^{58} +6.68264 q^{59} -1.65866 q^{60} +1.45744 q^{61} +3.97596 q^{62} -1.05824 q^{63} +1.00000 q^{64} -8.89925 q^{65} -2.77476 q^{66} -7.07196 q^{67} +5.11610 q^{68} +1.00000 q^{69} +1.75526 q^{70} +3.51482 q^{71} +1.00000 q^{72} +13.2850 q^{73} -4.94821 q^{74} -2.24883 q^{75} -0.230571 q^{76} +2.93636 q^{77} +5.36531 q^{78} -2.10845 q^{79} -1.65866 q^{80} +1.00000 q^{81} +5.80251 q^{82} -1.00201 q^{83} -1.05824 q^{84} -8.48589 q^{85} +2.66851 q^{86} -1.00000 q^{87} -2.77476 q^{88} +11.2121 q^{89} -1.65866 q^{90} -5.67778 q^{91} +1.00000 q^{92} +3.97596 q^{93} +4.87939 q^{94} +0.382440 q^{95} +1.00000 q^{96} +0.785722 q^{97} -5.88013 q^{98} -2.77476 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{3} + 7 q^{4} + q^{5} + 7 q^{6} - 2 q^{7} + 7 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 7 q^{2} + 7 q^{3} + 7 q^{4} + q^{5} + 7 q^{6} - 2 q^{7} + 7 q^{8} + 7 q^{9} + q^{10} + 11 q^{11} + 7 q^{12} - q^{13} - 2 q^{14} + q^{15} + 7 q^{16} + 18 q^{17} + 7 q^{18} + 6 q^{19} + q^{20} - 2 q^{21} + 11 q^{22} + 7 q^{23} + 7 q^{24} + 12 q^{25} - q^{26} + 7 q^{27} - 2 q^{28} - 7 q^{29} + q^{30} + 3 q^{31} + 7 q^{32} + 11 q^{33} + 18 q^{34} - 4 q^{35} + 7 q^{36} + 5 q^{37} + 6 q^{38} - q^{39} + q^{40} + 25 q^{41} - 2 q^{42} + 20 q^{43} + 11 q^{44} + q^{45} + 7 q^{46} + 7 q^{48} + 7 q^{49} + 12 q^{50} + 18 q^{51} - q^{52} - 4 q^{53} + 7 q^{54} + 17 q^{55} - 2 q^{56} + 6 q^{57} - 7 q^{58} - 17 q^{59} + q^{60} + 5 q^{61} + 3 q^{62} - 2 q^{63} + 7 q^{64} + 7 q^{65} + 11 q^{66} + 15 q^{67} + 18 q^{68} + 7 q^{69} - 4 q^{70} + 15 q^{71} + 7 q^{72} + 14 q^{73} + 5 q^{74} + 12 q^{75} + 6 q^{76} - 12 q^{77} - q^{78} - 4 q^{79} + q^{80} + 7 q^{81} + 25 q^{82} + 14 q^{83} - 2 q^{84} + 34 q^{85} + 20 q^{86} - 7 q^{87} + 11 q^{88} + 8 q^{89} + q^{90} - 6 q^{91} + 7 q^{92} + 3 q^{93} - 18 q^{95} + 7 q^{96} - 18 q^{97} + 7 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −1.65866 −0.741777 −0.370889 0.928677i \(-0.620947\pi\)
−0.370889 + 0.928677i \(0.620947\pi\)
\(6\) 1.00000 0.408248
\(7\) −1.05824 −0.399977 −0.199988 0.979798i \(-0.564090\pi\)
−0.199988 + 0.979798i \(0.564090\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.65866 −0.524516
\(11\) −2.77476 −0.836622 −0.418311 0.908304i \(-0.637378\pi\)
−0.418311 + 0.908304i \(0.637378\pi\)
\(12\) 1.00000 0.288675
\(13\) 5.36531 1.48807 0.744035 0.668141i \(-0.232910\pi\)
0.744035 + 0.668141i \(0.232910\pi\)
\(14\) −1.05824 −0.282826
\(15\) −1.65866 −0.428265
\(16\) 1.00000 0.250000
\(17\) 5.11610 1.24084 0.620418 0.784271i \(-0.286963\pi\)
0.620418 + 0.784271i \(0.286963\pi\)
\(18\) 1.00000 0.235702
\(19\) −0.230571 −0.0528966 −0.0264483 0.999650i \(-0.508420\pi\)
−0.0264483 + 0.999650i \(0.508420\pi\)
\(20\) −1.65866 −0.370889
\(21\) −1.05824 −0.230927
\(22\) −2.77476 −0.591581
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) −2.24883 −0.449767
\(26\) 5.36531 1.05222
\(27\) 1.00000 0.192450
\(28\) −1.05824 −0.199988
\(29\) −1.00000 −0.185695
\(30\) −1.65866 −0.302829
\(31\) 3.97596 0.714103 0.357052 0.934085i \(-0.383782\pi\)
0.357052 + 0.934085i \(0.383782\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.77476 −0.483024
\(34\) 5.11610 0.877404
\(35\) 1.75526 0.296694
\(36\) 1.00000 0.166667
\(37\) −4.94821 −0.813481 −0.406740 0.913544i \(-0.633335\pi\)
−0.406740 + 0.913544i \(0.633335\pi\)
\(38\) −0.230571 −0.0374036
\(39\) 5.36531 0.859138
\(40\) −1.65866 −0.262258
\(41\) 5.80251 0.906200 0.453100 0.891460i \(-0.350318\pi\)
0.453100 + 0.891460i \(0.350318\pi\)
\(42\) −1.05824 −0.163290
\(43\) 2.66851 0.406943 0.203472 0.979081i \(-0.434778\pi\)
0.203472 + 0.979081i \(0.434778\pi\)
\(44\) −2.77476 −0.418311
\(45\) −1.65866 −0.247259
\(46\) 1.00000 0.147442
\(47\) 4.87939 0.711733 0.355866 0.934537i \(-0.384186\pi\)
0.355866 + 0.934537i \(0.384186\pi\)
\(48\) 1.00000 0.144338
\(49\) −5.88013 −0.840019
\(50\) −2.24883 −0.318033
\(51\) 5.11610 0.716397
\(52\) 5.36531 0.744035
\(53\) 5.26109 0.722667 0.361333 0.932437i \(-0.382322\pi\)
0.361333 + 0.932437i \(0.382322\pi\)
\(54\) 1.00000 0.136083
\(55\) 4.60240 0.620587
\(56\) −1.05824 −0.141413
\(57\) −0.230571 −0.0305399
\(58\) −1.00000 −0.131306
\(59\) 6.68264 0.870006 0.435003 0.900429i \(-0.356747\pi\)
0.435003 + 0.900429i \(0.356747\pi\)
\(60\) −1.65866 −0.214133
\(61\) 1.45744 0.186605 0.0933027 0.995638i \(-0.470258\pi\)
0.0933027 + 0.995638i \(0.470258\pi\)
\(62\) 3.97596 0.504947
\(63\) −1.05824 −0.133326
\(64\) 1.00000 0.125000
\(65\) −8.89925 −1.10382
\(66\) −2.77476 −0.341550
\(67\) −7.07196 −0.863978 −0.431989 0.901879i \(-0.642188\pi\)
−0.431989 + 0.901879i \(0.642188\pi\)
\(68\) 5.11610 0.620418
\(69\) 1.00000 0.120386
\(70\) 1.75526 0.209794
\(71\) 3.51482 0.417132 0.208566 0.978008i \(-0.433120\pi\)
0.208566 + 0.978008i \(0.433120\pi\)
\(72\) 1.00000 0.117851
\(73\) 13.2850 1.55490 0.777448 0.628947i \(-0.216514\pi\)
0.777448 + 0.628947i \(0.216514\pi\)
\(74\) −4.94821 −0.575218
\(75\) −2.24883 −0.259673
\(76\) −0.230571 −0.0264483
\(77\) 2.93636 0.334630
\(78\) 5.36531 0.607502
\(79\) −2.10845 −0.237219 −0.118609 0.992941i \(-0.537844\pi\)
−0.118609 + 0.992941i \(0.537844\pi\)
\(80\) −1.65866 −0.185444
\(81\) 1.00000 0.111111
\(82\) 5.80251 0.640780
\(83\) −1.00201 −0.109984 −0.0549922 0.998487i \(-0.517513\pi\)
−0.0549922 + 0.998487i \(0.517513\pi\)
\(84\) −1.05824 −0.115463
\(85\) −8.48589 −0.920424
\(86\) 2.66851 0.287752
\(87\) −1.00000 −0.107211
\(88\) −2.77476 −0.295791
\(89\) 11.2121 1.18848 0.594242 0.804286i \(-0.297452\pi\)
0.594242 + 0.804286i \(0.297452\pi\)
\(90\) −1.65866 −0.174839
\(91\) −5.67778 −0.595194
\(92\) 1.00000 0.104257
\(93\) 3.97596 0.412288
\(94\) 4.87939 0.503271
\(95\) 0.382440 0.0392375
\(96\) 1.00000 0.102062
\(97\) 0.785722 0.0797780 0.0398890 0.999204i \(-0.487300\pi\)
0.0398890 + 0.999204i \(0.487300\pi\)
\(98\) −5.88013 −0.593983
\(99\) −2.77476 −0.278874
\(100\) −2.24883 −0.224883
\(101\) 19.1478 1.90528 0.952638 0.304105i \(-0.0983575\pi\)
0.952638 + 0.304105i \(0.0983575\pi\)
\(102\) 5.11610 0.506569
\(103\) −14.0574 −1.38512 −0.692559 0.721361i \(-0.743517\pi\)
−0.692559 + 0.721361i \(0.743517\pi\)
\(104\) 5.36531 0.526112
\(105\) 1.75526 0.171296
\(106\) 5.26109 0.511003
\(107\) 10.6798 1.03245 0.516227 0.856452i \(-0.327336\pi\)
0.516227 + 0.856452i \(0.327336\pi\)
\(108\) 1.00000 0.0962250
\(109\) 12.7250 1.21883 0.609416 0.792851i \(-0.291404\pi\)
0.609416 + 0.792851i \(0.291404\pi\)
\(110\) 4.60240 0.438822
\(111\) −4.94821 −0.469663
\(112\) −1.05824 −0.0999942
\(113\) −2.85161 −0.268257 −0.134129 0.990964i \(-0.542824\pi\)
−0.134129 + 0.990964i \(0.542824\pi\)
\(114\) −0.230571 −0.0215950
\(115\) −1.65866 −0.154671
\(116\) −1.00000 −0.0928477
\(117\) 5.36531 0.496023
\(118\) 6.68264 0.615187
\(119\) −5.41406 −0.496306
\(120\) −1.65866 −0.151415
\(121\) −3.30069 −0.300063
\(122\) 1.45744 0.131950
\(123\) 5.80251 0.523195
\(124\) 3.97596 0.357052
\(125\) 12.0234 1.07540
\(126\) −1.05824 −0.0942754
\(127\) 11.5778 1.02737 0.513683 0.857980i \(-0.328281\pi\)
0.513683 + 0.857980i \(0.328281\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.66851 0.234949
\(130\) −8.89925 −0.780516
\(131\) 13.7792 1.20389 0.601947 0.798536i \(-0.294392\pi\)
0.601947 + 0.798536i \(0.294392\pi\)
\(132\) −2.77476 −0.241512
\(133\) 0.243999 0.0211574
\(134\) −7.07196 −0.610924
\(135\) −1.65866 −0.142755
\(136\) 5.11610 0.438702
\(137\) 6.47065 0.552825 0.276412 0.961039i \(-0.410854\pi\)
0.276412 + 0.961039i \(0.410854\pi\)
\(138\) 1.00000 0.0851257
\(139\) −13.2123 −1.12065 −0.560324 0.828273i \(-0.689324\pi\)
−0.560324 + 0.828273i \(0.689324\pi\)
\(140\) 1.75526 0.148347
\(141\) 4.87939 0.410919
\(142\) 3.51482 0.294957
\(143\) −14.8875 −1.24495
\(144\) 1.00000 0.0833333
\(145\) 1.65866 0.137745
\(146\) 13.2850 1.09948
\(147\) −5.88013 −0.484985
\(148\) −4.94821 −0.406740
\(149\) −15.7224 −1.28803 −0.644015 0.765013i \(-0.722733\pi\)
−0.644015 + 0.765013i \(0.722733\pi\)
\(150\) −2.24883 −0.183617
\(151\) −4.23296 −0.344473 −0.172237 0.985056i \(-0.555099\pi\)
−0.172237 + 0.985056i \(0.555099\pi\)
\(152\) −0.230571 −0.0187018
\(153\) 5.11610 0.413612
\(154\) 2.93636 0.236619
\(155\) −6.59478 −0.529705
\(156\) 5.36531 0.429569
\(157\) 12.2854 0.980481 0.490241 0.871587i \(-0.336909\pi\)
0.490241 + 0.871587i \(0.336909\pi\)
\(158\) −2.10845 −0.167739
\(159\) 5.26109 0.417232
\(160\) −1.65866 −0.131129
\(161\) −1.05824 −0.0834009
\(162\) 1.00000 0.0785674
\(163\) 7.95202 0.622850 0.311425 0.950271i \(-0.399194\pi\)
0.311425 + 0.950271i \(0.399194\pi\)
\(164\) 5.80251 0.453100
\(165\) 4.60240 0.358296
\(166\) −1.00201 −0.0777708
\(167\) 0.657958 0.0509144 0.0254572 0.999676i \(-0.491896\pi\)
0.0254572 + 0.999676i \(0.491896\pi\)
\(168\) −1.05824 −0.0816449
\(169\) 15.7866 1.21435
\(170\) −8.48589 −0.650838
\(171\) −0.230571 −0.0176322
\(172\) 2.66851 0.203472
\(173\) 20.7183 1.57519 0.787593 0.616196i \(-0.211327\pi\)
0.787593 + 0.616196i \(0.211327\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 2.37980 0.179896
\(176\) −2.77476 −0.209156
\(177\) 6.68264 0.502298
\(178\) 11.2121 0.840385
\(179\) −5.52978 −0.413315 −0.206657 0.978413i \(-0.566259\pi\)
−0.206657 + 0.978413i \(0.566259\pi\)
\(180\) −1.65866 −0.123630
\(181\) 1.53987 0.114458 0.0572288 0.998361i \(-0.481774\pi\)
0.0572288 + 0.998361i \(0.481774\pi\)
\(182\) −5.67778 −0.420865
\(183\) 1.45744 0.107737
\(184\) 1.00000 0.0737210
\(185\) 8.20742 0.603422
\(186\) 3.97596 0.291531
\(187\) −14.1960 −1.03811
\(188\) 4.87939 0.355866
\(189\) −1.05824 −0.0769756
\(190\) 0.382440 0.0277451
\(191\) −0.643260 −0.0465446 −0.0232723 0.999729i \(-0.507408\pi\)
−0.0232723 + 0.999729i \(0.507408\pi\)
\(192\) 1.00000 0.0721688
\(193\) −2.09993 −0.151156 −0.0755780 0.997140i \(-0.524080\pi\)
−0.0755780 + 0.997140i \(0.524080\pi\)
\(194\) 0.785722 0.0564116
\(195\) −8.89925 −0.637289
\(196\) −5.88013 −0.420009
\(197\) −21.1713 −1.50839 −0.754197 0.656648i \(-0.771974\pi\)
−0.754197 + 0.656648i \(0.771974\pi\)
\(198\) −2.77476 −0.197194
\(199\) −5.72431 −0.405785 −0.202893 0.979201i \(-0.565034\pi\)
−0.202893 + 0.979201i \(0.565034\pi\)
\(200\) −2.24883 −0.159017
\(201\) −7.07196 −0.498818
\(202\) 19.1478 1.34723
\(203\) 1.05824 0.0742738
\(204\) 5.11610 0.358199
\(205\) −9.62441 −0.672198
\(206\) −14.0574 −0.979427
\(207\) 1.00000 0.0695048
\(208\) 5.36531 0.372017
\(209\) 0.639780 0.0442545
\(210\) 1.75526 0.121125
\(211\) −14.7625 −1.01630 −0.508148 0.861270i \(-0.669670\pi\)
−0.508148 + 0.861270i \(0.669670\pi\)
\(212\) 5.26109 0.361333
\(213\) 3.51482 0.240831
\(214\) 10.6798 0.730055
\(215\) −4.42616 −0.301861
\(216\) 1.00000 0.0680414
\(217\) −4.20752 −0.285625
\(218\) 12.7250 0.861844
\(219\) 13.2850 0.897720
\(220\) 4.60240 0.310294
\(221\) 27.4495 1.84645
\(222\) −4.94821 −0.332102
\(223\) −15.7388 −1.05395 −0.526975 0.849881i \(-0.676674\pi\)
−0.526975 + 0.849881i \(0.676674\pi\)
\(224\) −1.05824 −0.0707066
\(225\) −2.24883 −0.149922
\(226\) −2.85161 −0.189686
\(227\) 0.335007 0.0222352 0.0111176 0.999938i \(-0.496461\pi\)
0.0111176 + 0.999938i \(0.496461\pi\)
\(228\) −0.230571 −0.0152699
\(229\) −14.6268 −0.966567 −0.483284 0.875464i \(-0.660556\pi\)
−0.483284 + 0.875464i \(0.660556\pi\)
\(230\) −1.65866 −0.109369
\(231\) 2.93636 0.193198
\(232\) −1.00000 −0.0656532
\(233\) −21.8588 −1.43202 −0.716008 0.698092i \(-0.754032\pi\)
−0.716008 + 0.698092i \(0.754032\pi\)
\(234\) 5.36531 0.350741
\(235\) −8.09327 −0.527947
\(236\) 6.68264 0.435003
\(237\) −2.10845 −0.136958
\(238\) −5.41406 −0.350941
\(239\) −17.7587 −1.14871 −0.574356 0.818605i \(-0.694748\pi\)
−0.574356 + 0.818605i \(0.694748\pi\)
\(240\) −1.65866 −0.107066
\(241\) 8.48990 0.546883 0.273441 0.961889i \(-0.411838\pi\)
0.273441 + 0.961889i \(0.411838\pi\)
\(242\) −3.30069 −0.212176
\(243\) 1.00000 0.0641500
\(244\) 1.45744 0.0933027
\(245\) 9.75316 0.623106
\(246\) 5.80251 0.369955
\(247\) −1.23709 −0.0787139
\(248\) 3.97596 0.252474
\(249\) −1.00201 −0.0634996
\(250\) 12.0234 0.760425
\(251\) 10.1452 0.640357 0.320179 0.947357i \(-0.396257\pi\)
0.320179 + 0.947357i \(0.396257\pi\)
\(252\) −1.05824 −0.0666628
\(253\) −2.77476 −0.174448
\(254\) 11.5778 0.726457
\(255\) −8.48589 −0.531407
\(256\) 1.00000 0.0625000
\(257\) 5.91982 0.369268 0.184634 0.982807i \(-0.440890\pi\)
0.184634 + 0.982807i \(0.440890\pi\)
\(258\) 2.66851 0.166134
\(259\) 5.23639 0.325374
\(260\) −8.89925 −0.551908
\(261\) −1.00000 −0.0618984
\(262\) 13.7792 0.851282
\(263\) −21.7397 −1.34052 −0.670262 0.742124i \(-0.733818\pi\)
−0.670262 + 0.742124i \(0.733818\pi\)
\(264\) −2.77476 −0.170775
\(265\) −8.72639 −0.536058
\(266\) 0.243999 0.0149606
\(267\) 11.2121 0.686171
\(268\) −7.07196 −0.431989
\(269\) −7.21655 −0.440001 −0.220000 0.975500i \(-0.570606\pi\)
−0.220000 + 0.975500i \(0.570606\pi\)
\(270\) −1.65866 −0.100943
\(271\) −17.0883 −1.03804 −0.519020 0.854762i \(-0.673703\pi\)
−0.519020 + 0.854762i \(0.673703\pi\)
\(272\) 5.11610 0.310209
\(273\) −5.67778 −0.343635
\(274\) 6.47065 0.390906
\(275\) 6.23998 0.376285
\(276\) 1.00000 0.0601929
\(277\) −4.93916 −0.296765 −0.148383 0.988930i \(-0.547407\pi\)
−0.148383 + 0.988930i \(0.547407\pi\)
\(278\) −13.2123 −0.792418
\(279\) 3.97596 0.238034
\(280\) 1.75526 0.104897
\(281\) −18.0978 −1.07962 −0.539812 0.841786i \(-0.681505\pi\)
−0.539812 + 0.841786i \(0.681505\pi\)
\(282\) 4.87939 0.290564
\(283\) 4.12106 0.244971 0.122486 0.992470i \(-0.460913\pi\)
0.122486 + 0.992470i \(0.460913\pi\)
\(284\) 3.51482 0.208566
\(285\) 0.382440 0.0226538
\(286\) −14.8875 −0.880315
\(287\) −6.14044 −0.362459
\(288\) 1.00000 0.0589256
\(289\) 9.17447 0.539675
\(290\) 1.65866 0.0974001
\(291\) 0.785722 0.0460599
\(292\) 13.2850 0.777448
\(293\) −25.3794 −1.48268 −0.741342 0.671128i \(-0.765810\pi\)
−0.741342 + 0.671128i \(0.765810\pi\)
\(294\) −5.88013 −0.342936
\(295\) −11.0843 −0.645350
\(296\) −4.94821 −0.287609
\(297\) −2.77476 −0.161008
\(298\) −15.7224 −0.910775
\(299\) 5.36531 0.310284
\(300\) −2.24883 −0.129837
\(301\) −2.82392 −0.162768
\(302\) −4.23296 −0.243579
\(303\) 19.1478 1.10001
\(304\) −0.230571 −0.0132242
\(305\) −2.41739 −0.138420
\(306\) 5.11610 0.292468
\(307\) 3.50230 0.199887 0.0999434 0.994993i \(-0.468134\pi\)
0.0999434 + 0.994993i \(0.468134\pi\)
\(308\) 2.93636 0.167315
\(309\) −14.0574 −0.799698
\(310\) −6.59478 −0.374558
\(311\) −4.24875 −0.240924 −0.120462 0.992718i \(-0.538438\pi\)
−0.120462 + 0.992718i \(0.538438\pi\)
\(312\) 5.36531 0.303751
\(313\) −25.2728 −1.42850 −0.714251 0.699890i \(-0.753232\pi\)
−0.714251 + 0.699890i \(0.753232\pi\)
\(314\) 12.2854 0.693305
\(315\) 1.75526 0.0988979
\(316\) −2.10845 −0.118609
\(317\) 7.84844 0.440812 0.220406 0.975408i \(-0.429262\pi\)
0.220406 + 0.975408i \(0.429262\pi\)
\(318\) 5.26109 0.295028
\(319\) 2.77476 0.155357
\(320\) −1.65866 −0.0927221
\(321\) 10.6798 0.596088
\(322\) −1.05824 −0.0589734
\(323\) −1.17962 −0.0656361
\(324\) 1.00000 0.0555556
\(325\) −12.0657 −0.669285
\(326\) 7.95202 0.440421
\(327\) 12.7250 0.703693
\(328\) 5.80251 0.320390
\(329\) −5.16356 −0.284677
\(330\) 4.60240 0.253354
\(331\) 25.8647 1.42165 0.710825 0.703369i \(-0.248322\pi\)
0.710825 + 0.703369i \(0.248322\pi\)
\(332\) −1.00201 −0.0549922
\(333\) −4.94821 −0.271160
\(334\) 0.657958 0.0360019
\(335\) 11.7300 0.640879
\(336\) −1.05824 −0.0577317
\(337\) −19.1062 −1.04078 −0.520392 0.853928i \(-0.674214\pi\)
−0.520392 + 0.853928i \(0.674214\pi\)
\(338\) 15.7866 0.858677
\(339\) −2.85161 −0.154878
\(340\) −8.48589 −0.460212
\(341\) −11.0323 −0.597435
\(342\) −0.230571 −0.0124679
\(343\) 13.6303 0.735965
\(344\) 2.66851 0.143876
\(345\) −1.65866 −0.0892995
\(346\) 20.7183 1.11382
\(347\) −34.6891 −1.86221 −0.931103 0.364757i \(-0.881152\pi\)
−0.931103 + 0.364757i \(0.881152\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −6.02554 −0.322540 −0.161270 0.986910i \(-0.551559\pi\)
−0.161270 + 0.986910i \(0.551559\pi\)
\(350\) 2.37980 0.127206
\(351\) 5.36531 0.286379
\(352\) −2.77476 −0.147895
\(353\) 30.5662 1.62687 0.813437 0.581653i \(-0.197594\pi\)
0.813437 + 0.581653i \(0.197594\pi\)
\(354\) 6.68264 0.355178
\(355\) −5.82990 −0.309419
\(356\) 11.2121 0.594242
\(357\) −5.41406 −0.286542
\(358\) −5.52978 −0.292258
\(359\) 1.92390 0.101540 0.0507698 0.998710i \(-0.483833\pi\)
0.0507698 + 0.998710i \(0.483833\pi\)
\(360\) −1.65866 −0.0874193
\(361\) −18.9468 −0.997202
\(362\) 1.53987 0.0809337
\(363\) −3.30069 −0.173241
\(364\) −5.67778 −0.297597
\(365\) −22.0354 −1.15339
\(366\) 1.45744 0.0761814
\(367\) −4.46795 −0.233225 −0.116613 0.993177i \(-0.537204\pi\)
−0.116613 + 0.993177i \(0.537204\pi\)
\(368\) 1.00000 0.0521286
\(369\) 5.80251 0.302067
\(370\) 8.20742 0.426683
\(371\) −5.56750 −0.289050
\(372\) 3.97596 0.206144
\(373\) −1.91010 −0.0989013 −0.0494507 0.998777i \(-0.515747\pi\)
−0.0494507 + 0.998777i \(0.515747\pi\)
\(374\) −14.1960 −0.734056
\(375\) 12.0234 0.620885
\(376\) 4.87939 0.251635
\(377\) −5.36531 −0.276328
\(378\) −1.05824 −0.0544300
\(379\) 7.23365 0.371568 0.185784 0.982591i \(-0.440518\pi\)
0.185784 + 0.982591i \(0.440518\pi\)
\(380\) 0.382440 0.0196188
\(381\) 11.5778 0.593150
\(382\) −0.643260 −0.0329120
\(383\) −5.16043 −0.263686 −0.131843 0.991271i \(-0.542089\pi\)
−0.131843 + 0.991271i \(0.542089\pi\)
\(384\) 1.00000 0.0510310
\(385\) −4.87044 −0.248221
\(386\) −2.09993 −0.106883
\(387\) 2.66851 0.135648
\(388\) 0.785722 0.0398890
\(389\) −21.2095 −1.07537 −0.537683 0.843147i \(-0.680700\pi\)
−0.537683 + 0.843147i \(0.680700\pi\)
\(390\) −8.89925 −0.450631
\(391\) 5.11610 0.258732
\(392\) −5.88013 −0.296991
\(393\) 13.7792 0.695069
\(394\) −21.1713 −1.06660
\(395\) 3.49721 0.175964
\(396\) −2.77476 −0.139437
\(397\) 37.6136 1.88777 0.943887 0.330268i \(-0.107139\pi\)
0.943887 + 0.330268i \(0.107139\pi\)
\(398\) −5.72431 −0.286934
\(399\) 0.243999 0.0122152
\(400\) −2.24883 −0.112442
\(401\) 16.0932 0.803657 0.401829 0.915715i \(-0.368375\pi\)
0.401829 + 0.915715i \(0.368375\pi\)
\(402\) −7.07196 −0.352717
\(403\) 21.3323 1.06264
\(404\) 19.1478 0.952638
\(405\) −1.65866 −0.0824197
\(406\) 1.05824 0.0525195
\(407\) 13.7301 0.680576
\(408\) 5.11610 0.253285
\(409\) −0.982969 −0.0486047 −0.0243023 0.999705i \(-0.507736\pi\)
−0.0243023 + 0.999705i \(0.507736\pi\)
\(410\) −9.62441 −0.475316
\(411\) 6.47065 0.319174
\(412\) −14.0574 −0.692559
\(413\) −7.07183 −0.347982
\(414\) 1.00000 0.0491473
\(415\) 1.66199 0.0815840
\(416\) 5.36531 0.263056
\(417\) −13.2123 −0.647007
\(418\) 0.639780 0.0312927
\(419\) 23.3826 1.14231 0.571157 0.820841i \(-0.306495\pi\)
0.571157 + 0.820841i \(0.306495\pi\)
\(420\) 1.75526 0.0856481
\(421\) −0.883707 −0.0430693 −0.0215346 0.999768i \(-0.506855\pi\)
−0.0215346 + 0.999768i \(0.506855\pi\)
\(422\) −14.7625 −0.718630
\(423\) 4.87939 0.237244
\(424\) 5.26109 0.255501
\(425\) −11.5053 −0.558087
\(426\) 3.51482 0.170293
\(427\) −1.54231 −0.0746379
\(428\) 10.6798 0.516227
\(429\) −14.8875 −0.718774
\(430\) −4.42616 −0.213448
\(431\) 36.1666 1.74208 0.871041 0.491210i \(-0.163445\pi\)
0.871041 + 0.491210i \(0.163445\pi\)
\(432\) 1.00000 0.0481125
\(433\) −17.2988 −0.831329 −0.415664 0.909518i \(-0.636451\pi\)
−0.415664 + 0.909518i \(0.636451\pi\)
\(434\) −4.20752 −0.201967
\(435\) 1.65866 0.0795268
\(436\) 12.7250 0.609416
\(437\) −0.230571 −0.0110297
\(438\) 13.2850 0.634784
\(439\) −31.3801 −1.49769 −0.748845 0.662745i \(-0.769391\pi\)
−0.748845 + 0.662745i \(0.769391\pi\)
\(440\) 4.60240 0.219411
\(441\) −5.88013 −0.280006
\(442\) 27.4495 1.30564
\(443\) 8.51738 0.404673 0.202336 0.979316i \(-0.435147\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(444\) −4.94821 −0.234832
\(445\) −18.5972 −0.881590
\(446\) −15.7388 −0.745255
\(447\) −15.7224 −0.743644
\(448\) −1.05824 −0.0499971
\(449\) 23.0308 1.08689 0.543445 0.839444i \(-0.317119\pi\)
0.543445 + 0.839444i \(0.317119\pi\)
\(450\) −2.24883 −0.106011
\(451\) −16.1006 −0.758147
\(452\) −2.85161 −0.134129
\(453\) −4.23296 −0.198882
\(454\) 0.335007 0.0157226
\(455\) 9.41754 0.441501
\(456\) −0.230571 −0.0107975
\(457\) −38.4332 −1.79783 −0.898914 0.438126i \(-0.855642\pi\)
−0.898914 + 0.438126i \(0.855642\pi\)
\(458\) −14.6268 −0.683466
\(459\) 5.11610 0.238799
\(460\) −1.65866 −0.0773356
\(461\) 20.1537 0.938652 0.469326 0.883025i \(-0.344497\pi\)
0.469326 + 0.883025i \(0.344497\pi\)
\(462\) 2.93636 0.136612
\(463\) −36.7091 −1.70602 −0.853009 0.521896i \(-0.825225\pi\)
−0.853009 + 0.521896i \(0.825225\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −6.59478 −0.305826
\(466\) −21.8588 −1.01259
\(467\) −26.7479 −1.23775 −0.618873 0.785491i \(-0.712410\pi\)
−0.618873 + 0.785491i \(0.712410\pi\)
\(468\) 5.36531 0.248012
\(469\) 7.48383 0.345571
\(470\) −8.09327 −0.373315
\(471\) 12.2854 0.566081
\(472\) 6.68264 0.307593
\(473\) −7.40447 −0.340458
\(474\) −2.10845 −0.0968442
\(475\) 0.518516 0.0237912
\(476\) −5.41406 −0.248153
\(477\) 5.26109 0.240889
\(478\) −17.7587 −0.812263
\(479\) −6.15789 −0.281361 −0.140681 0.990055i \(-0.544929\pi\)
−0.140681 + 0.990055i \(0.544929\pi\)
\(480\) −1.65866 −0.0757073
\(481\) −26.5487 −1.21052
\(482\) 8.48990 0.386704
\(483\) −1.05824 −0.0481516
\(484\) −3.30069 −0.150031
\(485\) −1.30325 −0.0591775
\(486\) 1.00000 0.0453609
\(487\) 24.2773 1.10011 0.550054 0.835129i \(-0.314607\pi\)
0.550054 + 0.835129i \(0.314607\pi\)
\(488\) 1.45744 0.0659750
\(489\) 7.95202 0.359603
\(490\) 9.75316 0.440603
\(491\) −27.4076 −1.23689 −0.618443 0.785830i \(-0.712236\pi\)
−0.618443 + 0.785830i \(0.712236\pi\)
\(492\) 5.80251 0.261597
\(493\) −5.11610 −0.230418
\(494\) −1.23709 −0.0556591
\(495\) 4.60240 0.206862
\(496\) 3.97596 0.178526
\(497\) −3.71952 −0.166843
\(498\) −1.00201 −0.0449010
\(499\) 15.6677 0.701384 0.350692 0.936491i \(-0.385946\pi\)
0.350692 + 0.936491i \(0.385946\pi\)
\(500\) 12.0234 0.537702
\(501\) 0.657958 0.0293954
\(502\) 10.1452 0.452801
\(503\) −35.2818 −1.57314 −0.786569 0.617503i \(-0.788144\pi\)
−0.786569 + 0.617503i \(0.788144\pi\)
\(504\) −1.05824 −0.0471377
\(505\) −31.7598 −1.41329
\(506\) −2.77476 −0.123353
\(507\) 15.7866 0.701107
\(508\) 11.5778 0.513683
\(509\) −18.7608 −0.831556 −0.415778 0.909466i \(-0.636491\pi\)
−0.415778 + 0.909466i \(0.636491\pi\)
\(510\) −8.48589 −0.375761
\(511\) −14.0587 −0.621922
\(512\) 1.00000 0.0441942
\(513\) −0.230571 −0.0101800
\(514\) 5.91982 0.261112
\(515\) 23.3165 1.02745
\(516\) 2.66851 0.117474
\(517\) −13.5392 −0.595451
\(518\) 5.23639 0.230074
\(519\) 20.7183 0.909434
\(520\) −8.89925 −0.390258
\(521\) 44.2494 1.93860 0.969300 0.245880i \(-0.0790768\pi\)
0.969300 + 0.245880i \(0.0790768\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −2.82364 −0.123469 −0.0617346 0.998093i \(-0.519663\pi\)
−0.0617346 + 0.998093i \(0.519663\pi\)
\(524\) 13.7792 0.601947
\(525\) 2.37980 0.103863
\(526\) −21.7397 −0.947894
\(527\) 20.3414 0.886085
\(528\) −2.77476 −0.120756
\(529\) 1.00000 0.0434783
\(530\) −8.72639 −0.379050
\(531\) 6.68264 0.290002
\(532\) 0.243999 0.0105787
\(533\) 31.1323 1.34849
\(534\) 11.2121 0.485196
\(535\) −17.7142 −0.765851
\(536\) −7.07196 −0.305462
\(537\) −5.52978 −0.238627
\(538\) −7.21655 −0.311127
\(539\) 16.3160 0.702778
\(540\) −1.65866 −0.0713775
\(541\) −17.0152 −0.731539 −0.365770 0.930705i \(-0.619194\pi\)
−0.365770 + 0.930705i \(0.619194\pi\)
\(542\) −17.0883 −0.734005
\(543\) 1.53987 0.0660821
\(544\) 5.11610 0.219351
\(545\) −21.1065 −0.904102
\(546\) −5.67778 −0.242987
\(547\) 12.8246 0.548342 0.274171 0.961681i \(-0.411597\pi\)
0.274171 + 0.961681i \(0.411597\pi\)
\(548\) 6.47065 0.276412
\(549\) 1.45744 0.0622018
\(550\) 6.23998 0.266074
\(551\) 0.230571 0.00982266
\(552\) 1.00000 0.0425628
\(553\) 2.23124 0.0948821
\(554\) −4.93916 −0.209845
\(555\) 8.20742 0.348386
\(556\) −13.2123 −0.560324
\(557\) −31.7301 −1.34445 −0.672224 0.740348i \(-0.734661\pi\)
−0.672224 + 0.740348i \(0.734661\pi\)
\(558\) 3.97596 0.168316
\(559\) 14.3174 0.605560
\(560\) 1.75526 0.0741734
\(561\) −14.1960 −0.599354
\(562\) −18.0978 −0.763409
\(563\) −5.00413 −0.210899 −0.105450 0.994425i \(-0.533628\pi\)
−0.105450 + 0.994425i \(0.533628\pi\)
\(564\) 4.87939 0.205459
\(565\) 4.72987 0.198987
\(566\) 4.12106 0.173221
\(567\) −1.05824 −0.0444419
\(568\) 3.51482 0.147478
\(569\) 41.9076 1.75686 0.878429 0.477874i \(-0.158592\pi\)
0.878429 + 0.477874i \(0.158592\pi\)
\(570\) 0.382440 0.0160186
\(571\) −16.3772 −0.685366 −0.342683 0.939451i \(-0.611336\pi\)
−0.342683 + 0.939451i \(0.611336\pi\)
\(572\) −14.8875 −0.622476
\(573\) −0.643260 −0.0268726
\(574\) −6.14044 −0.256297
\(575\) −2.24883 −0.0937829
\(576\) 1.00000 0.0416667
\(577\) 28.0685 1.16851 0.584254 0.811571i \(-0.301387\pi\)
0.584254 + 0.811571i \(0.301387\pi\)
\(578\) 9.17447 0.381608
\(579\) −2.09993 −0.0872700
\(580\) 1.65866 0.0688723
\(581\) 1.06036 0.0439912
\(582\) 0.785722 0.0325692
\(583\) −14.5983 −0.604599
\(584\) 13.2850 0.549739
\(585\) −8.89925 −0.367939
\(586\) −25.3794 −1.04842
\(587\) −37.7741 −1.55910 −0.779551 0.626339i \(-0.784553\pi\)
−0.779551 + 0.626339i \(0.784553\pi\)
\(588\) −5.88013 −0.242492
\(589\) −0.916741 −0.0377737
\(590\) −11.0843 −0.456332
\(591\) −21.1713 −0.870872
\(592\) −4.94821 −0.203370
\(593\) 18.8453 0.773885 0.386942 0.922104i \(-0.373531\pi\)
0.386942 + 0.922104i \(0.373531\pi\)
\(594\) −2.77476 −0.113850
\(595\) 8.98010 0.368148
\(596\) −15.7224 −0.644015
\(597\) −5.72431 −0.234280
\(598\) 5.36531 0.219404
\(599\) −24.1452 −0.986548 −0.493274 0.869874i \(-0.664200\pi\)
−0.493274 + 0.869874i \(0.664200\pi\)
\(600\) −2.24883 −0.0918083
\(601\) −8.78119 −0.358192 −0.179096 0.983832i \(-0.557317\pi\)
−0.179096 + 0.983832i \(0.557317\pi\)
\(602\) −2.82392 −0.115094
\(603\) −7.07196 −0.287993
\(604\) −4.23296 −0.172237
\(605\) 5.47474 0.222580
\(606\) 19.1478 0.777826
\(607\) 14.6236 0.593554 0.296777 0.954947i \(-0.404088\pi\)
0.296777 + 0.954947i \(0.404088\pi\)
\(608\) −0.230571 −0.00935089
\(609\) 1.05824 0.0428820
\(610\) −2.41739 −0.0978775
\(611\) 26.1795 1.05911
\(612\) 5.11610 0.206806
\(613\) 19.3263 0.780582 0.390291 0.920692i \(-0.372374\pi\)
0.390291 + 0.920692i \(0.372374\pi\)
\(614\) 3.50230 0.141341
\(615\) −9.62441 −0.388094
\(616\) 2.93636 0.118309
\(617\) 21.3271 0.858595 0.429298 0.903163i \(-0.358761\pi\)
0.429298 + 0.903163i \(0.358761\pi\)
\(618\) −14.0574 −0.565472
\(619\) 32.5977 1.31021 0.655106 0.755537i \(-0.272624\pi\)
0.655106 + 0.755537i \(0.272624\pi\)
\(620\) −6.59478 −0.264853
\(621\) 1.00000 0.0401286
\(622\) −4.24875 −0.170359
\(623\) −11.8651 −0.475366
\(624\) 5.36531 0.214784
\(625\) −8.69857 −0.347943
\(626\) −25.2728 −1.01010
\(627\) 0.639780 0.0255504
\(628\) 12.2854 0.490241
\(629\) −25.3155 −1.00940
\(630\) 1.75526 0.0699314
\(631\) 9.71994 0.386945 0.193472 0.981106i \(-0.438025\pi\)
0.193472 + 0.981106i \(0.438025\pi\)
\(632\) −2.10845 −0.0838696
\(633\) −14.7625 −0.586759
\(634\) 7.84844 0.311701
\(635\) −19.2037 −0.762076
\(636\) 5.26109 0.208616
\(637\) −31.5487 −1.25001
\(638\) 2.77476 0.109854
\(639\) 3.51482 0.139044
\(640\) −1.65866 −0.0655644
\(641\) −16.9723 −0.670364 −0.335182 0.942153i \(-0.608798\pi\)
−0.335182 + 0.942153i \(0.608798\pi\)
\(642\) 10.6798 0.421498
\(643\) −13.5548 −0.534548 −0.267274 0.963621i \(-0.586123\pi\)
−0.267274 + 0.963621i \(0.586123\pi\)
\(644\) −1.05824 −0.0417005
\(645\) −4.42616 −0.174280
\(646\) −1.17962 −0.0464117
\(647\) −8.77165 −0.344849 −0.172425 0.985023i \(-0.555160\pi\)
−0.172425 + 0.985023i \(0.555160\pi\)
\(648\) 1.00000 0.0392837
\(649\) −18.5427 −0.727866
\(650\) −12.0657 −0.473256
\(651\) −4.20752 −0.164906
\(652\) 7.95202 0.311425
\(653\) 6.25780 0.244887 0.122443 0.992476i \(-0.460927\pi\)
0.122443 + 0.992476i \(0.460927\pi\)
\(654\) 12.7250 0.497586
\(655\) −22.8551 −0.893022
\(656\) 5.80251 0.226550
\(657\) 13.2850 0.518299
\(658\) −5.16356 −0.201297
\(659\) 3.22585 0.125661 0.0628305 0.998024i \(-0.479987\pi\)
0.0628305 + 0.998024i \(0.479987\pi\)
\(660\) 4.60240 0.179148
\(661\) −19.7731 −0.769085 −0.384542 0.923107i \(-0.625641\pi\)
−0.384542 + 0.923107i \(0.625641\pi\)
\(662\) 25.8647 1.00526
\(663\) 27.4495 1.06605
\(664\) −1.00201 −0.0388854
\(665\) −0.404713 −0.0156941
\(666\) −4.94821 −0.191739
\(667\) −1.00000 −0.0387202
\(668\) 0.657958 0.0254572
\(669\) −15.7388 −0.608498
\(670\) 11.7300 0.453170
\(671\) −4.04404 −0.156118
\(672\) −1.05824 −0.0408225
\(673\) 3.45573 0.133208 0.0666042 0.997779i \(-0.478784\pi\)
0.0666042 + 0.997779i \(0.478784\pi\)
\(674\) −19.1062 −0.735945
\(675\) −2.24883 −0.0865577
\(676\) 15.7866 0.607176
\(677\) −15.5507 −0.597660 −0.298830 0.954306i \(-0.596596\pi\)
−0.298830 + 0.954306i \(0.596596\pi\)
\(678\) −2.85161 −0.109516
\(679\) −0.831482 −0.0319094
\(680\) −8.48589 −0.325419
\(681\) 0.335007 0.0128375
\(682\) −11.0323 −0.422450
\(683\) −19.9638 −0.763893 −0.381947 0.924184i \(-0.624746\pi\)
−0.381947 + 0.924184i \(0.624746\pi\)
\(684\) −0.230571 −0.00881611
\(685\) −10.7326 −0.410073
\(686\) 13.6303 0.520406
\(687\) −14.6268 −0.558048
\(688\) 2.66851 0.101736
\(689\) 28.2274 1.07538
\(690\) −1.65866 −0.0631443
\(691\) 31.5337 1.19960 0.599800 0.800150i \(-0.295247\pi\)
0.599800 + 0.800150i \(0.295247\pi\)
\(692\) 20.7183 0.787593
\(693\) 2.93636 0.111543
\(694\) −34.6891 −1.31678
\(695\) 21.9147 0.831272
\(696\) −1.00000 −0.0379049
\(697\) 29.6862 1.12445
\(698\) −6.02554 −0.228070
\(699\) −21.8588 −0.826774
\(700\) 2.37980 0.0899482
\(701\) 39.1587 1.47900 0.739502 0.673155i \(-0.235061\pi\)
0.739502 + 0.673155i \(0.235061\pi\)
\(702\) 5.36531 0.202501
\(703\) 1.14091 0.0430304
\(704\) −2.77476 −0.104578
\(705\) −8.09327 −0.304810
\(706\) 30.5662 1.15037
\(707\) −20.2629 −0.762067
\(708\) 6.68264 0.251149
\(709\) 23.5832 0.885685 0.442842 0.896600i \(-0.353970\pi\)
0.442842 + 0.896600i \(0.353970\pi\)
\(710\) −5.82990 −0.218792
\(711\) −2.10845 −0.0790730
\(712\) 11.2121 0.420192
\(713\) 3.97596 0.148901
\(714\) −5.41406 −0.202616
\(715\) 24.6933 0.923477
\(716\) −5.52978 −0.206657
\(717\) −17.7587 −0.663210
\(718\) 1.92390 0.0717994
\(719\) 20.4535 0.762787 0.381393 0.924413i \(-0.375444\pi\)
0.381393 + 0.924413i \(0.375444\pi\)
\(720\) −1.65866 −0.0618148
\(721\) 14.8761 0.554015
\(722\) −18.9468 −0.705128
\(723\) 8.48990 0.315743
\(724\) 1.53987 0.0572288
\(725\) 2.24883 0.0835196
\(726\) −3.30069 −0.122500
\(727\) 48.3025 1.79144 0.895721 0.444617i \(-0.146660\pi\)
0.895721 + 0.444617i \(0.146660\pi\)
\(728\) −5.67778 −0.210433
\(729\) 1.00000 0.0370370
\(730\) −22.0354 −0.815567
\(731\) 13.6523 0.504950
\(732\) 1.45744 0.0538684
\(733\) −21.4173 −0.791065 −0.395532 0.918452i \(-0.629440\pi\)
−0.395532 + 0.918452i \(0.629440\pi\)
\(734\) −4.46795 −0.164915
\(735\) 9.75316 0.359751
\(736\) 1.00000 0.0368605
\(737\) 19.6230 0.722823
\(738\) 5.80251 0.213593
\(739\) 16.1125 0.592708 0.296354 0.955078i \(-0.404229\pi\)
0.296354 + 0.955078i \(0.404229\pi\)
\(740\) 8.20742 0.301711
\(741\) −1.23709 −0.0454455
\(742\) −5.56750 −0.204389
\(743\) −37.6074 −1.37968 −0.689840 0.723962i \(-0.742319\pi\)
−0.689840 + 0.723962i \(0.742319\pi\)
\(744\) 3.97596 0.145766
\(745\) 26.0782 0.955431
\(746\) −1.91010 −0.0699338
\(747\) −1.00201 −0.0366615
\(748\) −14.1960 −0.519056
\(749\) −11.3018 −0.412958
\(750\) 12.0234 0.439032
\(751\) 23.3856 0.853354 0.426677 0.904404i \(-0.359684\pi\)
0.426677 + 0.904404i \(0.359684\pi\)
\(752\) 4.87939 0.177933
\(753\) 10.1452 0.369710
\(754\) −5.36531 −0.195393
\(755\) 7.02105 0.255522
\(756\) −1.05824 −0.0384878
\(757\) −8.74211 −0.317737 −0.158869 0.987300i \(-0.550785\pi\)
−0.158869 + 0.987300i \(0.550785\pi\)
\(758\) 7.23365 0.262738
\(759\) −2.77476 −0.100718
\(760\) 0.382440 0.0138726
\(761\) 33.9207 1.22962 0.614812 0.788674i \(-0.289232\pi\)
0.614812 + 0.788674i \(0.289232\pi\)
\(762\) 11.5778 0.419420
\(763\) −13.4661 −0.487505
\(764\) −0.643260 −0.0232723
\(765\) −8.48589 −0.306808
\(766\) −5.16043 −0.186454
\(767\) 35.8545 1.29463
\(768\) 1.00000 0.0360844
\(769\) −28.3357 −1.02181 −0.510906 0.859637i \(-0.670690\pi\)
−0.510906 + 0.859637i \(0.670690\pi\)
\(770\) −4.87044 −0.175518
\(771\) 5.91982 0.213197
\(772\) −2.09993 −0.0755780
\(773\) −49.2474 −1.77131 −0.885653 0.464347i \(-0.846289\pi\)
−0.885653 + 0.464347i \(0.846289\pi\)
\(774\) 2.66851 0.0959175
\(775\) −8.94127 −0.321180
\(776\) 0.785722 0.0282058
\(777\) 5.23639 0.187855
\(778\) −21.2095 −0.760398
\(779\) −1.33789 −0.0479349
\(780\) −8.89925 −0.318644
\(781\) −9.75278 −0.348982
\(782\) 5.11610 0.182951
\(783\) −1.00000 −0.0357371
\(784\) −5.88013 −0.210005
\(785\) −20.3773 −0.727299
\(786\) 13.7792 0.491488
\(787\) −19.2819 −0.687325 −0.343662 0.939093i \(-0.611668\pi\)
−0.343662 + 0.939093i \(0.611668\pi\)
\(788\) −21.1713 −0.754197
\(789\) −21.7397 −0.773952
\(790\) 3.49721 0.124425
\(791\) 3.01769 0.107297
\(792\) −2.77476 −0.0985969
\(793\) 7.81960 0.277682
\(794\) 37.6136 1.33486
\(795\) −8.72639 −0.309493
\(796\) −5.72431 −0.202893
\(797\) 34.3943 1.21831 0.609154 0.793052i \(-0.291509\pi\)
0.609154 + 0.793052i \(0.291509\pi\)
\(798\) 0.243999 0.00863748
\(799\) 24.9635 0.883144
\(800\) −2.24883 −0.0795083
\(801\) 11.2121 0.396161
\(802\) 16.0932 0.568272
\(803\) −36.8628 −1.30086
\(804\) −7.07196 −0.249409
\(805\) 1.75526 0.0618649
\(806\) 21.3323 0.751397
\(807\) −7.21655 −0.254034
\(808\) 19.1478 0.673617
\(809\) 4.95498 0.174208 0.0871039 0.996199i \(-0.472239\pi\)
0.0871039 + 0.996199i \(0.472239\pi\)
\(810\) −1.65866 −0.0582795
\(811\) 25.5234 0.896248 0.448124 0.893971i \(-0.352092\pi\)
0.448124 + 0.893971i \(0.352092\pi\)
\(812\) 1.05824 0.0371369
\(813\) −17.0883 −0.599312
\(814\) 13.7301 0.481240
\(815\) −13.1897 −0.462016
\(816\) 5.11610 0.179099
\(817\) −0.615281 −0.0215259
\(818\) −0.982969 −0.0343687
\(819\) −5.67778 −0.198398
\(820\) −9.62441 −0.336099
\(821\) 38.8049 1.35430 0.677149 0.735846i \(-0.263215\pi\)
0.677149 + 0.735846i \(0.263215\pi\)
\(822\) 6.47065 0.225690
\(823\) −31.7396 −1.10637 −0.553187 0.833057i \(-0.686588\pi\)
−0.553187 + 0.833057i \(0.686588\pi\)
\(824\) −14.0574 −0.489713
\(825\) 6.23998 0.217248
\(826\) −7.07183 −0.246061
\(827\) 31.9250 1.11014 0.555071 0.831803i \(-0.312691\pi\)
0.555071 + 0.831803i \(0.312691\pi\)
\(828\) 1.00000 0.0347524
\(829\) 22.6692 0.787335 0.393668 0.919253i \(-0.371206\pi\)
0.393668 + 0.919253i \(0.371206\pi\)
\(830\) 1.66199 0.0576886
\(831\) −4.93916 −0.171337
\(832\) 5.36531 0.186009
\(833\) −30.0833 −1.04233
\(834\) −13.2123 −0.457503
\(835\) −1.09133 −0.0377671
\(836\) 0.639780 0.0221273
\(837\) 3.97596 0.137429
\(838\) 23.3826 0.807738
\(839\) 2.79061 0.0963426 0.0481713 0.998839i \(-0.484661\pi\)
0.0481713 + 0.998839i \(0.484661\pi\)
\(840\) 1.75526 0.0605623
\(841\) 1.00000 0.0344828
\(842\) −0.883707 −0.0304546
\(843\) −18.0978 −0.623321
\(844\) −14.7625 −0.508148
\(845\) −26.1846 −0.900779
\(846\) 4.87939 0.167757
\(847\) 3.49292 0.120018
\(848\) 5.26109 0.180667
\(849\) 4.12106 0.141434
\(850\) −11.5053 −0.394627
\(851\) −4.94821 −0.169623
\(852\) 3.51482 0.120416
\(853\) 3.10448 0.106295 0.0531477 0.998587i \(-0.483075\pi\)
0.0531477 + 0.998587i \(0.483075\pi\)
\(854\) −1.54231 −0.0527769
\(855\) 0.382440 0.0130792
\(856\) 10.6798 0.365028
\(857\) 32.0106 1.09346 0.546731 0.837309i \(-0.315872\pi\)
0.546731 + 0.837309i \(0.315872\pi\)
\(858\) −14.8875 −0.508250
\(859\) 47.9026 1.63442 0.817209 0.576342i \(-0.195520\pi\)
0.817209 + 0.576342i \(0.195520\pi\)
\(860\) −4.42616 −0.150931
\(861\) −6.14044 −0.209266
\(862\) 36.1666 1.23184
\(863\) 8.14152 0.277141 0.138570 0.990353i \(-0.455749\pi\)
0.138570 + 0.990353i \(0.455749\pi\)
\(864\) 1.00000 0.0340207
\(865\) −34.3647 −1.16844
\(866\) −17.2988 −0.587838
\(867\) 9.17447 0.311581
\(868\) −4.20752 −0.142812
\(869\) 5.85044 0.198463
\(870\) 1.65866 0.0562340
\(871\) −37.9433 −1.28566
\(872\) 12.7250 0.430922
\(873\) 0.785722 0.0265927
\(874\) −0.230571 −0.00779918
\(875\) −12.7236 −0.430137
\(876\) 13.2850 0.448860
\(877\) 5.35231 0.180735 0.0903674 0.995908i \(-0.471196\pi\)
0.0903674 + 0.995908i \(0.471196\pi\)
\(878\) −31.3801 −1.05903
\(879\) −25.3794 −0.856027
\(880\) 4.60240 0.155147
\(881\) −5.18172 −0.174576 −0.0872882 0.996183i \(-0.527820\pi\)
−0.0872882 + 0.996183i \(0.527820\pi\)
\(882\) −5.88013 −0.197994
\(883\) −31.7625 −1.06889 −0.534446 0.845203i \(-0.679480\pi\)
−0.534446 + 0.845203i \(0.679480\pi\)
\(884\) 27.4495 0.923226
\(885\) −11.0843 −0.372593
\(886\) 8.51738 0.286147
\(887\) −38.9130 −1.30657 −0.653286 0.757111i \(-0.726610\pi\)
−0.653286 + 0.757111i \(0.726610\pi\)
\(888\) −4.94821 −0.166051
\(889\) −12.2521 −0.410923
\(890\) −18.5972 −0.623378
\(891\) −2.77476 −0.0929581
\(892\) −15.7388 −0.526975
\(893\) −1.12505 −0.0376483
\(894\) −15.7224 −0.525836
\(895\) 9.17204 0.306587
\(896\) −1.05824 −0.0353533
\(897\) 5.36531 0.179143
\(898\) 23.0308 0.768548
\(899\) −3.97596 −0.132606
\(900\) −2.24883 −0.0749611
\(901\) 26.9163 0.896711
\(902\) −16.1006 −0.536091
\(903\) −2.82392 −0.0939741
\(904\) −2.85161 −0.0948432
\(905\) −2.55412 −0.0849020
\(906\) −4.23296 −0.140631
\(907\) −33.2441 −1.10385 −0.551927 0.833893i \(-0.686107\pi\)
−0.551927 + 0.833893i \(0.686107\pi\)
\(908\) 0.335007 0.0111176
\(909\) 19.1478 0.635092
\(910\) 9.41754 0.312188
\(911\) −47.5252 −1.57458 −0.787290 0.616583i \(-0.788517\pi\)
−0.787290 + 0.616583i \(0.788517\pi\)
\(912\) −0.230571 −0.00763497
\(913\) 2.78033 0.0920155
\(914\) −38.4332 −1.27126
\(915\) −2.41739 −0.0799166
\(916\) −14.6268 −0.483284
\(917\) −14.5817 −0.481530
\(918\) 5.11610 0.168856
\(919\) 8.35007 0.275443 0.137722 0.990471i \(-0.456022\pi\)
0.137722 + 0.990471i \(0.456022\pi\)
\(920\) −1.65866 −0.0546845
\(921\) 3.50230 0.115405
\(922\) 20.1537 0.663727
\(923\) 18.8581 0.620722
\(924\) 2.93636 0.0965992
\(925\) 11.1277 0.365877
\(926\) −36.7091 −1.20634
\(927\) −14.0574 −0.461706
\(928\) −1.00000 −0.0328266
\(929\) −23.1339 −0.758998 −0.379499 0.925192i \(-0.623904\pi\)
−0.379499 + 0.925192i \(0.623904\pi\)
\(930\) −6.59478 −0.216251
\(931\) 1.35579 0.0444342
\(932\) −21.8588 −0.716008
\(933\) −4.24875 −0.139098
\(934\) −26.7479 −0.875218
\(935\) 23.5463 0.770047
\(936\) 5.36531 0.175371
\(937\) 9.86115 0.322150 0.161075 0.986942i \(-0.448504\pi\)
0.161075 + 0.986942i \(0.448504\pi\)
\(938\) 7.48383 0.244356
\(939\) −25.2728 −0.824746
\(940\) −8.09327 −0.263973
\(941\) 48.1729 1.57039 0.785195 0.619248i \(-0.212562\pi\)
0.785195 + 0.619248i \(0.212562\pi\)
\(942\) 12.2854 0.400280
\(943\) 5.80251 0.188956
\(944\) 6.68264 0.217501
\(945\) 1.75526 0.0570987
\(946\) −7.40447 −0.240740
\(947\) 0.110230 0.00358201 0.00179100 0.999998i \(-0.499430\pi\)
0.00179100 + 0.999998i \(0.499430\pi\)
\(948\) −2.10845 −0.0684792
\(949\) 71.2784 2.31379
\(950\) 0.518516 0.0168229
\(951\) 7.84844 0.254503
\(952\) −5.41406 −0.175471
\(953\) 44.6029 1.44483 0.722415 0.691459i \(-0.243032\pi\)
0.722415 + 0.691459i \(0.243032\pi\)
\(954\) 5.26109 0.170334
\(955\) 1.06695 0.0345257
\(956\) −17.7587 −0.574356
\(957\) 2.77476 0.0896953
\(958\) −6.15789 −0.198953
\(959\) −6.84749 −0.221117
\(960\) −1.65866 −0.0535331
\(961\) −15.1917 −0.490056
\(962\) −26.5487 −0.855965
\(963\) 10.6798 0.344151
\(964\) 8.48990 0.273441
\(965\) 3.48307 0.112124
\(966\) −1.05824 −0.0340483
\(967\) −23.1412 −0.744171 −0.372086 0.928198i \(-0.621357\pi\)
−0.372086 + 0.928198i \(0.621357\pi\)
\(968\) −3.30069 −0.106088
\(969\) −1.17962 −0.0378950
\(970\) −1.30325 −0.0418448
\(971\) 22.0716 0.708313 0.354156 0.935186i \(-0.384768\pi\)
0.354156 + 0.935186i \(0.384768\pi\)
\(972\) 1.00000 0.0320750
\(973\) 13.9817 0.448234
\(974\) 24.2773 0.777894
\(975\) −12.0657 −0.386412
\(976\) 1.45744 0.0466514
\(977\) 8.77385 0.280700 0.140350 0.990102i \(-0.455177\pi\)
0.140350 + 0.990102i \(0.455177\pi\)
\(978\) 7.95202 0.254277
\(979\) −31.1110 −0.994312
\(980\) 9.75316 0.311553
\(981\) 12.7250 0.406277
\(982\) −27.4076 −0.874610
\(983\) −40.0954 −1.27885 −0.639423 0.768855i \(-0.720827\pi\)
−0.639423 + 0.768855i \(0.720827\pi\)
\(984\) 5.80251 0.184977
\(985\) 35.1161 1.11889
\(986\) −5.11610 −0.162930
\(987\) −5.16356 −0.164358
\(988\) −1.23709 −0.0393570
\(989\) 2.66851 0.0848536
\(990\) 4.60240 0.146274
\(991\) −7.06614 −0.224463 −0.112232 0.993682i \(-0.535800\pi\)
−0.112232 + 0.993682i \(0.535800\pi\)
\(992\) 3.97596 0.126237
\(993\) 25.8647 0.820790
\(994\) −3.71952 −0.117976
\(995\) 9.49470 0.301002
\(996\) −1.00201 −0.0317498
\(997\) −25.6909 −0.813640 −0.406820 0.913508i \(-0.633362\pi\)
−0.406820 + 0.913508i \(0.633362\pi\)
\(998\) 15.6677 0.495953
\(999\) −4.94821 −0.156554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bh.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bh.1.2 7 1.1 even 1 trivial